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Figure 1.8. Total catch of Blue Whaltes in the Antarctic, 1920-1963,
and an index of abundance of Blue Whales in the Antarctic {estimated
as the number of whales caught per caicher-ton-day), 1945-1963
(after Gulland 1971).

Blue Whale populations were already very depleted by the time quotas
were introduced in 1945. The stocks of the species continued to decline, and
a shorter open season for the species was introduced in 1953. However, the
difference between the catch and the productive potential of the whale pop-
ulation continued to widen because the quotas were more or less fixed and
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the population did not reproduce quickly enough to replace the numbers
removed. The imposition of quotas, and the allocation of the catch among
countries, were topics of intense political and scientific argument from the
1950s through 1967. In 1960 and 1961, the International Whaling Commis-
sion fatled to set quotas at all because of disagreements among its member
nations. As late as 1955 there was no agreement on the extent, or even the
existence, of a decline in Antarctic whale stocks. Fin Whales were the main-
stay of the industry at this time, and their abundance did not begin to decline
dramatically until 1955, even though the abundances of other -whale species
were obviously falling. Throughout the period of the early 19608, Blue Whale
stocks continued to decline. The population abundange data for the Blue
Whale from the period 1945-1963 fit a straight line quite well, suggesting

that the decline in the population size was approximately exponential
(Figure 1.9). -
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Figure 1.9. The abundance index for Blue Whale in Figure 1.8 plotted
on a logarithmic scale.

In 1963, evidence was presented to the whaling industry that its guota

was three times higher than the level at which further depletion of the stock
could be avoided. The industry reduced its harvest to these levels by 1967.
One critical failure in the process of regulation of the industry was that sci-
entists failed to provide clear advice to the industry after 1955, when a
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reduction in the quota was clearly necessary and would have been much less
drastic than the reduction that eventually was necessary. The Blue Whale
population was reduced from about 20 to 50 thousand individuals in the
1930s to between 9 and 14 thousand in the mid 1950s. It remained approxi-
mately constant at about 14,000 individuals between 1965 and 1975.

1.5 Additional topic

1.5.1 Population Growth in Continuous Time

Most examples in _this book involve populations of species living in tem-
perate regions, which have distinct reproductive seasons tied o the
seawonality of the environment. This property, fogether with the way most
field studies estimate demographic parameters (by periodically observing a
population), make it easy and natural to use the discrete-time formulations
of population models. However, some natural populations reproduce and
die continuously, as does the human population. The basic model for pop-
ulation growth in discrete time was

N+ =N +B - D

* This could be rewritten as

i
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The symbol AN is the difference in population size. Tf the time interval rep-
resented by AN is small, we can approximate it by the derivative dN/dt.
Rather than express births and deaths as numbers of individuals, they may
be expressed as instantaneous rates, giving

dN/dr = bN - dN
=(b-dN
= rN

The difference between the birth rate and the death rate in continuous time is

called the instantaneous growth rate (r). The equaﬁp_r_l__él_ipvqmay be sql\(a,_i
giving

N =N(O) e
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This equation says that the population size at time ¢ in the future is given by

the current population size, multiplied by e"". Tn this equation, ¢ is a con-

stant (about 2.7); sometimes ¢’ is written as exp(rt). By analogy with the
equivalent discrete time equation, you can see that

R=e¢"

because R'=(¢")'= e The equation for exponential population growth in
continuous time is equivalent to the model in discrete time, in which the time

interval is made arbitrarily small. Frequently, models for population growth
are written in continuous time because they are analytically tractable, i.c.,
one can find solutigns to the_.equa“t_ipns using calculus. Equations in discrete
time, although more plausible for many biological scenarios, are generally
less tractable. However, this is not a big disady'z_gqt_agg when numerical solu-

tions can be obtained using computer simulations. We will ignore models in
continuous time I this book because discrete-time models are more
applicable to most of our examples, and they are easier to explain and
understand. While we shall mention analytical solutions where they exist,

we will use computer simulations to solve most of the problems.

1.6 Exercises T o % _
) I, s

Elgc'ercise 1.1: Blue Whale Recovery ; o

This exercise is based on the Blue Whale example of Section 1.4.3. The pop~
ulation dynamics of the Blue Whale population and predictions of harvest
levels have been made using exponential models. The growth rate (R) of the
population during the period represented in Figure 1.9 was .82, ie, the
population declined by 18% per year. The fecundity of Blue Whale has been
estimated to be between 0.06 to 0.14 and natural mortality to be around 0.04.
In the absence of harvest, the growth rate of the population would be
between 1.02 and 1.10. We want to estimate the time it will take for the Blue
Whale population to recover its 19305 level. Assuming a pepulation size in
1963 of 10,000 and a target population size of 50,000, calculate how many
years it will take the population to recover:

{a) if its growth rate is 1.10

(b) if its growth rate is 1.02
Hint: Use the method for calculating doubling time, but with a factor dif-
ferent from 2.
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Exercise 1.2: Human Population, 18001995

In this exercise, we will investigate the data on human population growth
given in Section 1.4.1. Before you begin the exercise, look at your watch and
record the time.

Step 1. Calculate the growth rate of the human population for each
interval in Table 1.1. Note that each interval is a different number of years:
initially 50, then 20, later 5 years. It is important to convert all these into
annual growth rates, so that we can compare them. Use the method
described in Section 1.4.1 to calculate the annual growth rate from 1800 to
1850, from 1850 to 1870, so on, and finally from 1990 to 1995. Enter the results
in Table 1.3 below (in the table, the first growth rate is already calculated as
an example).

Table 1.3. Calculating the annual growth rate of the human population.
Year Population Time Population Growhrate  Annual growth rate
(bilions)  interval  in previous in Tyears {R)
{years) census (A"
t N() T N@-T)  N@/NGE-T)  [N@/NE-DI?

1800 0.91 — — — —

180 183 50 091 1.24176 1.00434
o 130 T3 - . o
1890 iR NC. . 130 . .

1810 170 T . s
190 202 " 170 - ’
1950 251 202

1970 362 251

1975 397 a6

1980 441 397

1985 484 441

1990 529 484

195 575 5.29
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Step 2. Plot the growth rate against year and comment on any pattern.

Step 3. [t is important to know the difference between relative and
absolute growth. Even though the annual growth rate (a relative measure of
growth) declines, the number of individuals added to the population each
year (an absolute measure of growth) may increase. The number added to
the population in one year is equal to N-{(R-1), where N is the population
size and R is the annual growth rate. For example, in 1850,

1.13 billion - 0.00434 = 4.9 million

people were added to the population, (Strictly speaking this is not correct,
because the two numbers refer to different times: 1.00434 is the average
growth from 1800 to 1850, whereas 1.13 billion is the population size in 1850.
However, for the purpose of this exercise, it is a reasonable approximation.)

Caleulate the number of people added to the human population each
year, for 1975, 1985, and 1995, using Table 1.4 below. Compare the change in
annual growth rate with the absolute increase in the population size per
year. :

Table 1.4. Calculating the number of individuals added to the

human population.
Year  Population size Annual Annual rumber of people
_— growth rate added to the populafioy) .
3.97 billion

- 1975 -

r s

1985 483 bilion ' ' e? e
-~ - ‘ . :

1895 575 billion

Step 4. Using the estimated number of people added to the human pop-
ulation in 1995, calculate the approximate number of people added to the
human population:

(a) per day

(b) per hour

{c) per minute

{d) during the time you completed the exercise
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Exercise 1.3: Human Population, 1995-2035

In this exercise you will investigate one rather optimistic scenario of the

slow-down and stabilization of human population. Specifically, you will cal-
culate the population size in 2035, assuming that by that time the growth rate
has reached 1.00 (no growth). For this exercise, assumne that (i) the fecundity
in 1995 is 0.0273, (ii) the survival rate will not change in the future, and {jii) in
the 40 years after 1995, the fecundity will decrease so as to make the annual
growth rate in 2035, R(2035) = 1.0.

Step 1. Using the annual growth rate for 1995 you calculated above, esti-
mate the annual decrease in fecundity necessary to make R(2035) = 1.0.
Assume a linear decrease, i.e., an equal amount of decrease in fecundity for
each year.

=~ gtep 2. Calculate the fecundity and the annual growth rate for years
" 2005, 2015, 2025, and 2033, and enter them in Table 1.5 below.

Step 3. Calculate the 10-year growth rates for the periods 1995-2005,
2005-2015, 2015-2025, and 2025-2035, by multiplying each annual growth
rate by itself 10 times. For example the 10-year growth rate for 1995--2005 is
R(1995)". Enter these in the table below (enter the 10-year growth rate for
period 1995-2005 in the line for 1995.)

Table15. Projecting human population growth.

Yea Fecundify  Anqual  10vear - _Populationgtthe  Populaionatthe
’ (fy . growth fate growth rate *ﬁe ﬁmm Bffﬁ'e’ end of the 10-year

LAY (A Cetbyealintenal < interval
;.7?35_',_ 0.0273 —r  875bilon - = - :
s S '

2015

2025

2035 1.0000 1.0000

Step 4. Estimate the population size at the end of each 10-year period by
multiplying the 10-year growth rate you calculated in the previous step with
the population size at the beginning of the time period.

How much did the population increase while the fecundity was
decreasing for 40 years? If the fecundity decreased to the same level in 80
years instead of 40, would the final population size be larger or smaller?
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1.7 Further reading
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