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Summary

1. Imperfect detection can seriously bias conventional estimators of species distributions and species
richness. Plant traits, survey-specific conditions and site-specific characteristics may influence plant
detection probability. However, the generality of the problems induced by imperfect detection in
plants and the magnitude of this challenge for plant distribution studies are currently unknown.

2. We address this question based on data from the Swiss Biodiversity Monitoring, in which
vascular plants are surveyed twice in the same year along a 2.5-km transect in 451 1-km? quadrats.
Overall, 1700 species were recorded. We chose a random sample of 100 species from the 1700
species to determine general detection levels. To examine the relationship of covariates on detection,
we chose a stratified random sample of 100 species from 886 species that were detected in at least
18 locations, with 25 each from four life-forms (LF): grass, forb, shrub and tree. Using a Bayesian
multispecies site-occupancy model, we estimated occurrence and detection probability of these
species and their relation to covariates.

3. Based on the random sample of 100 species, detection probability during the first survey ranged
0.03-0.99 (median 0.74) and during the second survey, 0.03—0.99 (median 0.82). Based on the strat-
ified random sample of 100 species, detection probability during the first survey ranged 0.02-0.99
(median 0.87) and during the second survey, 0.01-1 (median 0.89). Detection probability differed
slightly among the four LFs. In 60 species, survey season or elevation had significant effects on
detection. We illustrated detection probability maps for Switzerland based on the modelled relation-
ships with environmental covariates.

4. Synthesis. Our findings suggest that even in a standardized monitoring program, imperfect detec-
tion of plants may be common. With the absence of a correction for detection errors, maps in plant
distribution studies will be confounded with spatial patterns in detection probability. We presume
that these problems will be much more widespread in the data sets that are used for conventional
plant species distribution modelling. Imperfect detection should be estimated, even in distribution
studies of plants and other sessile organisms, to better control detection errors that may compromise
the results of species distribution studies.

Key-words: Bayesian analysis, biodiversity monitoring, detection probability, hierarchical model,
occupancy, plant population and community dynamics, plant traits, Switzerland

Introduction

Species occurrence is of central importance in ecology and its
applications. The collection of sites where a species occurs
represents the distribution of that species (Guisan & Thuiller
2005), while the collection of species occurring at a site

*Correspondence author. E-mail: chengk @ibcas.ac.cn

represents species richness, the most widely used metric of
biodiversity (Gotelli & Colwell 2001). However, occurrence
is typically not observed perfectly; instead, there are two pos-
sible errors that can be made when dealing with species distri-
butions: false-negative errors, also called errors of omission
or nondetection, and false-positive errors, also called errors of
commission or misclassification (Miller er al. 2011). Given
the widespread nature of detection errors (Yoccoz, Nichols &
Boulinier 2001), species occurrence is at least partly a latent
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state that needs to be estimated for unbiased inference about
species distributions and species richness (Royle & Dorazio
2008). Treating observed occurrence and species distributions
as the true occurrence and distribution, that is failing to make
amendments for imperfect detection, may lead to problems in
species distribution studies (Kéry 2011), habitat models
(Gu & Swihart 2004) and biodiversity management (Chades
et al. 2008).

Over the last decades, a plethora of statistical models has
been developed to correct for imperfect detection in popula-
tion analyses for inference about distribution, abundance and
vital rates (Seber 1982; Buckland er al. 2001; Borchers,
Buckland & Zucchini 2002; Williams, Nichols & Conroy
2002; Royle & Dorazio 2008; King et al. 2010; Kéry &
Schaub 2012). However, with few exceptions, use of these
models and the associated sampling designs has been
restricted to studies in animal ecology. Plant ecologists have
been slow to acknowledge the possible need for such methods
in their research, presumably because they know that plants
do not run away (Harper 1977).

Only a handful of plant distribution studies have formally
dealt with the problem of imperfect detection. For instance, in
several vegetation surveys, 20-30% species were overlooked
(Nilsson & Nilsson 1985; Scott & Hallam 2002; Archaux
et al. 2006). Trained botanists recorded more species in plant
inventories than untrained ones (Ahrends et al. 2011). The
overlooking of some species was recognized as a methodo-
logical problem when estimating turnover of plants on islands
(Nilsson & Nilsson 1982, 1983). Nevertheless, only very few
studies have formally estimated the magnitude of detection
errors in plants using adequate protocols and analytical meth-
ods (e.g. Alexander, Slade & Kettle 1997; Shefferson et al.
2001; Kéry & Gregg 2003; Slade, Alexander & Kettle 2003;
Kéry et al. 2006; Chen et al. 2009). In all of these, detection
probability was found to be less than one and sometimes
depended on covariates such as plant size or life state.

Nevertheless, these studies give an incomplete description
of imperfect detection of plants because species were not
selected randomly and survey methods between studies are
not comparable. However, they do emphasize a need to better
understand the magnitude and the patterns of imperfect detec-
tion in space and time and its influence on plant distribution
studies (Kéry, Gardner & Monnerat 2010a; Kéry 2011).

In this study, we estimate detection probability and study
patterns in detection because of life-form (LF), space and
time for a large random sample from an entire national flora.
We conducted two analyses, one for a random sample to
obtain the best possible estimate of average detection proba-
bility in the entire flora and another for a stratified random
sample restricted to more common species (operationally
defined as those with at least 18 detections) to obtain esti-
mates of the magnitude and of the patterns of detection and
occurrence as related to biotic and abiotic covariates. We
used data from the Swiss Biodiversity Monitoring (BDM;
Weber, Hintermann & Zangger 2004), where detection/nonde-
tection data are collected twice in each year at each sample
site. This within-season replication in the sampling protocol

enables site-occupancy models (MacKenzie et al. 2002; Tyre
et al. 2003) to be applied to jointly estimate occurrence and
detection probability. We applied a recently developed multi-
species site-occupancy model (Dorazio & Royle 2005;
Russell et al. 2009; Zipkin, Dewan & Royle 2009), which
combines data from multiple species in a hierarchical model
to estimate mean and variance of hyperdistributions describ-
ing the variability among species. Treating the effects of indi-
vidual species as random is consistent with the intended
scope of our analyses, namely the entire Swiss flora. Thus,
the two samples of 100 species actually studied were simply
regarded as replicates of the larger, statistical population of
species that could have been selected in our study, that is all
Swiss vascular plant species except for the very rare ones.

Our study had three aims. First, we assessed the magnitude
of imperfect detection caused by false-negative errors in field
survey for plants in a well-designed and well-conducted
national BDM program. Secondly, we explored the differ-
ences in detection errors among species and LFs. And thirdly,
we aimed to identify factors affecting detection probabilities
over space and time.

Materials and methods

STUDY AREA AND PLANT DATA

Switzerland is a small western European country with an area of
about 41 000 km?. Annual precipitation ranges 438-2950 mm and
mean annual temperature —10.5 to 12.5 °C. Switzerland is a very
mountainous country, with 60% of its area in the Alps (up to eleva-
tion of 4600 m a.s.l) and 10% in the Jura Mountains (up to elevation
of 1679 m). Elevation ranges 193-4634 m, with an average of
1300 m (Wohlgemuth et al. 2008).

The Swiss BDM scheme was designed to measure changes in bio-
diversity in Switzerland, mainly to meet the information needs of the
general public and politicians (Weber, Hintermann & Zangger 2004).
Species richness is assessed for various taxa, including vascular plants,
at the local, landscape and the national level (Weber, Hintermann &
Zangger 2004). We used data from the Swiss BDM indicator ‘species
richness in landscapes’ (Z7), which aims to monitor vascular
plant diversity at the landscape scale in Switzerland as a whole.
Based on the national coordinate system of 41 285 1-km? cells, a
stratified random sample of 520 1-km? quadrats was laid out across
Switzerland (Pearman & Weber 2007). Excluding quadrats of 100%
water surface, as well as quadrats that were too dangerous to do field
work because of their ruggedness, 451 quadrats were surveyed for
vascular plants.

Based on the existing national coordinate system, a continuous
transect of 2.5 km length was placed as close as possible to the quad-
rat diagonal (Plattner, Birrer & Weber 2004). The transect was
designed to follow existing trails, streets or paths. In rough terrain
where no pre-existing paths could be followed, transects were identi-
fied and permanently marked with yellow spots on trees or rocks.
During each growing season, about 100 transects were surveyed by
one among a crew of currently a dozen trained field botanists, with
each transect being surveyed within 1 year between 2004 and 2008.
Botanists follow the established transects and walk it back and forth,
recording all vascular plants within 2.5 m on either side of the
transect.
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To accommodate different flowering phenologies, field botanists
sample transects once in spring and once in late summer (Plattner,
Birrer & Weber 2004; Pearman & Weber 2007). These two surveys
are conducted in the same year in a given quadrat. Survey dates at
different elevations were specified according to the known average
length of the vegetation period (see Table S1 in Supporting Informa-
tion). For 36 quadrats at very high elevation (above 2200 m), that is
8% of the total of 451 quadrats, only one replicated survey was car-
ried out between 10 July and 25 August. We note that this lack of
replication is not a problem for our modelling. It simply means that
these sites do not contribute any information about the magnitude and
seasonal profile of detection probability.

The desire to formally extrapolate from our study species to the
larger number of all vascular plant species in Switzerland was very
important to us. Currently, about 3000 vascular plant species are
known in Switzerland (Landolt et al. 2010). By 2008, nearly 1700
species had been recorded within the Swiss BDM Z7 quadrats. To
obtain an estimate of the average magnitude of detection errors in the
Swiss flora, we randomly sampled 100 plant species from among all
the 1700 species that were detected. Then, to understand the factors
affecting detection probability, including LF, we applied a constrained
randomization in the selection of our study species, by restricting our
sampling to species that were detected in at least 18 quadrats. This
left us with 886 species, from which we randomly chose 25 from
each of four LFs: grass, forb, shrub and tree.

STATISTICAL METHODS

We applied a multispecies site-occupancy model (Dorazio & Royle
2005; Russell e al. 2009; Zipkin, Dewan & Royle 2009) to our data
of two samples of 100 species from 451 sites. This framework for-
mally accommodates false-negative detections by distinguishing a
latent state of occurrence, z, which is modelled jointly with a bino-
mial detection process that describes the error-prone mapping of z on
the observed detection/nondetection data y (Royle & Dorazio 2008;
Kéry 2011). Specifically, let z;; be the latent occurrence state at quad-
rat i (i =1, 2, ..., 451) of species k (k =1, 2, ..., 100), such that z;
« = 1 denotes presence and z;; = 0 denotes absence. Our basic model
for the ecological process underlying the true pattern of occurrence of
our study species, z;, is then a Bernoulli random variable,

zix ~Bernoulli(y; ), eqn 1

where \;; is the probability of occurrence of species k at quadrat i.
Conditional on the outcome of that Bernoulli random variable, that is
z =1 (presence) or z = 0 (absence), the observation process is mod-
elled as another Bernoulli random variable, that is, we make the
assumption that there are no false-positive records. Hence, for the
observed detection/nondetection data, y; ;. for quadrat i (i = 1, 2, ...,
451), replicate survey j (j = 1, 2) and species k (k =1, 2, ..., 100),
we assume

Yijklzik ~Bemnoulli(zix X pijk), can?

where p;; is the detection probability for species k (k =1, 2, ...,
100) at quadrat i (i =1, 2, ..., 451) during survey j (j = 1, 2). We
note that although the surveys in the 451 quadrats were conducted
over multiple years, the replicate surveys from a particular quadrat
were within the same year; thus, the closure assumption was not vio-
lated.

We introduced effects of covariates to accommodate spatial and
taxonomic variation in occupancy probability and spatial, temporal
and taxonomic variation in detection probability, or equivalently, to
test for the effects of the associated covariates. Owing to the extreme
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altitudinal gradient in Switzerland, elevation serves as a covariate that
summarizes the effects of a very large number of environmental vari-
ables that act more directly on the probability of species occupancy.
To account for that and to allow for nonmonotonic relationships, we
fitted the following model for occupancy with a quadratic effect for
elevation (E):

logit(V; ) = o0.1r(x) + %o + o1 X E; + oo X Ej, eqn3

Here, oo ) denotes the effects of the LF of species k on the proba-
bility of occupancy of species k at quadrat i, o is the deviation of
species k from the LF to which it belongs, o, x and o, are the effects
for species k of elevation linear and elevation squared, and E; is the
mean of elevation of quadrat i (i =1, 2, ..., 451). For the random
sample of 100 plant species from 1700 species, we did not include
the effects of the LF of species k (see Appendix S1 in Supporting
Information).

Similarly, we modelled the effects of LF, species, elevation, survey
date (D) and their interactions on detection probability with logit-lin-
ear function:

logit(pijx) =Poru) + Bix + Pox X Ei + fay % E} + By x Dij+
Psi < Dzj + Beg X Ei X Dij+ B7y X Ei X Dii + BapX .
El2 X D,’J
eqn4

Here, Borrq) denotes the effects of LF of species k, By is the devia-
tion of species k from the mean value for its LF, B, through g, are
the effects of elevation, elevation squared, date of the survey, date
squared and their interactions, and D;; is survey date at quadrat i
@i=1,2,...,451) during survey j (j = 1, 2). Originally, we intended
to fit a model with a full interaction of all covariates, that is including
an effect of El2 X D?_j. However, we never obtained numerical conver-
gence for this model, so we removed that term from the model speci-
fication. For the random sample of 100 plant species from 1700
species, we included only the effect of date of the survey and date
squared (see Appendix S1). We standardized all covariate data for the
analyses.

Consistent with the scope of our study and with the sampling
scheme, which resulted in the 100 randomly selected species, we trea-
ted all parameters indexed by k as random effects, that is as draws
from a prior distribution whose parameters we estimated. Specifically,
we made the assumption that all sets of species-specific random
effects come from normal distributions with mean i and variance c°
that were both estimated. The only exceptions were the LF effects
dorry and Porr that were treated as independent (i.e. fixed)
effects. We further note that the species-specific intercepts, o, and
By were expressed as deviations from the LF means; therefore, the
prior distributions for these parameters were centred on zero.

We chose a Bayesian analysis of the model and used vague priors
that were meant to introduce little or no information about the esti-
mated parameters. Specifically, we chose uniform distributions,
U (a, b), for all parameters, with @ and b sufficiently wide as to not
affect the posterior distributions. For the variance parameters on the
scale of the standard deviation, a was zero (reflecting the fact that a
variance cannot be negative) (see Appendix S2 for a description of
the model in the BUGS language).

We carried out the analysis in wiNBuGs 1.4.3 (Lunn et al. 2000;
Spiegelhalter e al. 2003), which we called from r through package
R2WINBUGS (Sturtz, Ligges & Gelman 2005). We ran three Markov
chains for 10° iterations each, discarded the first half as a burnin and
thinned by one in 50. The Gelman—Rubin r statistic (Gelman &
Rubin 1992) indicated acceptable convergence for all parameters (i.e.

© 2012 The Authors. Journal of Ecology © 2012 British Ecological Society, Journal of Ecology


uriarte
Highlight

uriarte
Highlight

uriarte
Highlight

uriarte
Highlight

uriarte
Highlight

uriarte
Highlight

uriarte
Highlight


4 G. Chen et al.

r values were between 1.0 and 1.1 for all primary structural para-
meters of the model). We report posterior means as point estimates
and central 95% percentiles of the posterior samples as Bayesian
credible intervals (CRI). We conducted a Bayesian analogue to a sig-
nificance test by checking whether the CRI for a parameter contained
zero, in which case we assumed non-significance. Further, we
assumed the non-significance of the difference in detection probability
between two LFs if the CRI for the derived difference in detection
probability for the two LFs contained zero. Finally, using the maxi-
mum per-visit detection probability of each species (i.e. the higher
value of detection probability for the first and the second surveys),
we estimated the minimal number of surveys required to detect a spe-
cies with a probability of 95% during the optimal survey season
(McArdle 1990).

Results

Based on the random sample of 100 plant species from the
1700 species ever detected by the Swiss BDM, detection
probability during the first survey ranged 0.03-0.99 (median
0.74, Fig. 1a) and during the second survey, 0.03-0.99 (med-
ian 0.82, Fig. 1b).

For those 100 plant species that had at least 18 observed
occurrences, combining both annual surveys, the observed num-
ber of occupied quadrats ranged from 18 to 368 (among 451),
which translated into apparent occupancy estimates of
4-81.6%. Correcting for imperfect detection, the estimates of
the number of occupied sites among the 451 study sites under
our site-occupancy model ranged from 19 to 370. The differ-
ence between observed and estimated number of quadrats ran-
ged from O to 34 (mean 5) quadrats, representing a negative
relative bias of 0—43.8% (mean 6.6). Thus, the overall detection
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Fig. 1. Frequency distribution of the species-specific detection proba-
bility for the first survey (a) and the second survey (b) under the mul-
tispecies site-occupancy model analysis in Appendix S1. These results
are from the random sample of 100 plant species with at least one
observed occurrence in the Swiss Biodiversity Monitoring (BDM).
Vertical line indicated the median of the species-specific detection
probability for these 100 plant species.

error in the Swiss BDM for both surveys combined was rela-
tively small in most of these fairly widespread species.

However, for a single survey, the magnitude of detection
errors was substantial and depended on the survey season.
Detection probability during the first survey varied from 0.02
to 0.99 (median 0.87) and during the second survey from
0.01 to 1 (median 0.89) (see Table S2 for estimates for all
100 species). For a shrub Rubus fruticosus, for example,
detection probability during the first survey was 0.98 and
increased to 1.0 during the second survey. For the grass Digi-
taria ischaemum, detection probability during the first survey
was 0.07 and increased to 0.63 during the second survey. For
the forb Oxalis acetosella, detection probabilities during the
first survey and the second survey were both 0.97. However,
for another forb species, Sherardia arvensis, detection proba-
bility during the first survey and second survey were both
0.55.

The mean per-survey detection probability for grasses, for-
bs, shrubs and trees, respectively, was 0.77, 0.84, 0.87 and
0.88. Detection probabilities were not significantly different
among forbs, shrubs and trees, nor between grasses and forbs
(Fig. 2). Detection probability differed significantly between
grasses on one hand and shrubs and trees on the other
(Fig. 2).

Both elevation and survey season had significant effects on
detection probability of 60 of the 100 studied species. Among
these species, detection probability of 30 species varied
significantly with elevation (see Table S2). For 42 spe-
cies, detection probability at the optimum elevation (for

0.9 1.0
I

Detection probability
0.8

0.7
T

Life form

Fig. 2. Detection probability for the four life-forms (LFs) under the
multispecies site-occupancy model analysis in Appendix S2. These
results are from the stratified random sample of 100 plant species
with at least 18 detections in the Swiss Biodiversity Monitoring
(BDM) survey. For each LF, the solid circle showed the estimated
mean of detection probability, and the 2.5% and 97.5% percentiles of
the posterior samples of the detection probability were showed to dis-
cern the difference of detection probabilities among the four LFs.
Interpretation of the name of LFs was 1 (forb), 2 (grass), 3 (shrub)
and 4 (tree).
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Fig. 3. Per-survey detection probabilities of 100 Swiss plant species
during both the first survey and the second survey. These results are
from the stratified random sample of 100 plant species with at least
18 detections in the Swiss Biodiversity Monitoring (BDM) survey.
Estimates were based on the site-occupancy model analysis in Appen-
dix S2. Per-survey detection probabilities were based on the elevation
where a species had the highest estimated occupancy probability. In
12 species (square), detection probability was higher in the first than
in the second survey. In 30 species (circle), detection probability was
higher during the second than during the first survey. In 58 species
(triangle), detection probabilities did not change significantly over the
season, so their estimates fall on the 1 : 1 line.

occurrence) during the first survey differed significantly from
that during the second survey (Fig. 3). In 11 species, the joint
effect of elevation and survey season (i.e. at least one of the
interaction terms) was significant for detection probability
(see Table S2).

For example, during the first survey, below 1500-m eleva-
tion, detection probability of the forb Galeopsis tetrahit was
high, while above 1500 m, detection probability decreased
with elevation. During the second survey, below 2300-m
elevation, detection probability of this species was uniformly
high and did not change with elevation, while above 2300 m,
detection probability decreased strongly (Figs 4a and 5). For
the grass Luzula campestris, above 1000-m elevation, detec-
tion probability in the first survey was relatively high and did
not change very much with elevation. During the second sur-
vey, however, detection probability of L. campestris was
lower than that of the first survey and increased significantly
with elevation in the area below 3000 m (Figs 4b and 5).
Detection probability of another forb species, Ranunculus
ficaria, did not change with elevation in either survey.
However, overall detection in this species differed consider-
ably between surveys (Figs 4c and 5). Detection probabilities
of R. ficaria at the optimum elevation (with highest estimated
occupancy probability) during the first and second surveys
were 0.52 and 0.01, respectively.

Imperfect detection in plant 5
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Fig. 4. Effects of survey date and elevation on detection probability
for Galeopsis tetrahit (a), Luzula campestris (b) and Ranunculus
ficaria (c) in Switzerland based on the multispecies site-occupancy
model analysis in Appendix S2. These three species were from the
stratified random sample of species with at least 18 detections. For
each species, detection probability was predicted only including cova-
riates of which the central 95% percentiles of the posterior samples of
the parameter did not contain zero. Survey date was the standardized
Julian date. The standardized Julian date for the first and second sur-
veys was 148 and 236, corresponding to 28 May and 24 August,

respectively. Elevation was the mean elevation of the quadrat sur-
veyed.

For 92 of the 100 studied species that had at least 18
observed occurrences, the maximum per-visit detection proba-
bility was higher than 0.7, and two surveys would be suffi-
cient to detect their occurrence in a quadrat with a probability
of 95%. For another three species, the maximum per-visit
detection probabilities were between 0.6 and 0.7, and three
visits would be required to detect these species with a proba-
bility of 95%. Finally, for five species, per-visit detection

© 2012 The Authors. Journal of Ecology © 2012 British Ecological Society, Journal of Ecology
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Occupancy

Detection (first)

Detection (second)

0.4

Fig. 5. Maps of projected occupancy and detection probability for Galeopsis tetrahit (three maps in the top row), Luzula campestris (three maps
in the middle row) and Ranunculus ficaria (three maps in the bottom row) in Switzerland based on the multispecies site-occupancy model analy-
sis in Appendix S2. These three species are from the stratified random sample of species with at least 18 detections in the Swiss Biodiversity
Monitoring (BDM) survey. To express the effects of survey season on detection probability, we used values of minus and plus one standard devi-
ation of standardized date for the first and second surveys, which corresponds to 28 May and 24 August, respectively. Then, we projected on the
map the relationship between elevation and detection probability in the first survey (the second column) and that in the second survey (the third

column).

probability was < 0.6, and four visits would be required to
detect them with a probability of 95%.

Discussion

On the basis of two samples of 100 plants species each, we
assessed the large-scale patterns of imperfect detection over
an entire country. Detection was less than one for most spe-
cies, suggesting caution in the interpretation of distribution
studies of plants or other sessile organisms that do not for-
mally control for detection probability. Our results emphasize
the need for field protocols that accommodate estimation of
detection error in the design of new schemes.

Despite sampling randomly, we still expect that our two
samples of 100 plant species are probably biased high with
respect to the average detection probability of all Swiss plant
species. Species with a restricted distribution are often also
locally rare (Gaston & Lawton 1990), and local abundance
is an essential factor affecting detection probability (Royle &
Nichols 2003). It is understood that nearly 40% of plant spe-
cies of the Swiss flora have not been recorded within the
Swiss BDM Z7 quadrats; thus, we expect that there are
many elusive and rarer species that have not been detected.
It is reasonable to assume that our results are biased high
for the overall average detection probability and even more
so in our stratified random sample, when considering the
Swiss flora as a whole. In other words, had substantial data

also been available for the very rare species, we might have
found lower average detection probability than in the current
study.

TAXONOMIC PATTERNS IN DETECTION PROBABILITY

In the Swiss BDM program, along a transect of 2500 m
observers were most likely to overlook grasses, rather than
members of the other three LFs (forbs, shrubs and trees). The
low detection probability of grasses may in part be explained;
on the one hand, by morphology, grasses represent an elusive
gestalt for detection. For trees and shrubs, however, the large
size of these plants made them relatively distinctive to the
observers, resulting in a rather high detection probability. We
note that juvenile individuals of trees or shrubs may be as
hard to detect as a forb. For example, observers are not prob-
ably to overlook a shrub such as R. fruticosus along the tran-
sect, since this species has distinctive flowers and fruits and
moreover typically grows in large clumps. It was therefore
intuitively reasonable that this species had high detection
probability of near 1.0 during both surveys. However, grasses
have much smaller size, as well as an elusive gestalt, result-
ing in lower detection probabilities. Nevertheless, many forbs
are similarly small in size as are many grasses, and yet forbs
had generally higher detection probability than grasses. For
example, Oxalis acetosella, a very small forb species much
smaller than most grasses, had high per-visit detection proba-

© 2012 The Authors. Journal of Ecology © 2012 British Ecological Society, Journal of Ecology



bility of 0.97 during both surveys. It is probably that its white
flowers as well as the distinctive and often extensive vegeta-
tive parts contributed to its high detection probability.

In our case, grasses consisted mostly of species within the
families Gramineae and Cyperaceae. It is possible that grasses
had the lowest detection probability because field botanists
had difficulties in distinguishing the subtle morphology differ-
ence among these species. The likelihood of false-positive
errors caused by misclassification of grass might thus
increase, or doubtful cases were ignored, leading to increased
false-negative detection errors. In contrast, for shrubs and
trees, the morphological differences among species were
much greater. Field botanists could thus identify and detect
shrubs and trees more easily. In short, compared with the
other three LFs, grasses often lacked distinctive flowers, fruits
or vegetation parts, which, in addition to their relatively small
size, could partly explain their low detection probability.

Additionally, local abundance may also explain the detection
differences among species. Considering the positive relation-
ship between detection and abundance (Royle & Nichols
2003), it was reasonable for R. fruticosus to have detection
probabilities of essentially 1.0 during both surveys, since this
shrub is widespread and common on transects of Swiss BDM
and typically grows in extensive clumps. Similarly, Sherardia
arvensis had a low detection probability of 0.55 during both
surveys because this species is cryptic and rare.

Nevertheless, plant traits such as size and survival strate-
gies (e.g. geophyte, hemicryptophyte and therophyte), rather
than membership to a specific LF, may have greater effects
on detection probability. Further studies should thus be
designed to develop an index to quantify the gestalt of a spe-
cies during field surveys as relevant to detection error. This
may enable researchers to select a field protocol and analysis
method that allows imperfect detection to be estimated more
directly.

TEMPORAL PATTERNS IN DETECTION PROBABILITY

Survey season had effects on the detection probability of 42
species in our study. This is probably because during these
two time periods, plants were often in different life stages
(e.g. flowering or wilted to the ground); thus, their gestalt
was very different. One group of grasses flowers in spring
(e.g. Alopecurus pratensis); thus, they have higher detection
probabilities during the first survey (see Table S2). Another
group flowers in late summer (e.g. Digitaria ischaemum);
thus, these species have higher detection probabilities during
the second survey (see Table S2).

In the other three LFs, different life stages could also
explain their detection differences between surveys. For
example, the yellow flowers of Ranunculus ficaria are distinc-
tive in the spring, and its above-ground parts often wilt back
in the summer. Accordingly, R. ficaria was detected with
probability of 0.52 during the first, but with only probability
of 0.01 during the second survey. The projected detection
maps showed clearly the temporal pattern of detection proba-
bilities of R. ficaria over Switzerland (Fig. 5).
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SPATIAL PATTERNS IN DETECTION PROBABILITY

In a mountainous country such as Switzerland, elevation
has repeatedly been found to be an extremely important fac-
tor determining the patterns of biodiversity (Wohlgemuth
et al. 2008; Randin efal 2009). Elevation can be
considered a catch-all surrogate for a large number of
environmental factors in Switzerland (Kéry, Gardner &
Monnerat 2010a).

We believe that the effects of elevation on detection prob-
ability could be interpreted in two nonmutually exclusive
ways. On the one hand, for some common species, in par-
ticular for survey time, populations at different elevations
might be in different life stages, thus have a different mor-
phology, which leads to a different gestalt for detection. In
the first survey, above 1500 m, detection probability of
G. tetrahit was low and decreased with elevation. In the sec-
ond survey, detection probability was high and did not
change with elevation in the region below 2300 m. However
in the region above 2300 m, detection probability was low
(Figs 4a and 5). This might be because in the first survey,
populations in the area below 1500 m are in the flowering
stage, while populations in the area between 1500 and
2300 m are in the vegetative stage, since the high elevation
areas are colder than low elevation areas. During the second
survey, in summer, in the region below 2300 m, populations
at both low and high elevations are in the flower or the fru-
iting stage and thus had a similar chance to be detected
(Figs 4a and 5). For the grass Luzula campestris, detection
probability in the second survey increased with elevation
(Figs 4b and 5). This might be because in the late summer
the above-ground parts of L. campestris in low elevation
areas wilt way, while this species maintains above-ground
parts in higher elevation areas.

On the other hand, species usually find their habitat
requirements met best at a certain elevation, leading to dis-
tinct elevation profiles in abundance. Via the abundance—
detection relationship exploited formally in the heterogeneity
site-occupancy model of Royle & Nichols (2003), abundance
is probably at the root of such elevation patterns in detection
probability. Detection probability of G. fetrahit in areas below
2300 m was relatively higher than that of areas above
2300 m (Figs 4a and 5). We could explain this pattern as that
G. tetrahit preferred habitats below 2300 m in Switzerland.
So, the abundance of this species was relatively high at these
areas, contributing therefore to a high detection. However, in
the area above 2300 m, G. tetrahit becomes rare, the local
abundance decreases, and detection probability is low
(Figs 4a and 5).

ACCOUNTING FOR IMPERFECT DETECTION OF PLANTS
IN ECOLOGY AND BIODIVERSITY MANAGEMENT

It is a widely held belief among ecologists that imperfect
detection is not an issue for sessile organisms, including
plants (Araujo & Guisan 2006). However, our study revealed
that for a single survey, which may represent a more typical
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protocol in studies collecting data that are used to model plant
distributions, a substantial degree of imperfect detection was
common for plants as well. Without correcting for this sys-
tematic error, conventional species distribution models risk
modelling the apparent distribution, that is the combined
patterns of occurrence and detection, rather than the true
distribution patterns (Kéry 2011).

Naturally, with more surveys, the combined detection error
will decrease compared with the single-survey detection error.
Thus, detection probability may indeed be close to one in
well-surveyed areas. That is, the observed presences over a
long period of time will reflect more accurately the true
occurrence patterns of a plant species. This finding can
explain the fact that conclusions of conventional distribution
studies based on large samples of floras or herbarium records
may not have been very biased, even though these studies did
not deal with imperfect detections explicitly (Myers et al.
2000; Qian & Ricklefs 2007), and it is hard to know how
biased the estimates are when detection errors cannot be esti-
mated formally. Moreover, the fact that per-visit detection
probability was less than one for most species emphasizes the
need to incorporate detection probability explicitly into future
modelling of species distribution to infer species absence rea-
sonably. Grasses had the lowest detection probability among
the four LFs. With the same number of visits, grass species
might have a higher probability of false absences in ordinary
plant inventories. Also, the survey time effect on the detection
probability of R. ficaria suggests that a nondetection of the
species in summer may simply be a ‘false absence’, since the
species is then simply not available for detection. A related
case of nondetection because of temporal unavailability in a
perennial plant is Mead’s milkweed (Asclepias meadii) that
may be dormant in a particular year (Alexander, Slade &
Kettle 1997). Given that many historical distribution data sets
have no replicate surveys, the site-occupancy approach to esti-
mate detection probability, and therefore to obtain unbiased
estimates of occurrence, may not always be an option (though
see, for instance, Kéry ef al. 2010b; who extracted replicated
detection—nondetection data from what is essentially a multi-
species presence-only data base). In addition, under some
conditions, it may be possible to estimate occupancy and
detection separately from single-survey data by assuming
strong covariate relationships (Lele, Moreno & Bayne 2012).

The mechanisms underlying the spatial patterns in detection
probability in our study may appear trivial and readily under-
stood (namely they are probably mainly due to life state and
abundance), but the implications for species distribution mod-
elling are not trivial at all. Elevation, as a factor that affects
both occurrence and detection in a majority of species, is pre-
cisely one of the factors that cannot be standardized either at
the design or at the analysis state of a study. Unless inference
on plant distribution is based on a site-occupancy model,
which allows us to separate the modelling of the effects of
such a factor on both occurrence and detection, species distri-
bution studies would be automatically biased, and sometimes
seriously so, by all the patterns that we found in our species
detection maps (Fig. 5).

The Swiss BDM enabled us to use site-occupancy models
with plant monitoring data, thereby estimating plant detection
probability explicitly. But there are many obstacles for the
widespread use of site-occupancy models in distribution stud-
ies. Lack of replicated observations may often prevent the
use of site-occupancy models. It is possible to deduce repli-
cated observations from checklist-type data (Kéry, Gardner &
Monnerat 2010a; Kéry et al. 2010b) to improve the models
of distributions based on flora checklist data. However, sur-
vey-specific differences in effort, skill, methodology and
other covariates might cause detection differences. It is there-
fore necessary to explore effects of these detection heteroge-
neities on the estimation of occupancy. The different
detection patterns in two survey seasons showed the extents
to which the occupancy will be biased if the survey date
effects on detections had not been modelled explicitly
(Fig. 5).

In conclusion, our study points out that in a broad-scale
monitoring program, imperfect detection was more common
than not. We presume that the problem will be much more
widespread, and more severe, in data sets that are normally
used for plant species distribution modelling. There are now a
vast number of articles and books dealing with survey designs
to properly accommodate detection probability in population
analyses, including Williams, Nichols & Conroy (2002),
MacKenzie et al. (2006), Royle & Dorazio (2008) and Kéry
& Schaub (2012). We would argue that imperfect detection
should therefore be estimated whenever possible even in dis-
tribution studies of plants and other sessile organisms to gain
control over such errors that may compromise the results of
species distribution studies.
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