
An Ecological Modeler’s Primer on JAGS1

N. Thompson Hobbs2

April 1, 20133

Natural Resource Ecology Laboratory, Department of Ecosystem Science and4

Sustainability, and Graduate Degree Program in Ecology, Colorado State University,5

Fort Collins CO, 805236

1

Contents7

1 Aim 48

2 Introducing MCMC Samplers 49

3 Introducing JAGS 510

4 Installing JAGS 711

4.1 Windows . 812

4.2 LINUX . 813

5 Running JAGS 914

5.1 The JAGS model . 915

5.2 Technical notes . 1016

5.2.1 The model statement . 1017

5.2.2 for loops . 1018

5.2.3 Specifying priors . 1319

5.2.4 The <- operator . 1420

5.2.5 Vector operations . 1421

5.2.6 Keeping variables out of trouble. 1422

5.3 Running JAGS from R . 1523

6 Output from JAGS 2024

6.1 coda objects . 2025

6.1.1 Summarizing coda objects . 2026

6.1.2 The structure of coda objects (MCMC lists) 2127

6.1.3 Manipulating coda objects . 2328

6.2 JAGS objects . 2429

6.2.1 Why another object? . 2430

2

6.2.2 Summarizing the JAGS object . 2531

6.2.3 The structure of JAGS objects (MCMC arrays) 2632

6.2.4 Manipulating JAGS objects . 2733

6.2.5 Converting JAGS objects to coda objects 2934

7 Which object to use? 2935

8 Checking convergence using the coda package 2936

8.1 Trace and density plots . 3037

8.2 Gelman and Rubin diagnostics . 3038

8.3 Heidelberger and Welch diagnostics . 3139

8.4 Raftery diagnostic . 3140

9 Monitoring deviance and calculating DIC 3241

10 Differences between JAGS and WinBUGS / OpenBUGS 3342

11 Troubleshooting 3343

12 Answers to exercises 3544

Literature Cited 3945

3

1 Aim46

The purpose of this Primer is to teach the programming skills needed to estimate the marginal47

posterior distributions of parameters and derived quantities of interest in ecological models48

using software implementing Mote Carlo Markov chain methods. Along the way, I will49

reinforce some of the ideas and principals that we have learned in lecture. The Primer is50

organized primarily as a tutorial and contains only a modicum of reference material. 1There51

is an important supplement to this primer, excised from the JAGS users manual, that covers52

functions and distributions.53

2 Introducing MCMC Samplers54

WinBugs, OpenBUGS, and JAGS are three systems of software that implement Monte Carlo55

Markov Chain sampling using the BUGS language. BUGS stands for Bayesian Analysis56

Using Gibbs Sampling, so you can get an idea what this language does from its name.57

Imagine that you took the MCMC code you wrote for a Gibbs sampler and tried to turn it58

into an R function for building chains of parameter estimates. Actually, you know enough59

now to construct a very general tool that would do this. However, you are probably delighted60

to know that accomplish the same thing with less time and effort using the BUGS language.61

The BUGS language is currently implemented in three flavors of software: OpenBUGS,62

WinBUGS, and JAGS. OpenBUGS andWinBUGS run onWindows operating systems, while63

JAGS was specifically constructed to run multiple platforms, including Mac OS and Unix.64

Although all three programs use essentially the same syntax, OpenBUGS and WinBUGS65

run in an elaborate graphical user interface, while JAGS only runs from the command line66

of a Unix shell or from R. However, all three can be easily called from R, and this is the67

approach I will teach. My experience is that that the GUI involves far to much tedious68

1Other good references on the BUGS language are the WinBUGS manual (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml, look for the manual .pdf link) which has lots of detailed treat-
ment of functions and syntax as well asMcCarthy (2007). The JAGS manual can be a bit confusing because
it is written as if you were going to use the software stand alone, that is, from a UNIX command line.

4

pointing and clicking and doesn’t’ provide the flexibility that is needed for serious work.69

3 Introducing JAGS70

In this course we will use JAGS, which stands somewhat whimsically for “Just another Gibbs71

Sampler.” There are three reasons I have chosen JAGS as the language for this course. First72

and most important, is because my experience is that JAGS is far less fussy than WinBUGS73

(or OpenBUGS) which can be notoriously difficult to debug. Second is that JAGS runs74

on all platforms which makes collaboration easier. Finally, JAGS has some terrific features75

and functions that are absent from other implementations of the BUGS language. That76

said, if you learn JAGS you will have no problem interpreting code written for WinBugs77

or OpenBUGS (for example, the programs written in McCarthy 2007) . The languages are78

almost identical except that JAGS is better.279

This tutorial will use a simple example of regression as a starting point for teaching the80

BUGS language implemented in JAGS and associated R commands. Although the problem81

starts simply, it builds to include some fairly sophisticated analysis. The model that we will82

use is the a linear relationship between the per-capita rate of population growth and the the83

size a population, which, as you know is the starting point for deriving the logistic equation.84

For the ecosystem scientists among you, this problem is easily recast as the mass specific rate85

of accumulation of nitrogen in the soil; see for example,Knops and Tilman (2000). Happily,86

both the population example and the ecosystem example can use the symbol N to represent87

the state variable of interest. Consider the model,88

1

N

dN

dt
= r − r

K
N, (1)

2There is also software called GeoBUGS that is specifically developed for spatial models, but I know
virtually nothing about it. However, if you are interested in landscape ecology otherwise have an interest
in spatial modeling, I urge you to look into it after completing this tutorial. The manual can be found at
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

5

which, of course, is a linear model with intercept r and slope r
K
. Note that these quantities89

enjoy a sturdy biological interpretation; r is the intrinsic rate of increase, r
K

is the strength of90

the feedback from population size to population growth rate, and K is the carrying capacity,91

that is, the population size (o.k., o.k., the gm N per gm soil) at which dN
dt

= 0. Presume92

we have some data consisting of observations of per capita rate of growth of N paired with93

observations of N . The vector y contains values for the rate and the vector x contains94

aligned data on N , i.e., yi = 1
Ni

dNi

dt
, xi = Ni. A simple Bayesian model specifies the joint95

distribution of the parameters and data as96

µi = r − rxi
K

P (r,K, τ | y,x) ∝
n∏

i=1

P (yi | µi, τ)P (K)P (τ)P (r)

P (r,K, τ | y,x) ∝
n∏

i=1

normal (yi | µi, τ)× (2)

gamma (K | .001, .001) gamma (τ | .001, .001) gamma (r | .001, .001) ,

where the priors are uninformative. Now, I have full, abiding confidence that with a couple97

of hours worth of work, perhaps less, you could knock out a Gibbs sampler to estimate r,K,98

and τ . However, I am all for doing things nimbly in 15 minutes that might otherwise take a99

sweaty hour of hard labor, so, consider the code in algorithm 1, below.100

This code illustrates the purpose of JAGS (and other BUGS software): to translate the101

numerator of Bayes theorem (a.k.a., the joint, e.g., equation 2) into a specification of an102

MCMC sampler. JAGS parses this code, sets up proposal distributions and steps in the103

Gibbs sampler and returns the MCMC chain for each parameter. These chains form the104

basis for estimating posterior distributions and associated statistics, i.e., means, medians,105

standard deviations, and quantiles. As we will soon learn, it easy to derive chains for other106

quantities of interest and their posterior distributions, for example, K/2 (What is K/2?),107

N as a function of time or dN/dt as a function of N . It is easy to construct comparisons108

between of the growth parameters of two populations or among ten of them. If this seems109

6

as if it might be useful to you, you should continue reading.110

Algorithm 1 Linear regression example
##Logistic example for Primer
model{
#priors
K~dgamma(.001,.001)
r~dgamma(.001,.001)
tau~ dgamma(.001,.001) #precision
sigma<-1/sqrt(tau) #calculate sd from precision
#likelihood
for(i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i],tau)
}

} #end of model

JAGS is a compact language that includes a lean but useful set of scalar and vector functions111

for creating deterministic models as well as a full range of distributions for constructing the112

stochastic models. The syntax closely resembles R, but there are differences and of course,113

JAGS is far more limited. Detailed tables of functions and distributions can be found in114

the supplementary material [JAGS functions and distributions.pdf, taken from the JAGS115

manual (Plummer, 2011). Rather than focus on these details, this tutorial presents general116

introduction JAGS models, how to call them from R, how to summarize their output, and117

how to check convergence.118

4 Installing JAGS119

Update your version of R to the most recent one. Go to the package installer under Packages120

and Data on the toolbar and check the box in the lower right corner for install dependencies.121

Install the rjags package from a CRAN mirror of your choice. Now go to http://www-ice.122

iarc.fr/~martyn/software/jags/ and look in the section under downloads. Click on the123

files page link and then click on Download JAGSdist-.dmg (4.7 MB) where ____is the124

7

number of the latest version to get the disk mounting image. Install as you would any other125

Mac software.126

4.1 Windows127

Update your version of R to the most recent one. Go to the package installer under Packages128

and Data on the toolbar and check the box in the lower right corner for install dependencies.129

Install the rjags package from a CRAN mirror of your choice. Check the version number130

of rjags. Go to http://sourceforge.net/projects/mcmc-jags/files/JAGS/. Click on131

3x then JAGS-3.3.0.exe.132

Occasionally, students using windows operating systems have problems loading rgags133

from R after everything has been installed properly. In all cases I have encountered, this134

problem occurs because they have more than one version of R resident on their computers135

(wisely, Mac OS will not allow that). So, if you can’t seem to get rjags to run after a proper136

install, then uninstall all versions of R, reinstall the latest version, install the latest version137

of rjags and the version of JAGS that matches it.138

4.2 LINUX139

There is a link to the path for binaries found at http://mcmc-jags.sourceforge.net/140

. If you want to compile from source code, there are detailed instructions at http://141

yusung.blogspot.com/2009/01/install-jags-and-rjags-in-fedora.htmlThere are tar142

files found at http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x/Source/.143

You want JAGS-3.0.0.tar.gz. My guess is that you will need to download the rjags144

package in R before installing JAGS.145

8

5 Running JAGS146

5.1 The JAGS model147

Study the relationship between the numerator of Bayes theorem (equation 2) and the code148

(algorithm 1). Although this model is a simple one, it has the same general structure as all149

Bayesian models in JAGS:150

1. code for priors,151

2. code for the deterministic model,152

3. code for the likelihood(s).153

The similarity between the code and equation 2should be pretty obvious, but there are a few154

things to point out. Priors and likelihoods are specified using the ~ notation that we have155

seen in class. For example, remember that156

yi ∼ normal (µi, τ)

is the same as157

normal (yi | µi, τ) .

So, it is easy to see the correspondence between the mathematical formulation of the model158

(i.e., the numerator of Bayes theorem, equation 2) and the code. In this example, I chose159

uninformative gamma priors for r,K andτ because they must be positive. I chose a normal160

likelihood because the values of y and µ are continuous and can take on positive or negative161

values.162

Exercise: always plot your priors Plot priors for each parameter, scaling the x axis163

appropriately for each value–r should be about .2, K about 1200, and τ should be about164

2500. Discuss with you lab mates if gamma(θ|.001, .001) is vague for all parameters, i.e.,165

9

θ = r,K, τ . Be sure to include lots of x points in your plots to get a good interpolation, at166

least 1000.167

5.2 Technical notes168

5.2.1 The model statement169

Your entire model must be enclosed in170

model{171

.172

.173

.174

.175

} #end of model176

I am in the habit of putting a hard return (a blank line) after the } #end of model state-177

ment. If you fail to do so, you may get the message #syntax error, unexpected NAME,178

expecting $end. (This may have been fixed in the newer versions of JAGS, but just to179

be safe....)180

5.2.2 for loops181

Notice that the for loop replaces the
∏n

i=1in the likelihood. Recall that when we specify an182

individual likelihood, we ask, what is the probability (actually, probability density) that we183

would obtain this data point conditional on the value of the parameter(s) of interest? The184

total likelihood is the product of the individual likelihoods. Recall in the Excel example185

for the light limitation of trees that you had an entire column of likelihoods adjacent to a186

column of deterministic predictions of our model. If you were to duplicate these “columns”187

in JAGS you would write188

10

mu[1] <- r - r/K * x[1]189

y[1] ~ dnorm(mu[1],tau)190

mu[2] <- r - r/K * x[2]191

y[2] ~ dnorm(mu[3],tau)192

mu[3] <- r - r/K * x[3]193

y[3] ~ dnorm(mu[3],tau)194

.195

.196

.197

mu[n] <- r - r/K * x[n]198

y[n] ~ dnorm(mu[n],tau)199

Well, presuming that you have something better to do with your time that to write out200

statements like this for every observation in your data set, you may substitute201

for(i in 1:n){202

mu[i] <- r - r/K * x[i]203

y[i] ~ dnorm(mu[i],tau)204

}205

for the line by line specification of the likelihood. Thus, the for loop specifies the elements206

in the product of the likelihoods.207

Note however, that the for structure in the JAGS language is subtly different from what208

you have learned in R. For example the following would be legal in R but not in the BUGS209

language:210

#WRONG!!!211

for(i in 1:n){212

mu <- r - r/K * x[i]213

11

Maria Uriarte
Highlight

y[i] ~ dnorm(mu,tau)214

}215

If you write something like this in JAGS you will get a message that complains about multiple216

definitions of node mu. If you think about what the for loop is doing, you can see the reason217

for this complaint; the incorrect syntax translates to218

#Wrong219

mu <- r - r/K * x[1]220

y[1] ~ dnorm(mu,tau)221

mu <- r - r/K * x[2]222

y[2] ~ dnorm(mu,tau)223

mu <- r - r/K * x[3]224

y[3] ~ dnorm(mu,tau)225

.226

.227

.228

mu <- r - r/K * x[n]229

y[n] ~ dnorm(mu,tau),230

which is nonsense if you are specifying a likelihood because µ is used more than once in a231

likelihood for different values of y. This points out a fundamental difference between R and232

the JAGS language. In R, a for loop species how to repeat many operations in sequence. In233

JAGS a for construct is a way to specify a product likelihood or the distributions of priors234

for a vector. One more thing about the for construct. If you have two product symbols in the235

conditional distribution with different indices, that is
∏n

i=1

∏m
j=1......then this dual product is236

specified in JAGS using nested for loops, i.e.,237

for(i in 1:n){238

12

Maria Uriarte
Highlight

for(j in 1:m){239

expression[i,j]240

} #end of j loop241

} #end of i loop242

As an alternative to giving an explicit argument for the number of iterations (e.g., n and m243

above), you can use the length() function. For example we could use244

for(1 in 1:length(x[])){245

mu[i] <- r - r/K * x[i]246

y[i] ~ dnorm(mu[i],tau)247

}248

Exercise: using for loops Write a code fragment to set vague normal priors [dnorm(0,10e-6)]249

for 5 regression coefficients stored in the vector B.250

5.2.3 Specifying priors251

We specify priors in JAGS as paramater ~ distribution(shape1, shape2). See the sup-252

plementary material for available distributions. Note that in the code (algorithm 1), the253

second argument to the normal density function is tau, which is the precision, defined as254

the reciprocal of the variance. This means that we must calculate sigma from tau if we255

want a posterior distribution on sigma. Be very careful about this–it is easy to forget that256

you must use the precision rather than the standard deviation as an argument to dnorm or257

dlnorm. For the lognormal, it is the precision on the log scale. If you would like, you can258

express priors on σ rather than τ using code like this:259

260

sigma~dunif(0,100) #presuming this more than brackets the posterior of sigma261

tau <- 1/sigma^2262

13

Maria Uriarte
Highlight

There are times when this seems to work better than the gamma prior for263

5.2.4 The <- operator264

Note that, unlike R, you do not have the option in JAGS to use the = sign in an assignment265

statement. You must use <-.266

5.2.5 Vector operations267

I don’t use any vector operations in the example code, but JAGS supports a rich collection268

of operations on vectors. You have already seen the length()function–other examples in-269

clude means, variances, standard deviations, quantiles, etc. See the supplementary material.270

However, you cannot form vectors using syntax like c(). If you need a specific-valued vector271

in JAGS, read it in as data.272

5.2.6 Keeping variables out of trouble.273

Remember that all of the variables you are estimating will be sampled from a broad range of274

values, at least initially, and so it is often necessary to prevent them from taking on undefined275

values, for example logs of negatives, divide by 0, etc. You can usually use JAGS’ max()276

and min() functions to do this. For example, to prevent logs from going negative, I often277

use something like:278

mu[i]<- log(max(.0001,expression))279

Exercise: Coding the JAGS script Carefully write out all of the code in the Logistic280

example (algorithm 1) into a program window in R. You may save this code in any directory281

that you like and may name it anything you like. I use names like logistic exampleJAGS.R282

which lets me know that the file contains JAGS code. Using an R extension allows me to283

search these files easily with Spotlight.284

14

Maria Uriarte
Highlight

5.3 Running JAGS from R285

We implement our model using R (algorithm 2.) We will go through the R code step by286

step. We start by bringing the growth rate data into R as a data frame. Next, we specify287

the initial conditions for the MCMC chain in the statement inits =.... This is exactly the288

same thing as you did when you wrote you MCMC code and assigned a guess to the first289

element in the chain. There are two important things to notice about this statement.290

Algorithm 2 R code for running logistic JAGS script.

setwd("/Users/Tom/Documents/Ecological Modeling Course/JAGS Primer")
rm(list=ls())
pop.data=(read.csv("Logistic Data II.csv"))
names(pop.data)=c("Year","Population Size", "Growth Rate")
inits=list(
list(K=1500, r=.2, tau=2500)
)#chain 1

n.xy = nrow(pop.data)
data=list(

n=n.xy,
x=as.real(pop.data$"Population Size"),
y=as.real(pop.data$"Growth Rate")
)

library(rjags)
##call to JAGS
library(rjags)
##call to JAGS
n.adapt=5000
n.update = 10000
n.iter = 10000
jm=jags.model("Logistic example JAGS.R",data=data,inits,n.chains=length(inits),
n.adapt = n.adapt)
#Burnin the chain.
update(jm, n.iter=n.update)
#generate coda object
zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter, n.thin=1)

First, initial conditions must be specified as as “list of lists”, as you scan see in the code.291

15

uriarte
Highlight
You can also use
inits<-function (){list()}

Can call it multiple times.

If you create a single list, rather than a list of lists, i.e.,292

inits= list(K=1500, r=.5, tau=2500) #WRONG293

you will get an error message when you execute the jags.model statement and your code294

will not run. Second, this statement allows you to set up multiple chains3, which are needed295

for some tests of convergence and to calculate DIC (more about these tasks later). For296

example, if you want three chains, you would use something like:297

inits=list(298

list(K=1500, r=.5, tau=1500), #chain 1299

list(K=1000, r=.1, tau=1000), #chain 2300

list(K=900, r=.3, tau=900) #chain 3301

) #end of inits list302

Now it is really easy to see why we need the “list of lists” format—there is one list for each303

chain; but remember, you require the same structure for a single set of initial conditions,304

that is, a list of lists.305

Which variables in your JAGS code require initialization? Anything you are estimating306

must be initialized, which means anything on the right hand side of a conditioning symbol307

(except, of course, data) Think about it this way. When you were writing your own Gibbs308

sampler, every chain required a value as the first element in the vector holding the chain.309

That is what you are doing when you specify initial conditions here. You can get away310

without explicitly specifying initial values–JAGS will choose them for you if you don’t specify311

them—however, I strongly urge you to provide explicit initial values, particularly when your312

priors are vague. This habit also forces you to think about what you are estimating.313

The next couple of statements,314

n.xy = nrow(pop.data)315

data=list(n=n.xy,316

3I start my work with a single chain. Once everything seems to be running, I add additional ones.

16

Maria Uriarte
Highlight

x=as.real(pop.data$"Population Size"),317

y=as.real(pop.data$"Growth Rate"))318

specify the data that will be used by your JAGS program. Notice that you can assign data319

vectors on the R side to different names on the JAGS side. For example, the bit that reads320

x=as.real(pop.data$"Population Size")321

says that the x vector in your JAGS program (algorithm 1) is composed of the column in322

your data frame called Population Size and the bit that reads323

y=as.real(pop.data$"Growth Rate")324

creates a y vector required by the JAGS program from the column in your data frame called325

Growth Rate (pretty cool, I think). Notice that if I had named the variable Growth.Rate326

instead of Growth Rate, the quotes would not be needed. It is important for you to un-327

derstand that the left hand side of the = corresponds to variable name for the data in the328

JAGS program and the right hand side of the = is what they are called in R. Also, note329

that because pop.data is a data frame I used as.real() to be sure that JAGS received330

real numbers instead of characters or factors, as can happen with data frames. This can331

be particularly important if you have missing data in the data. The n is required in the332

JAGS program to index the for structure (algorithm 2) and it must be read as data in333

this statement4. By the way, you don’t need to call this list “data”—it could be anything334

(“apples”, “bookshelves”, “xy” etc.)335

Now that you have a list of data and initial values for the MCMC chain you make calls336

to JAGS using the following:337

library(rjags)338

##call to JAGS339

4You could hard code the for index in the JAGS code, but this is bad practice.

17

Maria Uriarte
Highlight

n.adapt=5000340

n.update = 10000341

n.iter = 25000342

jm=jags.model("Logistic example JAGS.R",data=data,inits,n.chains=length(inits),343

n.adapt = n.adapt)344

#Burnin the chain.345

update(jm, n.iter=n.update)346

#generate coda object347

zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter, n.thin=1)348

There is a quite a bit to learn here, so if your attention is fading, go get an espresso or come349

back to this tomorrow. First, we need to get the library rjags. We then specify 3 scalars,350

n.adapt, n.update, and n.iter. These tell JAGS the number of iterations in the chain351

for adaptation (n.adapt), burn in (n.udpate) and the number to keep in the final chain352

(n.iter). The first one, n.adapt, may not be familiar– it is the number of iterations that353

JAGS will use to choose the sampler and to assure optimum mixing of the MCMC chain.354

The second, n.update, is the number of iterations that will be discarded to allow the chain355

to converge before iterations are stored (aka, burn in) . The final one, n.iter, is the number356

of iterations that will be stored in the chain as samples from the posterior distribution–it357

forms the “rug.”358

The jm=jags.model.... statement sets up the MCMC chain. Its first argument is the359

name of the file containing the BUGS code. Note that in this case, the file resided in the360

current working directory, which I specified at the top of the code (algorithm 2). Otherwise,361

you would need to specify the full path name. (It is also possible to embed the BUGS code362

within your R script, see Algorithm 3,). The next two expressions specify where the data363

come from, where to get the initial values, and how many chains to create (i.e., the length364

of the list inits). Finally, it specifies the “burn-in” how many samples to throw away before365

18

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Algorithm 3 Example of code for inserting BUGS code within R script. This should be
placed above the jags.model() statement (algorithm). You must remember to execute
the code starting at sink and ending at sink every time you make changes in the model.

sink("logisticJAGS.R")
#This is the file name for the bugs code
cat(" model{

K~dgamma(.001,.001)
r~dgamma(.001,.001)
tau~ dgamma(.001,.001)
sigma<-1/sqrt(tau)
#likelihood
for(i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i],tau)

} #end of i for

} #end of model
",fill=TRUE)
sink()

beginning to save values in the chain. Thus, in this case, we will throw away the first 10,000366

values.367

The second statement (zm=coda.samples...) creates the chains and stores them as368

an MCMC list (more about that soon). The first argument (jm) is the name of the jags369

model you created in the jags.model function. The second argument (variable.names)370

tells JAGS which variables to “monitor.” These are the variables for which you want poste-371

rior distributions. Finally, n.iter=n.iter says we want 25000 elements in each chain and372

n.thin specifies how many of these to keep. For example, if n.thin = 10, we would store373

every 10th element. Sometimes setting n.thin > 1 is a good idea to reduce the size of the374

data files that you will analyze.375

Exercise: Coding the logistic regression Write R code (Algorithm 2) to use the JAGS376

model to estimate the parameters, r,Kand σ. When your model is running without error377

messages, proceed to get output, as described below.378

19

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

6 Output from JAGS379

6.1 coda objects380

6.1.1 Summarizing coda objects381

The zm object produced by the statement382

zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter,n.thin=1)383

is a “coda” object, or more precisely, an MCMC list. Assuming that the coda library is384

loaded [i.e. library(coda)], you can obtain a summary of statistics from MCMC chains385

contained in a coda object using summary(objectname). All of the variables in the386

variable.names=c() argument to the coda.samples function will be summarized. For387

the logistic example, summary(zm)produces:388

Iterations = 15001:25000389

Thinning interval = 1390

Number of chains = 3391

Sample size per chain = 10000392

1. Empirical mean and standard deviation for each variable,393

plus standard error of the mean:394

Mean SD Naive SE Time-series SE395

K 1.313e+03 1.180e+02 6.811e-01 1.244e+00396

r 1.998e-01 1.101e-02 6.359e-05 1.113e-04397

sigma 2.538e-02 5.204e-03 3.004e-05 3.604e-05398

2. Quantiles for each variable:399

2.5% 25% 50% 75% 97.5%400

K 1.125e+03 1.235e+03 1.300e+03 1.374e+03 1.583e+03401

r 1.776e-01 1.928e-01 1.999e-01 2.070e-01 2.213e-01402

sigma 1.759e-02 2.169e-02 2.460e-02 2.814e-02 3.773e-02403

20

Maria Uriarte
Highlight

Each of the two tables above has the properties of a matrix5. You can output the cells of404

these tables using syntax as follows. To get the mean and standard deviation of r,405

> summary(zm)$stat[2,1:2]406

Mean SD407

0.19980128 0.01101439408

To get the upper and lower 95% quantiles on K,409

> summary(zm)$quantile[1,c(1,5)]410

2.5% 97.5%411

1124.539 1582.647412

Exercise: Manipulating coda summaries Build a table that contains the mean, stan-413

dard deviation, median and upper and lower 2.5% CI for parameter estimates from the414

logistic example. Output your table with 3 significant digits to .csv file readable by Excel415

(hint, see the signif() function).416

6.1.2 The structure of coda objects (MCMC lists)417

So, what is a coda object? Technically, the coda object is an MCMC list. It looks like this:418

[[1]]419

Markov Chain Monte Carlo (MCMC) output:420

Start = 60001421

End = 60010422

Thinning interval = 1423

K r sigma424

5Consider m=summary(zm). The object m is a list of two matrices, one for the table of means and the
other for the table of quantiles. As with any list, you can access these tables with m[[1]] and m[[2]] or the
syntax shown above. Try it.

21

Maria Uriarte
Highlight

Maria Uriarte
Highlight

[1,] 1096.756 0.1914722 0.02889710425

[2,] 1196.326 0.2088859 0.03155777426

[3,] 1401.511 0.1804327 0.02553913427

[4,] 1471.539 0.1754886 0.03589013428

[5,] 1245.909 0.1567580 0.04248644429

[6,] 1134.738 0.2114307 0.04151478430

[7,] 1105.661 0.2303630 0.03141035431

[8,] 1108.569 0.2169765 0.03708956432

[9,] 1134.755 0.1964426 0.02660658433

[10,] 1161.750 0.2152418 0.03700475434

.435

.436

.437

as many rows as you have thinned iterations438

So, the output of coda is a list of matrices (or tables if you prefer) where each matrix contains439

the output of the chains for each parameter to be estimated. Parameter values are stored in440

the columns of the matrix; values for one iteration of the chain are stored in each row. So,441

the example above is a case where we had 10 iterations of one chain. If we had 2 chains, 5442

iterations each, the coda object would look like:443

[[1]]444

Markov Chain Monte Carlo (MCMC) output:445

Start = 10001446

End = 10005447

Thinning interval = 1448

K r sigma449

[1,] 1070.013 0.2126878 0.02652204450

[2,] 1085.438 0.2279789 0.02488036451

22

[3,] 1170.086 0.2259743 0.02331958452

[4,] 1094.564 0.2228788 0.02137309453

[5,] 1053.495 0.2368199 0.03209893454

[[2]]455

Markov Chain Monte Carlo (MCMC) output:456

Start = 10001457

End = 10005458

Thinning interval = 1459

K r sigma460

[1,] 1137.501 0.2657460 0.04093364461

[2,] 1257.340 0.1332901 0.04397191462

[3,] 1073.023 0.2043738 0.03355776463

[4,] 1159.732 0.2339060 0.02857740464

[5,] 1368.568 0.2021042 0.05954259465

attr(,"class")466

[1] "mcmc.list"467

Exercise: Understanding coda objects: Modify your code to produce a coda object with468

3 chains called zm.short, setting n.adapt = 500, n.update=500, and n.iter = 20.469

1. Output the estimate of σ for the third iteration from the second chain.470

2. Output all of the estimates of r from the first chain.471

3. Verify your answers by printing the entire chain, i.e. enter zm.short at the console.472

6.1.3 Manipulating coda objects473

Any coda object can be converted to a data frame using syntax like474

df = as.data.frame(rbind(co[[1]], co[[2]],co[[n]]))475

23

Maria Uriarte
Highlight

where df is the data frame, co is the coda object and n is the number of chains in the coda476

object, that is, the number of elements in the list. Once the coda object has been coverted to477

a dataframe, you can use any of the R tricks you have learned for manipulating data frames.478

The thing to notice here is the double brackets, which is how we refer to the elements of a479

list. Think about what this statement is doing.480

Exercise: Convert the zm object to a data frame. Using the elements of data frame (not481

zm) as input to functions:482

1. Find the maximum value of σ.483

2. Estimate the mean of r for the first 1000 and last 1000 iterations in the chain.484

3. Produce a publication quality plot of the posterior density of K.485

4. Estimate the probability that the parameter K exceeds 1600. (Hint: Look into using486

the ecdf() function.) Estimate the probability that iK falls between 1000 and 1300.487

6.2 JAGS objects488

6.2.1 Why another object?489

The coda object is strictly tabular–it is a list of matrices where each element of the list an490

MCMC chain with rows holding iterations and columns holding values to be estimated. This491

is fine when the parameters you are estimating are entirely scalar, but sometimes you want492

posterior distributions for all of the elements of vectors or for matrices and in this case, the493

coda object can be quite cumbersome. For example, presume you would like to get posterior494

distributions on the predictions of your regression model. To do this, you wold simply ask495

JAGS to monitor the values of mu by changing your coda.samples statement to read:496

zm=coda.samples(jm,variable.names=c("K", "r", "sigma", “mu”),497

n.iter=n.iter, n.thin=1)498

24

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Exercise: vectors in coda objects: Modify your code to include estimates of µ and499

summarize the coda object. What if you wanted to plot the model predictions with 95%500

credible intervals against the data. How would you do that?501

6.2.2 Summarizing the JAGS object502

As an alternative, replace coda.samples function with503

zj=jags.samples(jm,variable.names=c("K", "r", "sigma","mu"),504

n.iter=n.iter, n.thin=1)505

If you run this and enter zj at the console, R will return the means of all the monitored506

variables6. Try it. If you want other statistics, you would use syntax like:507

summary(zj$variable.name,FUN)$stat508

that will summarize the variable using the function, FUN. The most useful of these is illus-509

trated here:510

hat=summary(zj$mu,quantile,c(.025,.5,.975)$stat511

which produces the median and upper and lower .025% quantiles for µ, preserving its vector512

structure. You can also give JAGS objects as arguments to other functions, a very handy513

one being the empirical cumulative distribution function, ecdf(). For example the following514

would estimate the probability that the parameter K is less that 900:515

pK.lt.900 = ecdf(zj$K)(900)516

6There is a very important caveat here. If the rjags library is not loaded when you enter an jags object
name, R will not know to summarize it, and you will get the raw iterations. There can be a lot of these,
leaving you bewildered as they fly by on the console. If you simply load the library, you will get more well
behaved output.

25

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Exercise: making plots with JAGS objects For the logistic example:517

1. Plot the observations of growth rate as a function of observed population size.518

2. Overlay the median of the model predictions as a solid line519

3. Overlay the 95% credible intervals as dashed lines.520

4. Prepare a separate plot of the posterior density of K.521

6.2.3 The structure of JAGS objects (MCMC arrays)522

Like coda objects, JAGS objects have a list structure, but instead of each element of the523

list holding an array (i.e., matrix) for each chain, the JAGS objects holds an array for each524

quantity estimated. This is easier illustrated than explained. The JAGS object below7 below525

contains 5 iterations and two chains. Look at the object and think about how it is structured.526

Note how the vector structure is preserved for the 16 estimates of mu:527

> zj528

$K529

, , 1530

[,1] [,2] [,3] [,4] [,5]531

[1,] 1424.628 1411.863 1307.185 1338.801 1351.346532

, , 2533

[,1] [,2] [,3] [,4] [,5]534

[1,] 1279.262 1326.353 1345.851 1243.561 1157.157535

attr(,"class")536

[1] "mcarray"537

$mu538

, , 1539

[,1] [,2] [,3] [,4] [,5]540

[1,] 0.17072948 0.19509308 0.19127273 0.19714752 0.19323022541

[2,] 0.16631829 0.19000444 0.18586162 0.19170919 0.18795213542

[3,] 0.16568811 0.18927749 0.18508861 0.19093228 0.18719812543

[4,] 0.16442777 0.18782360 0.18354257 0.18937848 0.18569010544

[5,] 0.15951244 0.18215340 0.17751305 0.18331862 0.17980879545

[6,] 0.15888227 0.18142645 0.17674003 0.18254172 0.17905478546

[7,] 0.14388420 0.16412508 0.15834225 0.16405139 0.16110928547

[8,] 0.13770852 0.15700098 0.15076670 0.15643772 0.15371995548

[9,] 0.12170217 0.13853649 0.13113209 0.13670435 0.13456802549

[10,] 0.11628270 0.13228473 0.12448416 0.13002297 0.12808351550

[11,] 0.09410068 0.10669615 0.09727399 0.10267593 0.10154226551

7Actually, rjags makes it hard to “see” the object. If rjags is loaded, it presumes you want summaries. If
you want to look at a complete listing of a JAGS object you save it, quit R, and restart it, load the JAGS
object without loading rjags. The JAGS object then has the structure shown in the example.

26

Maria Uriarte
Highlight

Maria Uriarte
Highlight

[12,] 0.09258827 0.10495147 0.09541876 0.10081136 0.09973263552

[13,] 0.07822037 0.08837704 0.07779399 0.08309794 0.08254113553

[14,] 0.06322230 0.07107567 0.05939621 0.06460761 0.06459562554

[15,] 0.05288749 0.05915372 0.04671875 0.05186637 0.05222981555

[16,] 0.03839356 0.04243390 0.02893938 0.03399757 0.03488752556

, , 2557

[,1] [,2] [,3] [,4] [,5]558

[1,] 0.19328215 0.18103879 0.18031947 0.18834429 0.187960699559

[2,] 0.18768794 0.17599534 0.17537282 0.18272716 0.181909482560

[3,] 0.18688876 0.17527484 0.17466616 0.18192471 0.181045022561

[4,] 0.18529042 0.17383386 0.17325283 0.18031982 0.179316103562

[5,] 0.17905686 0.16821401 0.16774086 0.17406073 0.172573319563

[6,] 0.17825769 0.16749352 0.16703420 0.17325828 0.171708860564

[7,] 0.15923735 0.15034577 0.15021561 0.15416003 0.151134723565

[8,] 0.15140544 0.14328494 0.14329031 0.14629604 0.142663020566

[9,] 0.13110643 0.12498440 0.12534106 0.12591388 0.120705748567

[10,] 0.12423353 0.11878816 0.11926375 0.11901283 0.113271397568

[11,] 0.09610261 0.09342679 0.09438920 0.09076667 0.082842422569

[12,] 0.09418460 0.09169760 0.09269321 0.08884080 0.080767719570

[13,] 0.07596343 0.07527035 0.07658128 0.07054500 0.061058042571

[14,] 0.05694309 0.05812261 0.05976269 0.05144675 0.040483906572

[15,] 0.04383664 0.04630652 0.04817341 0.03828661 0.026306770573

[16,] 0.02545564 0.02973517 0.03192015 0.01983031 0.006424201574

attr(,"class")575

[1] "mcarray"576

$r577

, , 1578

[,1] [,2] [,3] [,4] [,5]579

[1,] 0.1795519 0.2052704 0.2020950 0.2080242 0.2037864580

, , 2581

[,1] [,2] [,3] [,4] [,5]582

[1,] 0.2044706 0.1911257 0.1902128 0.1995786 0.2000631583

attr(,"class")584

[1] "mcarray"585

$sigma586

, , 1587

[,1] [,2] [,3] [,4] [,5]588

[1,] 0.03038826 0.02973461 0.03196986 0.02771297 0.02342979589

, , 2590

[,1] [,2] [,3] [,4] [,5]591

[1,] 0.02939191 0.02266891 0.01886645 0.01684712 0.02437535592

attr(,"class")593

[1] "mcarray"594

6.2.4 Manipulating JAGS objects595

To understand how you can extract elements of the JAGS object you need to know its596

dimensions. For mcmc arrays that include scalars and vectors, each element in the list has597

three dimensions. For the scalars in the list, the first dimension8 is always = 1, the second598

8This gives the the length. A scalar is a vector with length = 1.

27

Maria Uriarte
Highlight

dimension = number of iterations and the third dimension = the number of the chain.599

For vectors, the first dimension of the JAGS object is the length of the vector, the second600

dimension is the number of iterations, and the third dimension is the number of the chain.601

An easy way to remember this is simply to enter dim(jags.object) at the console. Because602

the dimensions are named, there is no ambiguity about the structure of the object. So for603

example,604

#dimensions of mu in the zj jags object:605

dim(zj$mu)606

#a vector containing all iterations of the second chain for K:607

zj$K[1„2]608

#a matrix for sigma with 2 rows, one for each chain, containing609

#iterations 1 to 1000:610

zj$sigma[1,1:1000,]611

#a matrix containing 16 rows, one for each element of mu612

#containing elements from the third chain:613

zj$mu[„3]614

So, if you wanted to find the mean of the third prediction of mu across all iterations and all615

chains, you would use616

mean(zj$mu[3„])617

Exercise: Manipulating JAGS objects618

1. Calculate the median of the second chain for K.619

2. Calculate the upper and lower 95% quantiles for the 16th estimate of µ without using620

the summary function.621

3. Calculate the probability that the 16th estimate of µ < 0.622

28

Maria Uriarte
Highlight

6.2.5 Converting JAGS objects to coda objects623

It is possible to convert individual elements of the JAGS object to coda objects, which can624

be helpful for using convergence diagnostics (as described in th next section) if you haven’t625

created a coda object directly using the coda.samples function. The syntax is626

coda.object=as.mcmc.list(object.name$element.name).627

So, for example, if you want to create a coda object for K, you would use628

K.coda = as.mcmc.list(zj$K)629

It is not possible to convert all of the elements of a JAGS object into coda objects in a single630

statement, i.e., the following will not work:631

#wrong632

jm = as.mcmc.list(zj)633

7 Which object to use?634

Coda and JAGS objects are both useful, and for most of my work I eventually create both635

types. Coda objects are somewhat better for producing tabular summaries of estimates and636

are required for checking convergence, but JAGS objects are somewhat better for plotting.637

Coda objects are also produced by WinBUGS and OpenBUGS, so if you ever need to use638

them, everything you learned about coda objects will apply. I generally start development639

of models using coda objects alone, and when I reach the final output stage, I produce both640

types of objects with multiple chains.641

8 Checking convergence using the coda package642

Remember from lecture that the MCMC chain will provide a reliable estimate of the posterior643

distribution only after it has converged, which means that it is no longer sensitive to initial644

29

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

conditions and that the estimates of parameters of the posterior distribution will not change645

appreciably with additional iterations. The coda package (?) contains a tremendous set of646

tools for evaluating and manipulating MCMC chains produced in coda objects (i.e., MCMC647

lists). I urge you to look at the package documentation in R Help, because we will use only648

a few of the tools it offers.649

There are several ways to check convergence, but we will use four here: 1) visual inspection650

of density and trace plots 2) Gelman and Rubin diagnostics, 3) Heidelberger and Welch651

diagnostics, and 4) Raftery diagnostics. For all of these to work, the coda library must be652

loaded.653

8.1 Trace and density plots654

There are three useful ways to plot the chains and the posterior densities. I am particularly655

fond of the latter two because they show more detail.656

plot(coda.object)657

xyplot(coda.object)658

densityplot(coda.object)659

You will examine how to use these for diagnosing convergence in the subsequent exercise.660

8.2 Gelman and Rubin diagnostics661

The standard method for assuring convergence is the Gelman and Rubin diagnostic (Gelman662

and Rubin, 1992), which “determines when the chains have ‘forgotten’ their initial values,663

and the output from all chains is indistinguishable”(?). It requires at least 2 chains to work.664

For a complete treatment of how this works, enter ?gelman.diag at the console and read665

the section on Theory. We can be sure of convergence if all values for point estimates and666

97.5% quantiles approach 1. More iterations should be run if the 95% quantile > 1.05.667

The syntax is668

30

gelman.diag(coda.object)669

8.3 Heidelberger and Welch diagnostics670

The Heidelberger and Welch diagnostic (Heidelberger and Welch, 1983) works for a single671

chain, which can be useful during early stages of model development before you have initial-672

ized multiple chains. The diagnostic tests for stationary in the distribution and also tests if673

the mean of the distribution is accurately estimated. For details do ?heidel.diag and read674

the part on Details. We can be confident of convergence if out all chains and all parameters675

pass the test for stationarity and half width mean. We can be sure that the chain converged676

from the first iteration (i.e, burn in was sufficiently long) if the start iteration = 1. If it is677

greater than 1, the burn in should be longer, or 1:start.iteration should be discarded678

from the chain.679

The syntax is680

heidel.diag(coda.object)681

8.4 Raftery diagnostic682

The Raftery diagnostic Raftery and Lewis (1995) is useful for planning how many iterations683

to run for each chain. It is used early in the analysis with a relatively short chain, say 10000684

iterations. It returns and estimate of the number of iterations required for convergence for685

each of the parameters being estimated. Syntax is686

raftery.diag(coda.object)687

Exercise: Using the zm.short object your created above, increase n.iter in increments of688

500 until you get convergence. For each increment:689

1. Plot the chain and the posterior distributions of parameters using xyplot and densityplot.690

2. Do Gelman-Rubin, Heidelberger and Welch, and Raftery diagnostics.691

31

Discuss with you labmates how the plotting reveals convergence.692

9 Monitoring deviance and calculating DIC693

It is often a good idea to report the deviance of a model which is defined as −2log [P (y|θ)].694

To obtain the deviance of a JAGS model you need to do two things. First, you need to add695

the statement696

load.module("dic")697

above your jags.samples statement and/or your coda.samples statement. In the list of698

variables to be monitored, you add “deviance” i.e.,699

zm=coda.samples(jm,variable.names=c("K", "r",700

"sigma", "deviance"), n.iter=25000, n.thin=1)701

Later in the course we will learn about the Bayesian model selection statistic, the deviance702

information criterion (DIC). DIC values are generated using syntax like this:703

dic.object.name = dic.samples(jags.model, n.iter, type=”pD”)704

So, to use your regression example, you would write something like:705

dic.j = dic.samples(jm,n.iter=2500, type="pD")706

If you enter dic.j at the console (or run it as a line of code in your script) R will respond707

with something like:708

Mean deviance: -46.54709

penalty 1.852710

Penalized deviance: -44.69711

32

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

Maria Uriarte
Highlight

10 Differences between JAGS and WinBUGS / Open-712

BUGS713

The JAGS implementation of the BUGS language closely resembles the implementation714

in WinBUGS and OpenBUGS, but there are some important structural differences that are715

described in Chapter 8 of the JAGS manual (?). There are also some functions (for example,716

matrix multiplication and the ^ symbol for exponentiation) that are available in JAGS has717

but that are not found in the other programs.718

11 Troubleshooting719

Some common error messages and their interpretation are found in Table 1.720

33

Message Interpretation

Unable to resolve

parameter O[38,1:2]

(one of its ancestors

may be undefined)

May be due to NA in data or illegal value in

variable on rhs of <- or ~.

Error parsing model

file: syntax error on

line 9 near "="

You used an = instead of <- for assignment

Error: Error in node

Failure to calculate log

density

You will get this with a Possion density if you

give it continuous numbers as data. It will also

occur if variables take on undefined values like

log of negative.

Warning message: In

readLines(file) :

incomplete final line

found on ’SS2.R’

Will occur when you don’t have a hard return

after the last } for the model

syntax error,

unexpected ’}’,

expecting $end

Occurs when there are mismatched parens

Error in

jags.model("beta",

data = data, n.chain =

1, n.adapt = 1000) :

Error in node y[7]

Invalid parent values

Occurs when there is an illegal mathematical

operation or argument on the rhs. For example,

negative values for argument to beta

distribution or Poisson, divide by 0, log of

negative, etc.

Error in setParame-

ters(init.values[[i]], i) :

Error in node sigma.s[1]

Attempt to set value of

non-variable node

You get this error when you have a variable in

your init list that is not a stochastic node in

the model, i.e., it is constant

Error in

jags.samples(model,

variable.names, n.iter,

thin, type = "trace", :

Failed to set trace

monitor for node

This means that your the variable list in your

coda.samples() or jags.samples statement

includes a variable that is not in your model. It

also may mean that you asked to monitor a

vector (for example the predictions of

population size over time) that does not have

an initial value. You can fix this by giving the

vector any initial value.

Error: Error in node

x[3,5,193] All possible

values have probability

zero

caused by uninitialized values for the array x.

Error in setParame-

ters(init.values[[i]], i) :

Error in node sigma

Attempt to set value of

non-variable node

when sigma is defined by <- instead of ~ and

you have an init for sigma

Error in

jags.model("Logistic

example BUGSIII.R",

data = data, inits, :

RUNTIME ERROR:

Unable to evaluate

upper index of counter i

The value for the upper range of the loop was

omitted from the data statement

Error in

jags.model("IslandBugIII.R",

data = data, inits,

n.chains =

length(inits), :

RUNTIME ERROR:

Unknown parameter

P20

The parameter name was misspelled. Should

have been p20

multiple definitions of

node [x]

You probably forgot the index on a variable

within a for loop.

Wrong number of

arguments to

distribution name

You have a <- instead of a ~ on the lhs of

distribution

Error in

jags.model("model.txt",

data = data, inits =

inits, n.adapt = 3) :

Length mismatch in

inits

You have a list of inits that specifies more than

one chain, but you failed to tell the jags model

statement that there were > 1 chain. Adding

the n.chain=length(inits) to the jags.model

function will fix it.

Error in

jags.model("model.txt",

data = data, inits =

inits, n.adapt = 3000) :

Error in node y[15]

Observed node

inconsistent with

unobserved parents at

initialization

This will happen whenever you have latent 0-1

quantities, as in mark recapture or occupancy

models and you fail to initialize them. They

should be initialized at 1.

Slicer error This usually occurs with hierarchical models

with vague gamma priors for hyper parameters

(e.g., a,b)to a beta distribution. There are a

couple of things you can do. First, try a

uniform instead of a gamma. Second, you can

prevent the values of the ~dbeta(a,b) from

going where they shouldn’t using ~ dbeta(a,b

)T(.001,.999)

When using

gelman.diag():

Error in

chol.default(W) : the

leading minor of order

7 is not positive definite

This means you have derived quantities in you

coda output–quantities that are functions of

parameters you estimate. Eliminate them

before running the diagnostic.

721

34

12 Answers to exercises722

Exercise: using for loops Write a code fragment to set vague normal priors [dnorm(0,10e-6)]723

for 5 regression coefficients stored in the vector B.724

for(i in 1:5){725

B[i] ~ dnorm(0,.000001)726

}727

Exercise: Understanding coda objects Modify your code to produce a coda object728

with 3 chains with 5 iterations each. Output729

1. The estimate of σ for the third iteration from the second chain, zm[[2]][2,3]730

2. All of the estimates of r from the first chain. zm[[1]][,2]731

Exercise: Manipulating coda summaries732

m=summary(zm)733

mu_sd=m$stat[,1:2] #make columns for mean and sd734

q=m$quantile[,c(3,1,5)] #make columns for median and CI735

table=cbind(mu_sd,q) #make table736

write.csv(file="/Users/Tom/Documents/Ecological Modeling Course/JAGS Primer/table_exercise.csv", signif(table, 3)) #output737

Exercise: Convert the zm object to a data frame. Using the elements of data frame (not738

zm) as input to functions:739

1. Find the maximum value of σ.740

2. Estimate the mean of r for the first 1000 and last 1000 iterations in the chain.741

3. Plot the density of K. (This is very handy for producing publication quality graphs of742

posterior distributions.)743

35

4. Estimate the probability that the parameter K exceeds 1600. (Hint: Look into using744

the ecdf() function.) Estimate the probability that it falls between 800 and 1200.745

#exercises on manipulating coda objects converted to data frames746

df=as.data.frame(rbind(zm[[1]],zm[[2]],zm[[3]]))747

max(df$sigma) #problem 1748

mean(df$K[1:1000]) #problem 2, first part749

nr=length(df$K)750

mean(df$K[(nr-1000):nr]) #problem 2, second part751

plot(density(df$K),main="",xlim=c(800,2000),xlab="K") #problem 3752

1-ecdf(df$K)(1600) #problem 4, first part753

ecdf(df$K)(1200)-ecdf(df$K)(800) #problem 4, second part.754

Exercise: vectors in coda objects: Modify you code as described above and summarize755

the coda object. What if you wanted to plot the model predictions with 95% credible intervals756

against the data. How would you do that? There are several ways this can be done, but757

the general idea is that you need to extract the rows of the coda object that contain the758

quantiles for µ, which can be tedious and error prone. For example, if you use rows in the759

summary table and add or subtract parameters to be estimated, then your row counts will760

be off. There are ways to use rownames, but a far better way to plot vectors is described in761

the section on JAGS objects.762

Exercise: using JAGS objects to plot vectors For the logistic example:763

1. Plot the data as points,764

2. Overlay the median of the model predictions as a solid line765

3. Overlay the 95% credible intervals as dashed lines.766

zj=jags.samples(jm,variable.names=c("K", "r", "sigma", "mu"),767

36

n.iter=50000, n.thin=1)768

b=summary(zj$K,mean)$stat b=summary(zj$mu,quantile,769

c(.025,.5,.975))$stat770

plot(pop.data$"Population Size", pop.data$"Growth Rate", xlab="N",771

ylab="Per capita growth rate")772

lines(pop.data$"Population Size",b[2,])773

lines(pop.data$"Population Size",b[1,],lty="dashed")774

lines(pop.data$"Population Size",b[3,],lty="dashed")775

plot(density(zj$K),xlab="K", main="", xlim=c(800,2500))776

200 400 600 800 1000

0.
05

0.
10

0.
15

0.
20

N

P
er

 c
ap

ita
 g

ro
w

th
 ra

te

1000 1500 2000 2500

0.
00
0

0.
00
2

0.
00
4

K

D
en
si
ty

Figure 1: Median and 95% credible intervals for predicted growth rate and posterior density
of K.

Exercise: Manipulating JAGS objects777

1. Calculate the median of the second chain for K.778

2. Calculate the upper and lower 95% quantiles for the 16th estimate of µ without using779

the summary function.780

3. Calculate the probability that the 16th estimate of µ < 0.781

37

> median(zj$K[1„2])782

[1] 1275.208783

> quantile(zj$mu[16„],c(.025,.975))784

2.5% 97.5%785

-0.01539839 0.05925297786

> ecdf(zj$mu[16„])(0)787

[1] 0.1096533788

>789

38

Literature Cited790

Gelman, A. and D. B. Rubin, 1992. Inference from iterative simulation using multiple791

sequences. Statistical Science 7:457–511.792

Heidelberger, P. and P. Welch, 1983. Simulation run length control in the presence of an793

initial transient. Operations Research 31:1109–1044.794

Knops, J. M. H. and D. Tilman, 2000. Dynamics of soil nitrogen and carbon accumulation795

for 61 years after agricultural abandonment. Ecology 81:88–98.796

McCarthy, M. A., 2007. Bayesian methods for ecology. Cambridge University Press, Cam-797

bridge, UK.798

Plummer, M., 2011. JAGS version 3.0.0 user manual. http: // sourceforge. net/799

projects/ mcmc-jags/ files/ Manuals/ 3. x/ jags_ user_ manual. pdf .800

Raftery, A. and S. Lewis, 1995. The number of iterations, convergence diagnostics and801

generic Metropolis algorithms. Chapman and Hall, London, UK.802

39

Index
A803

as.mcmc.list, 29804

as.real, 17805

C806

c(), 14807

coda.samples, 19808

D809

densityplot(coda.object), 30810

deviance information criterion, 32811

DIC, 32812

dic.samples, 32813

dim(jags.object), 28814

F815

for loops, 10816

G817

Gelman and Rubin diagnostic, 30818

gelman.diag, 31819

H820

Heidelberger and Welch diagnostic, 31821

heidel.diag, 31822

J823

jags.model, 18824

L825

length(), 13826

list of lists, 16827

M828

max, 14829

MCMC arrays, 26830

MCMC lists, 21831

model statement, 10832

N833

nested for loops, 12834

P835

plot(coda.object), 30836

precision, 13837

product likelihood, 12838

R839

Raftery diagnostic, 31840

raftery.diag, 31841

U842

undefined values, 14843

X844

xyplot(coda.object), 30845

40

