Chapter 2
Variation

2.1 Introduction

We view population ecology as an applied science that helps find solutions
to practical problems in wildlife and game management, natural resource
management and conservation, and other areas. All of the cases explored in
Chapter 1 dealt with real world problems. Yet they ignored a fundamental
component of the ecology of populations, namely variability in populations
and in the environment in which they live. Such variation is pervasive. The
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growth rate of the Muskox population on Nunivak Island varied substan-

tially around the average of 1.148 that was used to predict future population
sizes. The rate of decline in the Blue Whale population averaged 0.82
between 1947 and 1963, but in no year was it exactly 0.82. In this chapter, we
introduce the concepts and the framework that are necessary to deal with
natural variation in population ecology.

Ecologists think in terms of what is known as the central tendency of
their data. The first questions to come to mind in any population study usu-
ally are of the kind: "What is the average growth rate?” A somewhat more
thoughtful ecologist might also ask "What is the year-to-year variation in the
growth rate?" or even "What are the confidence limits on the predicted pop-
ulation size?™ These are all important concepts. It is equally important to
consider the distribution of outliers. In practical situations, for example, it is
often important to know the worst case we might expect, and how likely it is.

.. The chances of extreme events are particularly relevant to people interested

in keeping population sizes within predetermined limits. To look at data or
to make predictions in this way first requires a special vocabulary.

2.1.1 Vocabulary for Population Dynamics and Variability

Stochasticity is unpredictable variation. If the long-term growth rate is less
than 1.0, the population will become extinct, no matter how stable the envi-

* ronment” These' popiflations are said to be the Victins of “systematic

pressure”; their decling results from-deterruinisti¢ causes. Populations that
would persist indefinitely in a’constaht envifehment nevefﬂfeless"faﬁﬁ some
risk of extinctjon through variation-ift fecundity and survival rates. These
populations, when they decline,-are the victims of stﬁchasticity.

In Chapter 1, we began constructing models to represent the dynamics
and ecology of populations. Population models that assume all parameters
to be constant are called deterministic models; those that include variation in
parameters are called stochastic models. Stochastic models allow us to eval-
uate the models in terms of probabilities, accounting for the inherent
unpredictability of biological systems. The probabilities generated by
stochastic models allow us to pose different kinds of questions. We might

want to know the worst possible outcome for the populatior If things go as
badly as possible, what will the population size be? We might like to know

which parameter is most important. When the problems that we face are
subject to uncertainty (and they almost always are), then the questions we
ask should be  phrased in a specific way. For example, if our focus is the size

of the population, then we should ask:

What is the probability of {decline / increase}
to [populationsize, N.] {at least once before / at} [time, ¢ ]?
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The components inside braces [..} are choices and the components inside
square brackets [...] are quantities. Circumstances will ordain whether we are
most interested in (or concerned about) population increase or population
decline, or both. W_ﬂ_nygg_gpeqifx___the critical population size or threshold

(N, ) that represents an acceptable (or unacceptable) outcome, or a range of

such values. We must specify a time horizon (), a period over which we

wish to make predictions. Lastly, we must say whether it is sufficient that
these conditions are met at least once during the period or that they are met

at the end of the period. ‘

The words risk and chance may be used in place of the word flrﬁbability,
but they emphasize slightly different aspects of a problem. Risk is the poten-
tial, or probability, of an adverse event. When applied to natural populations
of plants and animals, risk assessment usually is concerned with the
calculation of the chance that threatened populations will fall below some
specified size, or that pests will exceed some upper population size. Declines
in population size may be seen as desirable when dealing with a pest, in
which case we talk of reduction. They may be undesirable when dealing
with rare species, in which case we may refer to the risk of decline or risk of
extinction. Similarly, increases may be either desirable (recovery of rare or
threatened species) or undesirable {explosion of pest species). If we wish to
estimate the chance of decline or increase of a population to some specified

size (a threshold) at least once in the specified period, we talk of the "in-

terval” probability. If our interest is in the chance of being above or below a

_ threshold at the end ‘.of'_tl}'e-,timeﬁorizon; we_tallke of the "terminal'-

probability, . ) P

The critical population size, or threshold, specified in the definition of
risk often reflects an abundance that is considered to be too low {for rare or
threatened species) or too high (for pest species). It may be determined on an
economic basis for harvested species, for example, when a fishery manager
wants to maintain a certain population of Brook Trout in a stream.

Over a given time period, there is a chance that any population will
become extinct. This chance we term the background rigk. If the conse-
quences of different types of human impact are measured Tn terms of
probabilities, it is possible to compare them against the background risks
that a population faces in the absence of any impact. Added risk is the
increase in risk of decline that results from some impact on a natural pop-
ulation. Similarly, if the consequences of different types of conservation
measures are measured in terms of probabilities, we can compare them
against the background risks in the absence of conservation efforts. The dif-
ference (which we hope is a decrease in the risk of decline) is a meagure of
the effectiveness of the conservation effort,
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The probability of extinction or explosion of a population in a given ‘time
period is one way we can describe the chances faced by natural populations.
Another way is to use the expected time to extinction or explosion. These
statistics are the average time it takes for a population to fall below or to
exceed specified population thresholds. We will discuss this further under
the heading Additional topics {Section 2.5.1).

2.1.2 Variation and Uncertainty

We saw in Chapter 1 that the change in size of a population is governed by
births, deaths, immigrants, and emigrants. Births and deaths may be gov-
erned by environmental parameters. Variation in the environment leads p
variation in survival and fecundity rates, and results in variation in
population size that is independent of the average growth rate of the pop-.
ulation. "Good" years are those in which the population produces more
bffspring and experiences fewer deaths. Species respond to envitonmental
variation in different ways. The time scales of impact and response are
related to the ecology of populations. Some species will resist environmental
change and others will respond to it, depending on its severity and duration.
The picture is further complicated by the fact that estimates of poputa-
tion size will vary from one time to the next, even in the absence of any real
change, because of measurement errors. Further, some populations_ will
fluctuate in a regular fashion, following diurnal, seasonal, or longer terx}n
weather patterns, or becapse of their interactions with predataors or competi-
tors. Natural variation in_the environment and measurement error will

overlay any other natural or buman caused pattefs; trends; or, cycles in-

— it L

population size; The consequences of this warighioRare thai e cannot be £
- certain what the population size will be in the future. In addiken, There are.
* other factors that may cause population sizes to vary unpredittably, and
there are other reasons w1:1y our predictions may be uncertain. However, if
we can characterize this uncertainty, we may be able to provide an indica-
tion of the reliability of any estimate that we make. We will explore these
concepts below and introduce ways of dealing with them in circumstances
where predictions are necessary for resource and wildlife management and
species conservation,

2.1.3 Kinds of Uncertainty

Uncertainty may be considered to be the absence of information, which may
or may not be obtainable. Uncertainty encompasses a multiplicity of con-
cepts including:

incomplete information (what will the population size be in 50 years?)

'
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disagreement between information sources (what was the population size
last year?)

linguistic imprecision (what is meant by the statement "the population is
threatened"?)

natural variation (what will be the depth of snowfall this winter?)

relationships between variables (does resistance to cold in winter depend
on the amount of food available in the preceding summer?)

the structure of a mode! (should emigration be represented as a number
or a rate?) ‘ ;

Models are simplifications of reality. Uncertainty may be about the
degree of simplification that is necessary to make the model workable and
understandable. It may be about the decision we should Tike, even iF all

other compoﬁen__ts of the problem are known or understood. Different types

and sources of uncertainty need to be treated it different ways. Probability

ay be a useful mean des e kinds of uncertainty. Others are
more appropriately handled @@_7dééﬁian theory, or even with political
process. There are numerous classifications of the kinds of uncertainty and
variability. Decomposing unc?r_tgig;y mto its different forms allows us o use

may be a useful means of describing s

available information together with appropriate tools fo make predictions.

These predictions may then be qualified by a degree of uncertainty.

“

2.2 Natural variation -

s

o

2.2.1 Individual Variation

Individual variation is the variation between individuals within the same
population. It is the term used to describe the variation within a population
due to genetic and developmental differences among individuals that results
in differences in phenotype. Individual variation also includes genetic vari-
ability. Each individual has a different genetic makeup that results from the
combinations of genes in its parents, and the random selection of those genes
during meiosis. The rate of change in the genetic makeup of a population is
inversely proportional to the number of adults that contribute to reproduc-
tion. In small populations, the genetic composifion of  the population may
change significantly because of these random changes, a process known as
genetic drift.

Inbreeding is mating between dlose relatives. In small populations,
mating between relatives becomes more frequent. If the parents are related
to one another, rare recessive genes are more likely to be expressed and
genetic variation may be lost. These processes may alter the survival and
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fecundity of individuals, and reduce the average values of these rati;s. llln thi
population as a whole. The loss of variation may also reduce the ability o
the population to adapt to novel or extreme enwlronmental Fonfhtmns. ]

Other differences among individuals contribute to this kind of uncer
tainty. For example, in species with separate Sexes, uneven sex rah(;sl r1;11ha1y
arise by chance and have an enhancing or a detnfnentai effect on v e:t~
population increase. While these processes are relatively we_ll und;erlstc.m 1
is not possible to say if, and to what extent, the§e effects will be felt in any
given instance. The process is inherently unpredictable.

2.2.2 Demographic Stochasticity

Demographic stochasticity is the variation in the average chances of survi-

vorship and reproduction that occurs because a population is made up of a

finite, integer number of individuals, each with different chaljacterlsitlcz
Consider the following example. The Muskox population on Nunivak Is an8
began in 1936 with 31 individuals and had an average grm:vth .rate of l.li :
On the basis of this average, we might expect the population in 1937 to be
35.6, but there is no such thing as 0.6 of a Muskox.. The growth ‘rate we spes-
cified is an average based on observations. What this result says is that, 4 t(;l ;
more births than deaths are expected in the Muskox population between the
1936 census and the 1937 census. Exactly how many, we car_mot be sure.
= The peopte who conducted the ‘censuses of the Muskox poPulatmn on
Nunivak Island recorded the number of talyes produced each year. Over the

_years the ‘avefage number of calves ge‘r-_im:_ﬁmiﬂ_ug‘rt(f) was’fJ,227::G_iVE:n that

R=f+s
the average survival rate was
s=1.148 - 0227 =0.921

The parameters in the models we developed in Chapter_l do not. vary, sc;
they are termed deterministic models. They provide a single estimate «:;f
population size at some time in the future. We could add an element o

realism to these models by following the fate of “each individual. For

example, rather than multiplying the whole population by a survival vaflue
of .921 to calculate the number of survivors, we coqld C}ef,lflfi,ﬁ ?ach E;me
step, whether each individual survives or dies. We do this in such a way
that, in the long term, 92.1% of the individuals survive. One way tf’ dfn Fh]s is
to choose a uniform random number between 0 and 1 for each individual.
("Uniform"” means that each number in that range has an equal chance of
being sampled; see the exercises section for ways of choosing random num-
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bers.) If the random number is greater than the survival rate of 0.921, then
the individual dies. Otherwise, the individual lives. We ask the question for
each individual in the population, using a different random number for each,
Thus, if there are 31 individuals in the population, there is no guarantee that
29 will survive, although it is the most likely outcome (31x0.921 =28.8).
There is some smaller chance that 28 or 30 will survive and some still smaller
chance that 27 or 31 will survive. This kind of uncertainty represents the
chance events in the births and deaths of a real population, and js what we
mean when we talk of demographic uncertainty. .

We could add a further element of reality by treating the births in the
population in an analogous fashion. Like deaths; births come in integers (no
Muskox will produce 0.227 offspring: rather, mogst will produce none, some
1). We can represent this in our model by following the fate of individuals in
the same way as we did for survival. That is, choose a random number for
each individual. If the value is less than 0.227, the animal has an offspring.
Otherwise, it does not.

A time step of a year seems appropriate because reproduction in this
species is seasonal and the environment is highly seasonal. We treat the
population as composed of an integer number of individuals and we sample
the survival and reproduction of members of the population, using the
observed population size and the population average fecundity and survival
rates. The result is that our predictions will no Ionger be exact. As in a real
population, our model reflects how a run of bad luck could lead to the

extinction of any populatiof,jno matter how large ffie population size offigiw
large the potential growth rate. | ’ -

Each time we tally the population and we ask "Does this animal die?"
and "Does this animal produce offspring?”, the answer may be different. To
gain some idea of the expected outcome, and the reliability of that outcome,
we need to run a series of trials. We need to repeat the experiment a number
of times and calculate the average and the variability of the outcome, Vari-
ability of a set of numbers is often expressed as their variance or standard
deviation (variance is equal to the standard deviation squared). Histograms
showing the frequencies of different possible population sizes one year after
the introduction of Muskox to Nunivak Island are shown in Figure 2.1. The
larger the number of trials, the more reliable will be our knowledge of the
average and the variance. This approach is most effectively implemented on
a computer.

Formulating demographic stochasticity in this way makes a number of
assumptions about the ecology of the population. Tt assumes that a female
can have no more than one offspring per year. More efficient and more gen-
eral methods are available that involve sampling the binomial and Poisson
distributions, but learning how to use them is beyond the scope of this book
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Figure 21.  Histogram of population sizes for a Muskox papulation
model with demegraphic stochasticity.
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(the computer program that comes with this book implements these more
advanced methods). Our approach here assumes further that births and
deaths are independent events. We choose different random numbers to
represent the survival and reproductive success of each individual. If an
anima] dies in 1937, it may also have offspring before it dies that year. We
could, if we wanted, preclude reproduction if an animal dies, or make it less
likely for an animal to survive if it reproduces.

It is clear that demographic stochasticity can have an important effect on
estimates of population size. From a starting population of 31, the popula-
tion quite reasonably could increase to 46 animals, or decreaseto 27 animals
after one year, just because of the random chances associated with giving
birth and surviving from one year to the next. This kind of variability is
present in every population. The deterministic expectation of 35.6 is just one
of many possible outcomes. The mean predicted by the model including
demographic stochasticity (Figure 2.1} is similar to the number predicted by
the deterministic model (35.6), By carrying out a great many trials, we can be
reasonably certain that we know the mean and the variarion in expected
population sizes. The uncertainty arises because real populations are struc-
tured, composed of discrete individuals, and because the individual
occurrences of births and deaths are unpredictable.

By developing forecasts in this way, we can ask different kinds of ques-
tions. For example, we could ask "How likely is it that there would be less
than 31 animals in 19372" or "What is the chance that the population will
increase by 30% or more, rather than the average 14.8%?" To afdwer these
questions let's count the number of trials that met the stated cfiteria and
divide by the total number of trials. Forexample, to answer the first ques-
tion, we tally the number of trials that reached 30 animals, 29 ahimals, etc.,
down to the smallést recorded number {which was 24). The result is givenin
the second column of Table 2.1. The third column shows the cumulative fre-
quencies, ie., the number of trials predicting a given number or fewer
individuals. Each row of this column is calculated by adding up the numbers

in the second column up to and including the current row. Adding up the
first 7 numbers gives 548, which is the number of trials in which the pre-
dicted number of animals was 30 or less. The last column gives the same
(cumulative number), divided by the total number of trials (10,000 in this
example). Note that this table contains only part of the data represented by
the last histogram in Figure 2.1; the dots (".") at the end of table are to

remind you that the maximum population size was 49, and the table could
have another 18 rows.
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Table 2.1. Number of trials (out of the total of 10,000 trials) that predicted 24
to 31 animals in 1937.

Population ~ Numberoftrials that ~ Cumulative number of trials ~ Probability of
level (M) reachedalevel <N,  (thatreached alevel < N,) declineto N,

24 3 3 0.0003
2o 2 5 0.0005
26 11 16 0.0016
27 29 45 0.0045
28 67 112 0.0112
29 142 254 0.0254
30 294 548 0.0548
31 449 997 0.0997

According to the table, 548 trials out of 10,000 predicted a population size
of 30 or less, so the chance is 548/10000 or 0.0548. Thus, even though the
deterministic model tells us the population will increase, and the stochastic
model tells us the population will probably increase, there is a better than 5%
chance that the population will actually decline from 1936 to 1937.

W can answer the second question posed above in a.similar way. The
question was "What is the chance that the population will increase by 30% or
more?” An increase of 30% isequal to a popglal;i_gp—size ££40.3. The number
Bf trials that predicted a population size greater than 40 was 649. The chance
of exceeding 40 is therefore 0.0669, or about 6.7%. Note that You cannot find
this answer in the table above. The above table shows the probability of
reaching a level less than or egual to N,, whereas this question was expressed
in terms of reaching a level greater than or equal fo N,.

The task of wildlife managers is to implement plans to manage both the
expected population size and the probabilities of extreme outcomes. Wiidlife
management questions that may be answered by population forecasts come
basically in two forms, The first is: "What is the chance that the population
will exceed some threshold?” {for control problems} and the second is "What
is the chance that the population will fall below some threshold?" {for con-
servation problems). The management of natural populations may require
ensuring that the populations remain within prespecified levels, so that both
the upper and the lower bounds are important. For example, large herbi-
vores in parks or reserves frequently must be maintained within upper and
lower limits so that they persist indefinitely within the confines of the
reserves without becoming so numerous that they displace other herbivores.
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Alternatively, it may be important to manage various ecological processes
and human impacts to maintain a population, to keep it from becoming
extinct.

To address these questions, we may redraw the histograms in Figure 2.1
as cumulative frequencies. As we demonstrated above, if the cumulative fre-
quencies are divided by the number of trials, they may be interpreted as
probabilities. Thus, the curve in Figure 2.2 represents the chances that the
population which began as 31 individuals in 1936, will be equal to or less
than various threshold population sizes in 1937. The x-axis of this curve is
the threshold population size (first column of Table 2.1), and they-axis is the
probability that the population size will be less than or equal to the threshold
(last column of Table 2.1). '
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Figure 2.2.  Cumulative frequencies from Figure 2.1, divided by
10,000 {the number of trials), and plotted against population size.

To interpret the figure above, let's use the two sets of arrows on the
figure to answer a couple of questions: What is the chance that the popula-
tion will be equal to or less than 31 individuals in 1937 (in othet words, what
is the chance of no increase)? Looking at the figure, we see that the curve
predicts a probability of about 0.1, or 10% for a threshold population size of
31 (see also the last column of Table 2.1, which shows a probability of 0.0997,
or about 10%, of declining to 31 or below). What is the chance that the pop-
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ulation will be less than or equal to 40 individuals in 19377 The answer is
about 0.93. The curve represented in Figure 2.2 is called a risk curve. More
specifically, it is a quasi-extinction risk curve. It provides answers to ques-
tions phrased as follows: "What is the chance that a population with current
size N will fall below some critical threshold population size, N,, within the
next period, $ ?" Thus, it is useful for questions concerning the lower bound
of population size.

Demographic stochasticity, as well as phenotypic variation of all kinds,
has most important consequences in small populations. This is because the
effects are inversely related to population size. We can see the qualitative
effect of population size by considering the survival probability for the
Muskox, 0.921. Assume some catastrophe affects the population and only
two animals remain. What is the chance that both will die before the fol-
lowing year? The chance due to demographic uncertainty is (1 - 0.921)° =
0.0062. When there are 31 animals, the chance is (1 - 0.921)*, which is a very
small number. In general, the chance of loss of the entire population (p) in a
single time step is

p=(1-s)

where N is the population size. As N increases, p decreases. Nevertheless,
even for medium-sized populations, there remains some chance of impor-
tant deviation from the deterministic model and some small chance of loss of
the population through nothing more than bad uck- - - Ce -
Questions such as those posed abgve are particularly relévant to wildlife

managers and environmental . scientists who have tp,‘@_a‘gégej papplationg-

within limits. They are phrased and answered quite naturally in terms of the
probabilities of different outcomes. Common sense tells us that we can never
predict exactly the size of the population next year. Models that include ele-
ments of randomness may be designed to cope with the uncertainty that is
part of all environmental prediction and decision making. Such models will
allow us to target both the expected size and the risk of decline or expansion
of a population. We will see below that, to some extent, these properties are
independent. The management strategies to maximize the expected popula-
tion size may be different than those that are required to minimize the risk of
decline.

It is important to remember that, even though the models we developed
in this section allowed variability in the number of survivors or the number
of offspring, they did not allow the survival rates and fecundities to vary. We
demonstrated that even when these rates remain the same, demographic sto-
chasticity introduces randomness and unpredictability in the estimated
population size. In the next section, we will add more realism to cur models
by allowing their parameters (survival rates and fecundities) to vary.
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2.2.3 Environmental Variation

2.2.3.1 Temporal variation

Environmental variation is unpredictable change in the environment in time
and space. It is most often thought of as temporal variation at a single loca-
tion. An obvious example is rainfall. Even in circumstances in which we
know precisely the average annual rainfall of a location based on records
going back centuries, it is difficult to say if next year will be relatively wet or
dry, and even if next week will be rainy or not. -

In circumstances in which the vital rates of a population depend on
environmental variables, the rates will likewise be unpredictable. The con-
cept of a niche implies that a set of biotic and abiotic variables limits the
distribution of a species. It is usually assumed that a set of environmental
parameters will affect the rate of growth of a population within the niche
that a species occupies. Environmental variation that results in variations in
population size is seen as a mechanism that is extrinsic to the population.
Environmental variation is not the sole determinant of fluctuations in pop-
ulation size. We will explore intrinsic causes of population change in
subsequent chapters.

Environmental variation results in fluctuations in population size when
environmental variables affect the number of survivors and the number of
offspring in a population, There are many examples of relationships between
environmental variables, and the survival and fecundity of individuals
within populations. For example, population numbers of the California

- Quail are influeneed by climate. High winterand spring rainfak+is associated

with high repraduction in semi-arid regions (Figure 2.3)..The mechanisms
for this dependence may be based on the quality and quantity of plant
growth or the availability of free drinking water. If water is scarce in the
region inhabited by the California Quail, fewer juveniles survive than if
water is plentiful.

The causes of interactions between population dynamics and environ-
mental variables such as rainfall may be less direct than in the example
above. The fecundity of Florida Scrub Jays, expressed as nest success, is
likewise dependent on rainfall (Figure 2.4). However, the researchers specu-
late that the direct cause of variation in nest success is variation in nest
predation rates. Rainfall could influence nest predation by affecting the
density or activity of predators, the availability of alternative food items, the
nest vigilance of the Jays, or the protective vegetation cover surrounding
nests.
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Figure 2.3. The relationship between rainfall (December to April pre-
cipitation) and fecundity in the California Quail {Callipepla californica)
for a population in the*Panoche Management Area, Callfornia (after
Botsford et al, 1988). The correlation coefficient for these (log trans-
formed) data was 0.68, Fecundity was expressed as the number of
juvenile birds per adult.”, - '

There are many causes of death in the Muskox population on Nunivak
Island, some of which are directly related to environmental variables. Over
the 20-year period that observations were made, animals fell from cliffs,
became lost on sea ice, were mired in a bog, drowned, were otherwise
injured, were shot by humans, or died during winter snow falls. There were
almost certainly deaths due to starvation in years of heavy snowfall, during
which it was harder to find food. A relatively common event in this popula-
tion was for small groups of animals to wander onto pack ice around the
island during winter. The ice floes broke up or melted, blocking the animals’
return to land. These animals either starved or were drowned at sea. It
would be impassible to predict the number of animals that might suffer such
a fate in any year, because it depends on the propensity of groups to wander
over the ice, and the chance environmental events that lead to the break up

Natural variation 47

0.8 4 ®

07 ¢

0.6 +

0.5 1

Nest success

0.3 9

0.2 -

0.6 0.8 1.0 12 1.4 16
Rainfall (m}

Figure 2.4. Nest success in Flerida Scrub Jays (Aphelocemna c. coer-
ufescens) as a function of total rainfall in the preceding 10 maonths
(June ta March) (after Woolfenden and Fitzpatrick 1984). Nest success
is the proportion of nests that survive to fledgling. The correlation
between rainfall and nest success is 0.78. -

-

of the pack ice. Weather conditions are thought to be the single most impor-
tant factor determining year to year variation in population growth of
Muskox on other islands (see Gunn et al. 1991).

If we wanted to predict the population size next year, and in making this
prediction take into account the variation due to some environmental factor,
we would need to know three things: (1) which environmental factor is
important, (2} how it affects the population dynamics, and (3} what the value
of that environmental factor will be in the future. In other words, even if the
dynamics of a population are directly related to an environmental variable
(and we knew exactly whatthis relationship is), we still cannot make precise
predictions because it is impossible to say what the value of the environ-
mental variable will be nextyear.

We noted in Chapter 1 that the growth rate of the Muskox population
was niot fixed through the period of observation. It varied from a maximum
of 1.27 to a minimum of 0.94 Having taken note of the fact, we estimated the
mean growth rate and then made some predictions for population sizes that
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ignored the fact that growth rates are variable, The results of our predictions
were made without any estimate of how reliable they were. For example, we
predicted that the population size in 1968 should have been 778 animals. It
turned out to be 714 (or 762 if you include removed animals). Was the pre-
diction within the bounds of probability, given the variable nature of the
population’s growth rate?

| We may rewrite the equation for exponential population growth as fol-
ows:

N+1) =N - R()

where R(t) is the growth rate for time step . Writing R(F) instead of R
indicates that the growth rate varies from one time step to the next. When we
use this equation, we sample the growth rate from some distribution for each
time step, rather than use a fixed value. We may, for example, use observed
distribution of growth rates for the population (Figure 2.5). This distribution
shows that between 1947 and 1964, there was one year when the growth rate
was between 0.90 and 0.95 (indicated at the mid-vilue of this range, 0.925),
one year when it was between 1.00 and 1.05, etc.

Frequendy

0.925 0.975 1.025 1.075 1.125 1.175 1.225 1275
Growth rate

Figure 2.5.  Frequency distribution of growth rates observed in the
Muskex population on Nunivak lsland between 1947 and 1964 {see
Figure 1.4in Chapter 1).
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By sampling randomly from this distribution, we assume that the prop-
erties of the random variation that we have observed in the past will persist
in the future. By properties, we mean characteristics such as the mean,
variation, and shape of the distribution. Why do we sample randomly,
instead of using the correct sequence of growth rates between 1947 and 19647
We cannot use the exact sequence of growth rates because there is no guar-
antee that the environmental factors between 1947 and 1964 will repeat
themselves in exactly the same order in the future. It would be a very strong
assumption (meaning very likely to be wrong) to assume that they would.
Instead we make a generalization based on this observed distribution: We
assume that the distribution of growth rates in the future (their mean, varia-
tion, etc.) will remain the same as the observed distribution, even if the
growth rates do not repeat themselves in the same order as in the period
from 1947 to 1964.

Of course, even if we sampled randomly, the set of growth rates we
chose will probably be different from what actually will happen in the
future. To account for the inherent uncertainty of the future growth rates, we
do this many times. We randomly select a set of growth rates for, say, 20
years, and estimate the population’s future with these 20 growth rates. This
gives one possible future for the population. Then we select another 20
random numbers, and repeat the process. By undertaking repeated trials we
may predict the population size into the future, accounting for the effects of
the environment on the population. In order to get a representative sample
of possible futures of the population, we have to repeat this hundreds of
times. This procedure is most easily implemented on a computer (actually, it
is next to impossible to do without a computer).

The procedure may be further generalized by éampIing the growth rates

from a statistical distribution that has the same properties as the variations
that have been observed in the past. For example, we may sample the distri-
bution known as the normal distribution, with the same mean and standard
deviation as the observed distribution. This approach has the advantage of
recognizing that values of R more extreme than those observed in the past
are possible in the future. For instance, if we observed the population for 100
years instead of 17, perhaps there would be a year with a growth rate of 0.8
orl4.

Before we proceed, we need to define some terms we will use frequently
in describing stochastic models. A time series of population abundances is
called a population trajectory. When we estimated the population’s future
with 20 randomly selected growth rates, we produced a population trajec-
tory. Each trial or iteration that produces a population trajectory is called a
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replication. Finally, running the model with many replications is called a
stochastic simulation. A deterministic simulation produces a single popula-
tion trajectory without any variation in model parameters.

The Muskox population in 1936 was begun with 31 animals. Applying
our current knowledge of the population, we can make predictions for the
population over the period before regular sampling, between 1936 and 1948.
The results of 1,000 trials for the Muskox population are shown in Figure 2.6.
This figure shows, for each year, the average expected size (dashed curve),
plus and minus one standard deviation (vertical lines), and the maximum
and minimum values recorded for that year (triangles). These statistics
{mean, standard deviation, minimum and maximum) are calculated over the
1000 replications {trials) of simulated population growth. The five observed
values for the Muskox population size made between 1936 and 1948 are also
shown (black circles). The model includes both demographic and temporal
environmental variation. The growth rate, R , is 1.148, the survival rate, s, is
0.921, and the standard deviation in the growth rate is 0.075 (based on the
observed variation in Figure 2.5).

400
Fay
04 o 8
-8 i L a
X ; )
o :
:g 200 "
L 5
=3 [a) -
o .
o a A
2 100 - g = _ "’k {
A F +,,,"
R Ee
o s _,,{—“ e« *
t—'z“"z' Z x & & &4 & A& B & B

0 1 T ] I I I aly
1936 1938 1940 1942 1944 1946 1948

Year

Figure 2.6. The size of the Nunivak Island Muskox population, based
on 1,000 replications.
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The population grew much as could have been expected between 1936
and 1942. However, between 1942 and 1947, the true population was mark-
edly reduced, compared to growth in periods before and after that interval,
In 1947, the population numbered just 49 animals. The observers suggested
that the losses were due to groups of animals wandering onto sea ice during
winter and being lost, other accidental deaths, and shooting. The observed
population size in 1947 was within the limits of what could have been
expected, once the random variations due to demographic and environ-
mental uncertainty were included in the prediction. :

The variation in the predicted abundance increases as time goes on
(Figure 2.6). Our predictions become less and less certain, the further into the
future we make predictions. This characteristic is a general result common to
all predictions that include uncertainty. It makes good intuitive sense. One
can be more certain of predictions that are made in the short term. Long-term
judgements are subject to many more uncertain events, and the bounds on
our expectations must increase, the further into the future that we make
projections.

It is possible to construct a quasi-extinction risk curve based on the pro-
jections that are summarized in Figure 2.6. One simply records the smallest
size to which the population falls during each trial. There will be 1,000 such
records from 1,000 trials. These numbers are then used to create a cumulative
frequency histogram. The frequencies, rescaled between 0 and 1, and plotted
against population size, become the risk curve (Figure 2.7a).

Ifone collects the smallest value recorded at any time during each trial,
the risk curve has a specific meaning. It tells us the chance that the popula-
tion will fall below the specified threshold at least once during the period
over which predictions are made.

Of equal interest is the creation of explosion risk curves. It is possible to
construct a curve representing the chances that the population will be
greater than or equal to a specified threshold population size. The procedure
is much the same. One records the largest size to which the population rises
during each trial. These numbers are used to create a cumulative frequency
histogram. The frequencies, rescaled between 0 and 1, and plotted against
population size become the explosion risk curve (Figure 2.7b). Extinction risk
curves are useful for questions related to the likely lower bound of a pop-
ulation. Explosion risk curves are useful for questions related to the likely
upper beund of a population.
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Figure 2.7,  Risk curves for the Nunivak Island Muskox popufation for
the 12-year period between 1936 and 1948 (a) quasi-extinction rigk
curve and (b) quasi-explosion risk curve, for the population based on
an initial size of 31 individuals.

Natural varigiion 53

2.2.3.2 Spatial variation

The environment varies in space as well as in time, Changes in environ-
mental conditions are related to distance. Two butterflies living in an oak
forest in New York are more likely to experience the same kind of weather
from day to day than are butterflies that live on opposite sides of the conti-
nent. Anyone who has dived in the ocean will have noticed a smooth
transition from light to darkness with increasing depth. Jf survival or
fecundity depend on environmental conditions, then they too will vary in
space in response to the variation in environmental conditions,’

One way of looking at spatial variation in the environment is to think of
it as your ability to predict the conditions in some other place, knowing the
conditions where you are. It is not possible to predict exactly the rainfall at
one location, knowing the current rainfall at another location. The degree of
reliability in the prediction from one Place to another will depend, at least in
part, on how far the two points are apart. The association between the
recorded values of an environmental variable at different places is termed
spatial correlation.

Spatial variation may also be thought of as the variation in environ-
mental conditions between spatially separate patches of habitat, the different
conditions experienced by each of several populations. Many species consist
of an assemblage of populations that eccur in more or less discrete patches of
habitat. We can ignore the differences in the environment experienced by
these populations only if these patches are identical in composition and close
enough that they experience the same environmental conditions. In most
real populations, at least one of these conditions will be violated. Al of the
populations will experience some environmental changes in common (such
as the average summer temperature) and some will experience local envi-
ronmenttal changes uniquely in a given patch (such as the local water hole
drying out). The pattern of change in local population size in response to
unique environmental conditions can have profound effects on our expecta-
tions of future population sizes. The interactions between these processes
and the role of migration of individuals between patches will be explored
more fully in Chapter 6.

2.2.3.3 Catastrophes

Catastrophes are extremes of environmental variation, including natural
events such as floods, fires, and droughts. Any environmentat change that
has a relatively large effect on the survival or fecundity of individuals in a
population compared to the normal year to year fluctuations may be consid-
ered a catastrophe. Thus, it is somewhat arbitrary to single out and label
such environmental conditions as extreme. The category is useful only
insofar as some ecological processes are driven by relatively infrequent, cat-
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astrophic events. In many ecosystems, disturbances such as fire, windstorms,
or snowstorms are an important or even the dominant ecological process
determining the structure and composition of populations and communities.
Often, we may know quite a ot about the characteristics of these events such
as their average frequency and the distribution of intensity of the events.
With field data it is possible to specify the effects of catastrophes on the
parameters of a population. If so, then there will be better understanding of
the relationship between the population and the environment incorporated
in the expressions that we write.

Explicit modeling of unique catastrophic events may even be essential
for circumstances in which species are specially adapted to the effects of the
catastrophe. For example, seeds of many plant species in the genus Acacia
require a fire to germinate. In the absence of fire, adults produce seeds that
mostly fall to the forest floor and remain dormant. Fires stimulate the germi-
nation of dormant seeds and kill adults, which have life spans of 10 to 100
years in the absence of fires. Thus, recruitment of new individuals into the
population occurs in pulses following the fires that stimulate germination
and eliminate adults. Fecundity is a binary condition: either there is none (in
years without fire) or most seeds in the soil-stored seed bank germinate (in
years with fire). Such dynamics could only be modeled by writing expres-
sions that include the chance of a fire.

2.3 Parameter and model uncertaint'y

2.3.1 Parameter Uncertainty

In all of the above discussion, we have assumed that the quantities obtained
from field observation including mean survival, fecundity, growth rate, and
the variation in these parameters, are known exactly. Effectively, we have
assumed that the observed variation in population parameters comes from
sources including demographic and environmental variation. Anyone who
has attempted to measure the simplest parameter more than once under field
conditions knows that this is a false assumption. All measurements involve
errot.

Parameter uncertainty is the variation in our estimate of a parameter that
is due to the precision and accuracy of the measurement protocol. The
assumption that sampling error is absent is particularly suspect when data
are limited. Smaller samples are subject to relatively large sampling errors. If
sampling variation is included in a model, projected variability will be much
larger than in the true population. The Muskox of Nunivak Island provide
anexample. Aerial census techniques were used to estimate population size
between 1949 and 1968. These data were used to calculate all of the parame-
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ters in the examples used up to the present. However, between 1964 and
1968, independent estimates were made based on ground samples
(Table 2.2).

Table 2.2. Counts (from ground samples) and estimates (from
aerial samples) of the total population size of Muskox on

Nunivak Island.
Year Count Estimate Bias
(Count/Estimate)" -
1965 532 514 1.035
1966 610 569 1.072
1967 700 651 1.075
1968 750 714 1.050

After Spencer and Lensink {1970).

The aerial "estimates” of population size were consistently lower than the
ground-based counts. If we assume that the counts are correct (and there is -
no absolute guarantee of that), then the estimates were consistently biased,
but the magnitude of the bias varied from year to year, from 3.5% to 7.5%
(Table 2.2}. Bias may be defined as systematic error, the difference between
the true value and the vaiue io which the mean of the measurements con-
verges as more measurernents are taken. Precision is the repeatability of a
measurement made under the same conditions. Unfortunately, we do not
have any estimates of Muskox population size made in the same year using
the same method. Such data would allow us to quantify the precision of the
population estimates.

Often, subjective judgment is involved in the choice of a method for
measuring a parameter. Similarly, judgment may be made in assuming a
correspondence between one variable and another. For example, we may
observe that rainfall varies by 10% each year, and assume that population
growth varies by the same amount, Even more subtle is the assumption that
the levels of variation that we have observed in the past will persist in the
future. There is nothing wrong with such judgments; often they are
unavoidable. However, it is wrong to ignore the uncertainty inherent in such
judgments.

2.3.2 Model Uncertainty

The structure of a model relates the parameters to the dependent variable, in
this case future population size. If our ideas concerning the population’s
dynamics and ecology are wrong, or if we have not been careful in trans-
lating our ideas into equations, our predictions may be astray. Uncertainty
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concerning the form and structure of the expressions we use to describe the
population is known as model uncertainty. Thus, even if the parameters that
describe the dynamics of a population were known exactly, and the variation
associated with each parameter was decomposed into demographic uncer-
tainty, envirornunental uncertainty and measurement error, we could still
make mistakes in predicting future population size.

Model structure is a simplification of the real world. It represents a com-
promise between available data and understanding, and the kinds of
questions that we need to answer. It is difficult to know the degree of
simnplification that is both tractable and adequate to the task at hand, but that
is not so simple that it misses some important ecological processes. Com-
peting model structures may provide as good, or almost as good,
explanations of past observations as one another, but generate quite different
expectations. The only way to deal with model uncertainty is to compare
predictions of models with different structures and (if they make different
predictions) to analyze the models in detail to understand which assump-
tions led to the differences. Such an analysis may guide further field
observations or experiments to decide which model structure is more
realistic.

2.3.3 Sensitivity Analysis

Both parameter uncertainty and model uncertainty may be explored using a
process known as sensitivity analysis, Sensitivity analysis measures the
change in a model’s predictions in response to changes in the values of
parameters, or to changes in the model structure. To illustrate sensitivity
analysis, consider the model in which a population’s growth rate is related to
several environmental variables. For example, variation in the growth rate of
a population of Shrews (Crocidura russula) that inhabit suburban gardens in
Switzerland is related to weather variables by

AR = 073-P - 078-S+050-T, - 0.83-7,

where P is mean monthly precipitation in spring (m), § is winter snow fall
(m), and T is average monthly mean temperature ("C) in summer (T}, and
winter (T, ). We know that summer rain averages about one meter and that
winter snow fall averages about the same value. The coefficients for the two
parameters are similar. Thus, the growth rate will be equally sensitive to
variations in snow fall and rainfall. The coefficients for temperature are
about the same magnitude. However, the values for temperature vary more
{they are around 10°C in summer and around 5°C in winter), so that R is
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effectively more sensitive to variations in temperature. A 10% increase in
summer temperature will increase R by 0.5, whereas a 10% increase in snow
depth will decrease R by only 0.08.

The object of sensitivity analysis is to tell us which parameters are
important and which are not. If a 10% change in a parameter results in a
small change in the dependent variable (say, less than 1%), the model is
insensitive to the parameter. If the change in the dependent variable is large
(more than 10%), then the model is highly sensitive to the parameter. Such
information is useful because it may guide the direction of research effort. It
is more important to eliminate measurement errors from-parameters to
which our predictions are sensitive than to eliminate it from parameters that
contribute little to our predictions.

Sensitivity analysis may also be used to explore alternative model struc-
tures. For example, our model for the growth rate of a population above may
have the best explanatory power in a statistical sense. However, our
biological intuition may tell us that the following model is likely to be a
better predictor of future population growth:

AR = 015-P-T, - 07-§

In this versior, P and T, are multiplied because we treat the effect of
rainfall and summer temperature as an interaction. We may fix the param-
eter values and explore the consequences for predictions of one model
versus the other. In some cases, the model structure will make little
difference to expected outcomes. In other cases, it will make an important
difference. If the latter is true, it would be advisable to perform experiments
or acquire more data to discriminate between the competing models. If the
acquisition of data or experimental results are impossible, then predictions
may be made with both models, and the most extreme upper and lower
bounds may be used to place limits on the predictions. In this way, predic-
tions can incorporate model uncertainty that is not reducible without further
field work.

The above example was based on a statistical relationship between pop-
ulation growth rate and environmental variables. Sensitivity analysis may be
based on other variables as well. It is important to evaluate both the
deterministic and the probabilistic components of a prediction. Thus, the
dependent variable against which we judge model sensitivity may be the
risk of population extinction within a specified period of time, or the risk of
the population increasing above some specified upper bound. The indepen-
dent variables would be model parameters and their variation. If an increase
in a parameter (say, average growth rate or the standard deviation of growth
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rate) results in more than a 10% increase in risk, then the model may be con-
sidered to be sensitive to that parameter. We will further explore this type of
sensitivity analysis in the exercises of this section.

Sensitivity analysis is perhaps one of the most important tools in quanti-
tative population ecclogy. It allows us to explore the consequences of what
we believe to be true (in terms of the model parameters and their ranges). It
provides a measure of the importance of parameters and model assump-
tions. It may be used to place bounds on predictions that subsume both
model and parameter uncertainty, providing a relatively complete picture of
the reliability of a prediction.

2.4 Ambiguity and ignorance

In natural resource management, rare and unexpected events may be termed
"surprises” (see Hilborn 1987). Ignorance leads to surprise. It may result from
unawareness of unexpected events, or from false knowledge or false judg-
ments. That does not mean that surprise itself is rare, only that each event is
essentially unexpected. It includes anything we do not expect, anything that
is unaccounted for by our model or by our intuition,

Some surprises are avoidable because the ignorance they spring from
may be reducible. That is, it may be amenable to study or learning. One may
be ignorant of a process or a predictable outcome, but could overcome that
ignorance by learning or research if the information or the methods of study
were available. There are direct and indirect costs of such ignorance. For
example, ignorance of past experiments or observations may lead to the tacit
acceptance of hypothetical results, without empirical testing. It may cause
disciplines such as wildlife management to loose credibility with people
with a vested interest in wildlife.

Other surprises may be unavoidable. We may be unaware that we are
unable to make predictions accurately, if the structure of the system were to
change. That is, we would be faced with novel circumstances. For example,
the demographers studying the human population as recently as 60 years
ago predicted that the population size would be 3 biilion by the end of the
century. It will probably be over 6 billion. They were wrong by a factor of
two, in part because of unavoidable surprises. They could not have foreseen
the decrease in mortality caused by the invention of antibiotics, or the
increase (albeit temporary) in food production as a result of widespread use
of pesticides.

Uncertainty may arise from disagreement, even amongst scientists inter-
preting the same information. Interpretations are colored by a person’s
technical background, expertise, and understanding of the problem. Things
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are further complicated by the fact that people, decision makers and scien-
tists included, frequently hold direct or indirect stakes in the outcome of a
question. Judgments are influenced by motivational bias.

Linguistic imprecision may be responsible for important components of
unicertainty. The statement "the population is not threatened by what we
plan to do"is ill-specified. To interpret it, we need more information. Would
the statement be true if the probability of decline of the population to half its
current size was 10% in the presence of the impact, and 2% in the absence of
the impact? Even so, many more specifics are needed. 2

A quantity is called well specified when there is a single true value that is
measurable, at least in theory. The test for clarity of specification of a
problem is whether it can be unambiguously defined, given a description.
For example, the phrase "Provide a management plan that results in an
acceptable risk of decline of a population” is an ambiguous request. Risks
include both a probability and a time frame, so one must first ask, What is
the time horizon over which one wishes to estimate the risk? Secondly, the
term "acceptable” is undefined. The concept of an acceptable risk will vary
depending on the magnitude of the decline, whom you ask, and what it is
they have to gain or lose by various management strategies. Thus, ambiguity
in the specification of a problem may create kinds of uncertainty that are
beyond any kind of quantitative or qualitative analysis, and it may be
resolved only by political or social processes. We will explore these concepts
further in the final chapter of the book.

2.5 Additional topics ’

251 Time to Extinction

The quasi-extinction risk curves we examined focus on probability of falling
below certain levels anytime during a fixed interval of time (thus we call
them "interval” risk curves). For example, we used a 12-year period or
interval in the Muskox example (Figure 2.7a). A different way to express the
results of the simulation is to keep a record of the time it takes each replica-
tion of the simulation to become extinct {or fall below a critical threshold
abundance}. If we ran the simulation for a long time and recorded the year of
extinction for each of the 1000 replications, we could use these data to con-
struct a time-to-extinction curve, the same way we used minimum
abundances to construct risk curves. A time-to-extinction curve (Figure 2.8)
gives the probability that the population will have gone extinct by the time a
given number of years (x-axis) have passed.
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Figure 2.8. Time-to-extinction curve (the number of years that will
pass before a hypothetical poputation falls below a fixed threshold).

Note that the curve looks similar to the quasi-extinction risk curve, but it
has a very different meaning. In this case (Figure 2.8), the r-axis gives the
number of years, and the threshold of extinction is fixed. In the case of the
risk curve above (Figure 2.7a), the x-axis gives the threshold, and the time
interval is fixed. In this book we will mostly use the risk curves, but briefly
come back to the time-to-extinction curve in a later chapter.

2.5.2 Estimating Variation

Very often, estimates of population size through time are used to calculate
parameters for population growth models. In Figure 2.6, the standard devi-
ation representing variation around the mean population size was predicted
by a simple population model that included both demographic stochasticity
(see Section22.2) and environmental variation (see Section2.2.3). In this
model, the envirorumental variability was modeled by a population growth
rate that varied randomly from one year to the next. The amount of variation
in the growth rate is measured by its standard deviation. In this case, the
standard deviation was 0.075. This estimate was based on the observed,
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year-to-year variation in growth displayed in Figure 2.5, In other words, the
number (L075 is the standard deviation of the 17 yearly growth rates from
1947 to 1964.

There are some problems with this approach. The observed variation in
growth rate (Figure2.5) has several sources, including environmental
change between years, demographic stochasticity, and sampling (measure-
ment) error. Even if the environment was constant, demographic variation
and sampling error would ensure that the rate of change in the size of the
population changes (ot appears to change). When estimating the standard
deviation of the growth rate (which we used in the model that produced
Figure 2.6), we assumed all of the variation is due to environmental change.

This assumption may be reasonable if the population is large (so that
demographic variation is negligible} and the size of the populaticn is known
with a high degree of reliability (so that sampling error is negligible). In
other circumstances, to assume that all observed variation in growth rates in
due to the environment alone will overestimate the true variation in the
populatior.

We should subtract the sampling variance and the demographic variance
from the total variance estimate. The difference would be variance due to the
environment. In general, this is difficult to do correctly and it is a topic of
ongoing, active research. In the meantime, assuming that all variation is due
to the environment generally will tend to result in estimates of extinction
and explosion probabilities that are too high. It is important to remember
this fact when interpreting the results of a study, and to explore the conse-
quences for the results of relatively small values for environmental variation.

2.6 Exercises

Before you begin this set of exercises, you need to install the program
RAMAS EcoLab, if you have not yet done it. Read the Appendix at the end of
the book to install RAMAS EcoLab on your computer.

Exercise 2.1: Accounting For Demographic Stochasticity

In this exercise, you will predict the change in population size of the Muskox
population between 1936 and 1937, accounting for demographic stochas-
ticity. For this exercise you will need to choose uniform random numbers.
Some calculators give a uniform random number every time you press a key.
If you have one of these, you can use it (skip "Step 0" and go to "Step 1"; you
will need two such numbers for each repetition of this step). If you don’t
have such a calculator, you can use RAMAS EcoLab (see "Step 0").
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Step 0. Start RAMAS Ecolab, and select "Random numbers,” which is a
program that produces random numbers. The program will display two
urniform random numbers (between 0 and 1) on the screen. To get another
pair of random numbers, click the "Random” button. (To quit, select "Exit"
urder the File menu, or press (Alx).)

Step 1. The Muskox population consisted of 31 individuals in 1936. Write
down this number (N = 31) on a piece of paper. Repeat the following steps 31
times, once for each Muskox on Nunivak island in 1936. For each repetition,
use a new pair of random numbers,

Step 1.1. Use the first random number to decide if the animal pro-
duces an offspring or not. If the first random number is less than the
fecundity value (f=0227), then increase N by 1, otherwise leave it as it
was.

Step 1.2. Use the second number to decide if the animal survives or
dies. If the second random number is greater than the survival rate
(s =0.921), then decrease N by 1, otherwise leave it as it was.

Step 2. After repeating the above steps 31 times, record the final N. This
is your estimate of the Muskox population size for 1937,

Step 3. Repeat Steps 1 and 2 four times, for a total of five trials. You will
have 5 estimates for the Muskox population size for 1937. Comment on the
amount of variation among the results of the five trials.

Exercise 2.2: Building a Model of Muskox

In this exercise, you will use RAMAS EcoLab to build and analyze a sto-
chastic model of Muskox on Nunivak istand.

Step 1. Start RAMAS EcoLab, and select the program “Population
Growth (single population models)” by clicking on its icon. See the
Appendix at the end of the book for an overview of RAMAS Ecolab. For
ont-line help, press 1), double click on "Getting started,” and then on "Using
RAMAS Ecolab.” You can also press 1} anytime to get help about the par-
ticular window (or, dialog box) you are in at that time. To erase all
parameters and start a new model, select "New" under the Model menu {or,
press (CulN)),

Step 2. From the Model menu, select General information and type in
appropriate title and comments (which should include your name if you are
going to submit your results for assessment}.

Enter the following parameters of the model.

Replications: 0
Duration: 12
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Setting replications to 0is a convenient way of making the program run a
deterministic simulation, even if the standard deviation of the growth rate is
greater than zero. Note that the last parameter of this window, whether to
use demographic stochasticity, is ignored (it s dimmed and is not available
for editing). This is because when the number of replications is specified as 0,
the program assumes a deterministic simulation. This parameter is ignored
because it is relevant only for stochastic models.

After editing the screen, click the "OK" button. (Note: Don't click
"Cancel” or press [Ed to close an input window, unless you want to undo the
changes you have made in this window.} Next, select Population (under the
Model menu). Recall that the Muskox population on Nunivak Island began
in 1936 with 31 individuals and had an average growth rate of 1.148. Based
on these, enter the following parameters in this screen.

Initial abundance: 3
Growth rate (R): 1.148

The parameter "Standard deviation of R" is not available for editing
because we will first run a deterministic simulation, in which standard devi-
ation will not be used. Similarly, "Survival rate (s}" is used only to model
demographic stochasticity, so it is also ignored by the program when the
simulation is deterministic.

For this exercise, you can ignore the last two parameters in this window
(density dependence and carrying capacity); we will discuss density depen-
derce in a later chapter. The default selection for "Density dependence type"
is "Exponential” which refers to exponential growth with no density
dependence. The last parameter is ignored because it is related to other types
of density dependence. When finished, click "OK" and press to save
the model in a file,

Step 3. Select Run from the Simulation menu to start a simulation. The
simulation will run for 12 time steps; you will see "Simulation complete” at
the bottom of the screen when it's finished. For a deterministic simulation,
this will be quite quick. Close the simulation window.

Step 4. Select "Trajectory summary” from the Results menu. Describe the
trajectory you see. What is the final population size?

Step 5. Close the trajectory summary window. Select General informa-
tion and change "Replications” to 100 by typing the number. Next, click the
litle box next to "Usedemographic stochasticity”  This will add
demographic stochasticity to the model. The parameters should now be as
follows:
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Replications; 100
Duration: 12

1 Use demagraphic stochasticity {checked)

Click the "OK" button and select Population (again, under the Model
menu). Recall that the survival rate of the Muskox population was 0.921 and
that the observed standard deviation in the growth rate was 0.075. Based on
these, enter the following parameters in this screen.

Initial abundance: 31

Growth rate (R): 1.148
Survival rate (s): 0.921
Standard deviation of R: 0.075

Click "OK," and select Run to start a simulation, While this stochastic
simulation is running, after the first five replications, the program will dis-
play each population trajectory it produces (the program cannot display the
population trajectories produced by the first five replications, because it uses
them to scale the graph). Describe the trajectories in comparison with the
deterministic trajectory. Do any of these trajectorfes look similar to the
deterministic trajectory? What is the cause of the difference?

Step 6. After the simulation is completed, close the simulation window
and save the model by pressing (€15). Then, select "Trajectory summary."
You will see an exponentially increasing population trajectory. Describe the
trajectory summary. What is the range of final population sizes? You can try
to read the range from the graph, or if you want to be more precise, you can
see the results as a table of numbers, To do this, click on second button from
left ("show numbers") on top of the window. The first column shows the
time step, the others show five numbers that summarize the abundance for

each time step: (1) minimum, (2) mean - standard deviation, {3) mean, {4)
mean + standard deviation, and {5) maximum.

Step 7. Select “Extinction/Decline” from the Results menu. What is the
risk of decline to 31 individuals based on this curve?

It might be difficult to read the precise value of the risk from the screen
plot. Do the following to record this number precisely:

Click the "Show numbers" button, and scroll down the window to where

you see "31" in the first column. Record the probability that corresponds to
this threshold level.

Exercise 2.3: Constructing Risk Curves

In this exercise you will construct an interval decline risk curve based on the
Muskax model. If you have exited the program after the previous exercise,
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first open the file you saved at Step 6 in Exercise 2..2 (press and choose
the file you saved). If you did not save the previous @odel, then enter the
parameters as described in Step 5 of the previotfs exercise.

Step 1. In the next step we will generate single tra;c-ecto_nes."To prepare
for this, select General Information, and change "Rephcsfhons to 1Also
change "Duration” to 5. Make sure that "Use demograp?uc s'tochast{c1ty is
checked. Click OK. (Note: If you want to save the model in tI'us exercise, use
"Save as” and give the file a different name, so you keep the original fﬂe.)‘

Step 2. Generate a single random trajectory based on the model in Exer-
cise 2.2. To do this, run the model and display the trajectory summary as a
table of numbers {see Step 6 in the previous exercise), Re'cord 'the smallest
value that the population trajectory ever reachcled during time s'teps i
through 5 of this single replication. (Note: Ignore time step 0, for which the
abundance is always 31.) Lofa0t

- Repeat Step 2 a total of 20 times.

:::g i 13{??1 now }I:ave 20 minimum population sizes from 20 runs. Sort
these in increasing order, and use the table layout below to generate fre-
quencies from the records of minimum population sizes. I.n the first column
of the table, write the population sizes you have in incre:'ismg order. You are
likely to get some population sizes more than once. er-te thfese down only
once. You will most likely use only some of the rows in this tatlale. I.n tl:ae
second column, write how many of your numbers is the population size in
column one. In the third column, cumulate the numbers of thfe .s‘econd
column (see Table2.1). In the fourth column, calculate probabilities .by
dividing the cumulative frequencies (third column) by the numbeli of trla.i:s
{20). Note that this table is similar to Table 2.1, b:.}t your numbers will be dif-
ferent because you have only 20 trials or replications, whereas Table 2.1 was
constructed based on 10,000 trials. S

Step 5. Plot the probabilities against population size in Figure 2.9.
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Figure 2.9.

Exercise 2.4: Sensitivity Analysis

In this exercise, we will use the Muskox model from Exercise 2.2 to analyze
the sensitivity of quasi-explosion probability to model parameters. Our aim
is to decide what parameter is more important in this particular model in
determining the probability that the Muskex population will increase to 150
individuals. You might consider this probability a measure of the success of
the reintroduction project: Assume that the project is regarded as successful
if the Muskox population reaches 150 individuals within 12 years.

Step 1. Load the stochastic Muskox model you saved in Step6 of
Exercise 2.2. In this exercise, we will call this model the "standard model."
View the "Explosion/Increase” curve, Record the threshold and the proba-
bility of increasing to 150 individuals.

It might be difficult to read the precise value of the probability from the
screen plot. Do the following to record this number precisely. (This proce-
dure can also be used for "Extinction/Decline"; it is similar to, but more
detailed than the one in Exercise 2.2.)

Click the "Show numbers” button, and scroll down the window to where
you sea "150" in the first column. Record the probability that corresponds to
this threshold level. If "150" is not in this table, then click the third button on
top of the window ("scale”). You will see a window with various plotting
parameters (the exact numbers may be different in your simulation}.
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Title; Explosion/increase
M Autoscale (checked)
X-Axis Label: Threshold
Minimum:; 48
Maxirmum: 456
Y-Axis Label: Probability
Minimum: 0.00
Maximum: 1.00

First, uncheck the box next to "Autoscale” by clicking on it. (This makes
the program use the values entered in this screen instead of automatically
rescaling the axes.} Second, change the maximum value of the x-axis to the
threshold {in this case, 150). Third, click OK.

Scroll down the table. The last line of the table will give the threshold

(150), and the probability of reaching or exceeding that threshold. Record
this probability below.

Probability of increasing teo 150 =

Step 2. Create eight new models based on the standard model. For each
model, increase or decrease one of the four parameters of the model (see
below) by 10%, and keep all the other parameters the same as the standard
model. Note that there are some restrictions. For example, the survival rate
(s) cannot be less than ( or greater than 1. And the initial abundance must be

an integer. Make necessary adjustments or approximations for these param- -

eters. Save each model in a separate file. Record the low and high value of
parameters, and filenames that contain them.

Initial abundance; 31

Growth rate (R): 1.148
Survival rate (s): 0.921
Standard deviation of R: 0.075

Parameter: low value and filename | high value and filename
Initial abundance

Growth rate (R)

Survival rate (s)

Stand. deviation of R
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Step 3. Run stochastic simulations with the eight models you created in
the previous step. After each simulation, view the quasi-explosion results,
and record the probability that the Muskox pepulation will increase to 150
individuals within the next 12 years. Record the results in the table below.

Probability of increasing to 150

Parameter: with high value | with low value difference
Initial abundance
Growth rate (R)
Survival rate (s)

Stand. deviation of R

Step 4. For each parameter, subtract the probability with low value from
the probability with high value of the parameter. Discuss the results.

(a) In which direction did each parameter affect the result? (In other words,
does higher value of the parameter mean higher or lower probability?)

(b) Which parameter affected the outcome most, when the change was 10%?
What should this result tetl about field studies which attempt to estimate
these parameters, or about future projects similar to this one?

Note that sensitivity of the result to +10% of survival rate, or growth rate, or
its standard deviation can be interpreted in terms of accuracy in the estima-
tion of these parameters, or in terms of the value of these parameters in other
places where a similar project will be implemented. However, sensitivity of
the result to +10% of initial abundance cannot be interpreted in terms of
accuracy: [t is probably not very difficuit to count 31 animals. However, it
might be interpreted in terms of the effect of the initial number of individ-
uals on the success of the project.

2.7 Further reading

McCoy, E. D. 1995. The costs of ignorance. Conservation Biology 9:473-474.

Morgan, M, G. and M. Henrion. 1990. Uncertainty: A guide to dealing with
uncertainby in quantitative risk and policy analysis. Cambridge University
Press, Cambridge.

Shaffer, M. L. 1987. Minimum viable populations: coping with uncertainty.
In M. E. Soulé (Ed.). Viable populations for conservation (pp. 69-86). Cam-
bridge University Press, Cambridge.
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