Ferramentas do usuário

Ferramentas do site


cursos:planeco:roteiro:02-hipot

Teste de Hipóteses

Antes de iniciar o roteiro anote o seu nome, altura (em centímetros e sem decimais) e sexo (M, F) na planilha altura alunos.

  O objetivo desse roteiro é auxiliar na compreensão de dois conceitos fundamentais do teste de hipótese estatística. O primeiro é entender o significado do p, ou a probabilidade de que, num cenário na qual a hipótese nula seja verdadeira, uma estatística de interesse tomada a partir de uma amostra seja igual ou mais extrema do que o valor observado. Dessa forma, o valor de p é um indicador da incompatibilidade entre o conjunto de dados coletados e a hipótese nula. Suponha um valor de p muito pequeno (próximo de 0,001). Isso significa que é pouco provável que a diferença observada (estatística de interesse) tenha sido obtida caso a hipótese nula fosse verdadeira (alta incompatibilidade). Diante de um resultado pouco provável, rejeitamos a hipótese nula e ficamos com a hipótese alternativa que pressupõe algo mais, além da variação aleatória. Se por outro lado, o valor de p é próximo de 1,00, significa que a diferença observada tem alta probabilidade de ser gerada a partir do cenário nulo, ou seja, de que a diferença observada seja atribuída apenas à variação aleatória decorrente do acesso limitado aos dados (alta compatibilidade). Mas qual deve ser o ponto de corte, ou seja, a partir de que valor crítico de P devemos aceitar ou rejeitar a hipótese nula? Convencionou-se arbitrariamente, em muitas áreas da ciência, que tal valor crítico é de 0.05 ou 5%.

O segundo objetivo desse roteiro é definir quando devemos aplicar um teste unicaudal ou bicaudal e como isso se relaciona à nossa hipótese estatística e à nossa hipótese científica. É muito importante que, além de fazer o roteiro, você discuta com colegas e professores os conceitos apresentados.

Instalando o Rsampling

Para rodar esse roteiro utilizaremos duas ferramentas para o ensino de estatística desenvolvida por pessoas ligadas ao departamento de ecologia do IBUSP. O primeiro é o pacote Rsampling que contém instrumentação de permutação e aleatorização para a linguagem R. O outro é uma interface gráfica (Rsampling-shiny) para usar as ferramentas deste pacote no seu navegador. Não há necessidade de conhecimento prévio em R para fazer esse roteiro.

Rsampling-shiny

O primeiro passo é baixar a interface gráfica e descompactar o arquivo em um diretório conhecido no seu computador. Sugerimos que crie uma pasta para a disciplina “planeco” dentro da pasta de documentos do computador que está trabalhando.

Baixe, para essa pasta, o arquivo “source code” zip ou tar.gz1) da versão mais recente (1.7.0) do Rsampling-shiny no link:

Descompacte o arquivo na mesma pasta.

Depois de descompactar e testar o funcionamento (com os passos abaixo), você pode deletar o arquivo .zip ou .tar.gz

Usando o R

Abra o R pelo ícone R do programa 2) instalado em seu computador. Usando o menu Arquivo > mudar dir…. mude o diretório de trabalho para o diretório (i.e. a pasta) em que você salvou o Rsampling.

Instalando os pacotes

Em seguida copie e cole a seguinte linha de comando no terminal do R para instalar os pacotes associados:

install.packages(c("Rsampling", "shiny", "PerformanceAnalytics"))

A seguinte mensagem irá aparecer no terminal do R “— Please select a CRAN mirror for use in this session —” e uma janela irá se abrir para que selecione o repositório mais próximo. Selecione Brazil(SP 1). Aguarde a instalação dos pacotes finalizar.

Abrindo a interface gráfica

Agora digite as seguintes linhas de comando no terminal do R. A primeira linha irá ativar o pacote shiny que acabou de instalar, a segunda irá alterar o idioma para português e a terceira irá abrir a interface Rsampling-shiny no seu navegador, a partir do nome do diretório que descompactou. Sempre que quiser abrir a interface, deve digitar essas três linhas a partir do diretório da disciplina, não há necessidade de instalar os pacotes novamente 3).

library(shiny)
language="pt"
runApp("Rsampling-shiny-1.7.0")

Se tudo correu bem, a seguinte interface deverá estar aberta no navegador:

rsampl01.png

A interface Rsampling tem 5 abas (em português: Rsampling, Tutorial, Entrada de dados, Estatística, Reamostragem). Explore as abas.

Tutorial Árvores do Mangue

Nesta aula vamos nos ater ao tutorial “Árvores de Mangue”, na aba Tutorial.

rsampl02.png

  • não aperte nenhum botão ainda;
  • leia a página do tutorial;
  • identifique e tente entender a pergunta e a hipótese colocada;
  • identifique qual a hipótese nula para a questão colocada;
  • formule uma predição esperada, associada à estatística de interesse;
  • entenda o que está expresso na tabela central e no gráfico (boxplot) à direita;
  • aguarde a discussão desses tópicos com toda a equipe.

Coleta de dados

A descrição da coleta de dados do trabalho original é a seguinte:

“Desenvolvemos o estudo em uma área de manguezal às margens do Rio Una, no município de Peruíbe, litoral sul do estado de São Paulo. Delimitamos duas parcelas de 50 x 50 m, de mesmo relevo, uma próxima à margem do rio, sujeita a um maior tempo de inundação, a qual nos referimos como mais lodosa, e outra no interior do mangue, sujeita a um menor tempo de inundação, a qual nos referimos como menos lodosa. Fizemos uma amostragem arbitrária de 12 indivíduos de Rhizophora mangle em cada uma das parcelas. As variáveis utilizadas como medidas de sustentação dos indivíduos foram área de fixação da raiz e número de pontos de apoio de raízes escora no solo. Para medir a área de fixação das raízes de cada indivíduo, aproximamos a área abrangida pelos pontos de apoio das raízes no solo ao formato de uma elipse. Medimos, em metros, o raio maior e o menor dessa elipse. O número de pontos de apoios foi obtido contando todas as vezes que as ramificações das raízes tocavam no solo….”

Definindo um cenário nulo

Entender a hipótese e sua conexão com a estatística de interesse é crucial para compreender o que segue. Faça uma breve pausa e verifique com colegas da turma se entenderam o significado desses conceitos. Ou seja, como a diferença de área de raízes entre os tipos de solo se conecta com a hipótese. Iremos resgatar esses conceitos em outros momentos durante o curso, mas não deixe a aula sem os ter entendido.

Agora precisamos definir um cenário associado à hipótese nula, o nosso cenário nulo. Em geral, o cenário nulo está vinculado à explicação mais simples ou à ausência de efeitos relacionados a nossa hipótese. No exemplo do mangue seria a ausência de efeito na área de raízes relacionada ao tipo de solo.

Imagine que pudéssemos repetir a amostragem, seguindo o mesmo protocolo, muitas vezes. Quais valores da estatística de interesse seriam mais frequentes, partindo da premissa que nosso cenário nulo fosse verdadeiro?

Será que podemos simular o cenário nulo com nossos próprios dados?

Podemos responder essas questões utilizando a interface do RSampling, como segue abaixo.

Usado o RSammpling

  • na aba do tutorial, abaixo de “Conjunto de dados” selecione “Aleatorizado”, depois volte para “Original”. Alterne entre essas opções algumas vezes e procure entender o que acontece quando muda a seleção;
  • deixe “Aleatorizado” selecionado e clique no botão “De novo!”, que fica abaixo do boxplot, algumas vezes;
  • compare os resultados dos valores que aparecem no boxplot com os valores que são colocados no gráfico de barras à esquerda;
  • clique em “De novo!” várias vezes, até que umas das barras chegue ao valor máximo do gráfico à esquerda;
  • discuta com os colegas o significado desse gráfico e aguarde a discussão com toda a equipe.

Reamostrando os dados

Caso tenha entendido o tutorial, podemos partir para o teste de hipótese por aleatorização.

  • Na aba Entrada de dados selecione os dados “rhyzophora”;
  • Na aba Estatística :
    1. em Estatística: selecione “Diferença média entre dois grupos”;
    2. em Column 14): selecione“soil.instability”;
    3. em Column 25): selecione “root”;
  • Na aba Reamostragem :
    1. em Tipo de aleatorização: selecione “Dentro de colunas”;
    2. em Alternativa: selecione Maior que;
    3. em Número de repetições: deslize botão para o número 1000;
    4. Não selecione “Com reposição?”, nem “Reamostragem estratificada”;
    5. clique em Atualizar gráfico;
  • Entenda o que está acontecendo, troque informações com os colegas e aguarde a discussão com os professores

Teste Bi ou Unicaudal

Uma decisão, tomada no começo do tutorial, não foi apresentada anteriormente: o teste feito até agora é unicaudal. O que significa isso? Mude a opção na aba de Reamostragem na barra Alternativa de “Maior que” para “Bicaudal”.

  • acompanhe o que acontece com o p-value;
  • discorra com os colegas a diferença desses dois testes;
  • há mudança na hipótese biológica em questão?

Exercício

  • Caso ainda não tenha feito, anote o seu nome, altura (em centímetros e sem decimais) e sexo (M, F) na planilha altura alunos.
  • aguarde todos os alunos preencherem
  • salve a planilha no seu computador, usando o formato .csv
  • importe a planilha para o Rsampling, usando na aba “Entrada de Dados” a opção “Upload file”
  • selecione a opção “Cabeçalho?”
  • com esse conjunto de dados, teste as seguintes hipóteses usando o Rsampling:
    • altura média entre gêneros é diferente;
    • altura média de estudantes do sexo masculino é maior que de estudantes do sexo feminino.


PARA ENTREGAR ANTES DO INÍCIO DA PRÓXIMA AULA

  • 1 - os gráficos finais e o p-valor para as duas hipóteses
  • 2 - a interpretação dos resultados (máximo 5 linhas para cada hipótese)

Obs: tente encaminhar suas respostas pelo formulário abaixo, que estará visível caso esteja logado em uma conta google. Pode ser submetido também pelo link aqui, após login em conta google. Caso encontre problemas na submissão dos formulários, encaminhe o documento à equipe (planecousp@gmail.com), indicando como “Assunto”: Teste de Hipóteses

1)
se não sabe a diferença entre os dois tipos de arquivos, provavelmente irá preferir o zip
2)
Pode haver mais de uma versão do R instalado no computador. Escolha a mais recente em 64b
3)
garanta que a versão do Rsampling-shiny chamada corresponde com a que baixou, no caso abaixo é a 1.7.0
4)
aqui você deve sempre colocar a variável que define os grupos
5)
aqui você deve colocar a variável resposta
cursos/planeco/roteiro/02-hipot.txt · Última modificação: 2021/03/23 12:10 por ctcastanho