Essa é uma revisão anterior do documento!
Os modelos lineares são uma generalização dos testes de hipótese clássicos mais simples. Uma regressão linear, por exemplo, só pode ser aplicada para dados em que tanto a variável preditora quanto a resposta são contínuas, enquanto uma análise de variância é utilizada quando a variável preditora é categórica. Os modelos lineares não têm essa limitação, podemos usar variáveis contínuas ou categóricas indistintamente.
ERRATA: por volta de 16'28“ digo que o valor da inclinação na população é 3,5 quando o correto é 2,5
No nosso quadro de testes clássicos frequentistas, definimos os testes, baseados na natureza das variáveis respostas e preditoras.
Os modelos lineares dão conta de todos os testes apresentados na tabela acima que tenham a variável resposta contínua. Portanto, já não há mais necessidade de decorar os nomes: teste-t, Anova, Anova Fatorial, Regressão Simples, Regressão Múltipla, Ancova entre muitos outros nomes de testes que foram incorporados nos modelos lineares. Isso não livra o bom usuário de estatística de entender a natureza das variáveis que está utilizando. Isso continua sendo imprescindível para tomar boas decisões ao longo do processo de análise e interpretação dos dados.
Vamos começar com um exemplo simples de regressão, mas de forma diferente da usual. Vamos usar a engenharia reversa para entender bem o que os modelos estatísticos estão nos dizendo e como interpretar os resultados produzidos. Para isso vamos inicialmente gerar dados fictícios. Esses dados terão dois componentes: uma estrutura determinística e outra aleatória. A primeira está relacionada ao processo de interesse e relaciona a variável resposta à preditora. No caso, essa estrutura é linear e tem a seguinte forma:
$$ y = {\alpha} + {\beta} x$$
Note que estamos usando uma notação diferente da aula de regressão linear, mas a expressão é a mesma:
$\alpha$ = A
$\beta$ = B
Ou seja, os parâmetros da população ao qual não temos acesso. O componente aleatório é expresso por uma variável probabilística Gaussiana da seguinte forma:
$$ \epsilon = N(0, \sigma) $$
Portanto, nossos dados serão uma amostra de uma população com a seguinte estrutura:
$$ y = {\alpha} + {\beta} x + \epsilon$$
Parece complicado, mas é razoavelmente simples gerar dados aleatórios em nosso computador baseado nessa estrutura. Para isso, abra uma planilha eletrônica e siga os passos descritos abaixo:
A1
;A2:A16
com uma sequência de valores de 0.5 a 7.5, em intervalos de 0.5B1
;B2
com a fórmula = 4 + 3.5 * A2B3:B16
, clicando e arrastando o mouse quando aparecer no canto inferior esquerdo da célula B2
o sinal de +.C1
;C3:C16
, clicando e arrastando o mouse quando aparecer no canto inferior esquerdo da célula B2 o sinal de +.A função INV.NORM.N() tem três parâmetros, (1) probabilidade, (2) média e (3) desvios padrão. Ao definir o terceiro parâmetro, estamos amostrando valores de uma distribuição normal com desvio padrão igual a 7.
D1
;
Note que a cada vez que faz algum cálculo na planilha os valores dos desvios são atualizados, ou seja, novas amostras são feitas da pela função INV.NORM.N os valores de desvios atualizados. Para evitar esse comportamento podemos selecionar os valores desta coluna e usar Editar > Colar especial
e usar a opção de colar apenas os valores numericos, com isso a formula some e os valores não são mais atualizados a todo momento.