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SUMMARY

Model choice is a fundamental and much discussed activity in the analysis of datasets.
Nonnested hierarchical models introducing random effects may not be handled by classical
methods. Bayesian approaches using predictive distributions can be used though the
formal solution, which includes Bayes factors as a special case, can be criticised. We
propose a predictive criterion where the goal is good prediction of a replicate of the
observed data but tempered by fidelity to the observed values. We obtain this criterion
by minimising posterior loss for a given model and then, for models under consideration,
selecting the one which minimises this criterion. For a broad range of losses, the criterion
emerges as a form partitioned into a goodness-of-fit term and a penalty term. We illustrate
its performance with an application to a large dataset involving residential property
transactions.

Some key words: Censored data; Deviance; Exponential family; Generalised linear model; Penalty function;
Utility function.

1. INTRODUCTION

Model choice is a fundamental activity in the analysis of datasets, an activity which has
become increasingly more important as computational advances enable the fitting of
increasingly complex models. Such complexity typically arises through hierarchical struc-
ture which requires specification at each stage of probabilistic mechanisms, mean and
dispersion forms, explanatory variables and so on.

In the classical literature on model choice the primary criterion is a likelihood ratio
statistic. When comparing nested models, if customary asymptotics hold, this statistic is
inconsistent; it tends to give too much weight to the full model. As a result, numerous
authors have proposed penalising the likelihood using penalty functions which increase
in model dimension; see e.g. Nelder & Wedderburn (1972), Akaike (1973), Bhansali &
Downham (1977) and Schwarz (1978). The asymptotics assume that model dimension
remains fixed as sample size grows large. For hierarchical models introducing random
effects, this need not be the case. Indeed, it is not clear what the dimension of the model
is. Also, apart from some work of Cox, e.g. Cox (1962), the classical approach has little
to say about comparing nonnested models.
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Bayesian approaches employ predictive distributions for 'criticism of the model in light
of the current data' (Box, 1980). In examining a collection of models, predictive distri-
butions will be comparable while posteriors will not. Moreover, it seems natural to evaluate
model performance by comparing what it predicts with what has been observed. Most
classical criteria utilise such comparison.

For a collection of models m = 1, 2 , . . . , M, the formal Bayesian approach sets pm to be
the prior probability of model m. If y denotes the data vector and f{y\m) the prior
predictive distribution of the data under model m, the posterior probability of model m,
pr(m|y)ccf(y\m)pm. Hence, if yobt denotes the realised data, the model which maximises
f(yObt\m)Pm is selected. Assuming, a priori, that all models are equally likely, we may
adopt/(yobjm) as a screening criterion; when models are compared in pairs the so-called
Bayes factor emerges.

Bayes factors have a wide advocacy within the Bayesian community; see Kass & Raftery
(1995) for a review. However, they lack interpretation in the case of improper priors,
which are frequently used in complex hierarchical specifications, and they are difficult to
compute for such models with large datasets. Moreover, as Kadane & Dickey (1980)
demonstrate, the Bayes factor emerges as an optimal criterion under essentially a 0-1 loss
function, that is, when model choice is viewed as hypothesis testing. In practice an alterna-
tive utility might be preferable. We follow standard utility ideas as in e.g. Raiffa & Schlaifer
(1961) but replace experiments with models and maximise utihty, equivalently minimising
loss over models. Such replacement takes us from pre-posterior to posterior analysis. That
is, our current state of knowledge includes the observed data to which the models are
fitted and we may incorporate this knowledge into our utihty function.

More specifically, the unknown is viewed as a replicate ynp, say, of the vector yob8; that
is, y ^ has the same first-stage distribution as yobt. The action vector a is an estimate
trying to accommodate both yob, and what we predict for y^. The loss for guessing a
when ynp obtains and yobs was observed is denoted by Liy^p, a; yoht). Then, for model m
we minimise E{L(ynp, a; yobt)\yohn} over a, where the expectation is taken with respect
to the posterior predictive distribution for yiep under model m. We choose the model
yielding the smallest minimum. Rubin (1984, §5) proposes reconciliation of the
observations with the posterior predictive distribution though, for model choice, this is
contentious, as in the discussion to Aitkin (1991).

For a version of log scoring loss we can do the minimisation explicitly, obtaining an
expression which can be interpreted as a penalised deviance criterion. The criterion com-
prises a piece which is a Bayesian deviance measure and a piece which is interpreted as
a penalty for model complexity. The penalty function arises without specifying model
dimension or asymptotic justification.

Informal Bayesian model selection in the case of nested models can be effected by
obtaining the posterior distribution of the discrepancy parameter between the full and the
reduced, as for example in the Bowling Green State University technical report 'Bayesian
tests and model diagnostics in conditionally independent hierarchical models' by
J. H. Albert and S. Chib. Exploratory approaches, using crossvalidation ideas, applicable
to small to moderate datasets, are discussed in Gelfand, Dey & Chang (1992) and
Gelfand (1995).

In § 2 we develop the proposed criterion, providing convenient approximation and
interpretation. We adopt a formal utility maximisation approach to develop a class of
model choice criteria. Particular versions can be obtained exactly or by approximation.
They allow attractive interpretation and can be computed routinely from the output of
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simulation-based model fitting. We also show how the criterion may be extended to handle
the case of censored data. In § 3 we discuss choice of loss function, focusing upon a log
scoring version which accommodates the class of generalised linear models. Finally, in § 4
we show how the criterion performs in the context of a large dataset involving 7014
residential property transactions.

2. DEVELOPING THE CRITERION

21 . Brief review of utility ideas
Raiffa & Schlaifer (1961, Ch. 1) consider the context of choosing among experiments

with interest in inference for some unknown 6. The experiment providing the largest
expected utility is selected. More precisely, they define U(e, w, a, 6) to be the utility for
experiment e when data w are collected, action a is taken and 0 obtains. Since realisations
of w and 6 are random, one must calculate

max Eg_wleU{e, w, a, d) = Ew[e max E6\w>eU{e, w, a, 6). (1)
a a

Typically, U is partitioned as U^e, w) + U2{a, 6), as in Lindley (1971, Ch. 5), by arguing
that capturing the consequences of (e, w) has nothing in common with capturing those of
(a, 9); U^e, w) is often taken to be constant, e.g. a sample size, in which case (1) simplifies
to calculating Ew\emaxoEe\weU(a, 0). In choosing the best experiment there is no notion
of a true experiment; there is no prior distribution over the set of experiments. If utilities
are replaced by losses we require Ew\e minfl£e|w eL(0, a). Were we not to collect any data,
we would choose the experiment with smallest mina Ee\eL(6, a), that is with smallest prior
expected loss.

We adapt this formulation to the problem of model choice by replacing experiments
with models. Further modification is required since we have already obtained a vector of
observed data, yobs say. We are no longer in the pre-data stage; our current level of
knowledge includes yobi. With prediction in mind, we think of the unknown as a future
observation vector which is a replicate of yobt. We denote it by ynp and assume y^
and yobs have the same distribution. The utility function, incorporating yobt, becomes
U(m, w, a, ynp; yobt). Assuming a partition as above and converting to losses, we must
calculate

E ^^Myrcp, a\ yobt). (2)

We choose the model yielding the smallest value of (2). As with experiments, there is no
notion of a true model; there is no prior distribution over the set of models. As a result,
our approach stands apart from model averaging. The latter turns prior probabilities on
models into posterior probabilities on models leading to an average model using these
posterior probabilities.

Again, if no additional data were to be collected, we need only compute

111111

a
•

The expectation in (3) is with respect to the posterior predictive distribution associated
with y ^ under model m. In our setting, it is not apparent what w should be, so in the
sequel we work with (3). If the nature of the additional data w were specified, then in (2)
the inner minimisation would imitate what follows. The outer expectation would be
obtained by Monte Carlo integration.
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2-2. A proposed loss function
For the Ith component of yrep and a, with a univariate loss function L(y, a), define

The case when /c = 0 is familiar; here the action a, is a 'guess' for y(>rep. We would set
k = 0 when y,rep was, in fact, a ynew and there were no associated y,rObs. The general form
in (4) recognises that y, ob, has the same distribution as y,>rep and that this information
might not only be accounted for in the predictive distribution for y, rep but also in the loss
function. Since (4) rewards closeness to y, rep but also to yIobl, a, is viewed as a compromise
action. The specified weight k indicates the relative regret for departure from y, obl com-
pared with departure from yi>rep. One may think of a, as a univariate action trying to
accommodate a partially observed bivariate state of nature (y/,rep, yi,ob,)- The domain si
for a, need not concur with the support of y,. For instance, if y, were discrete, a Poisson
variable, say, si would be R+. When the mean of y, exists, si will typically be the space
of the mean.

To illustrate, if L{y, a) = {y — a)2 and k = 0, implementing (3) at the /th component, we
would obtain the predictive variance of yttrep- If k 4=0 but we set a, = y,obs, we obtain
£yi \yob.,m(yi,np ~ yi,ob.)2> a n expected squared deviation. We fully examine (4) when L is
squared error loss in § 2-3. Zellner (1994) also investigates the quadratic case of (4) for
parameter estimation in Gaussian linear models, calling it a balanced loss function. The
first term on the right-hand side captures precision of estimation; the second term goodness
of fit.

If we aggregate (4) over the components of y,^,, (3) becomes
n

Dk(m) = £ min Eyitophobt_mL(yUnp, a,; yob.)

ft

= £ min{£, (^|w mL(yw ,a , ) + kL(y,iObs,a,)}. (5)

2-3. The squared error loss case
In (4), when L(y, a)=*(y — af we can compute (5) explicitly. For a fixed ah the /th term

in (5) becomes

of(m) + (a, — n\m))2 + fc(a, — yi.ob,)2,

where

/ijm) = E(yiynp\yobt, m), a?(m) = var(y / irep|yob,, m).

The minimising a, is (k + l ) " 1 ^ " 1 ' + ^i.ob.)- Inserting these a, into (5), we obtain

' (ur'-~v, i~r (6)
1 = 1 F v - r 1 , m l

In (6) let
n n

1 = 1 ( = 1

Then G(m) is an error sum of squares, a goodness-of-fit measure. Under a Gaussian model
for the y, it is the customary likelihood ratio statistic with n\m) replacing the maximum
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likelihood estimate of the mean of _y,. Here P(m) is a penalty term. For underfitted models,
predictive variances will tend to be large and thus so will P(m); but also for overfitted
models we expect inflated predictive variances, again making P(m) large. Hence, models
which are too simple will do poorly with both G(m) and P(m). As models become increas-
ingly complex, we will observe a trade-off; G(m) will decrease but P(m) will begin to
increase. Eventually, complexity is penalised and a parsimonious choice is encouraged. In
this sense (6) has the same spirit as familiar penalised likelihood approaches, e.g. Akaike
(1973) and Schwarz (1978). The advantage of working in predictive space emerges.
Gassical approaches are applied in the parameter space and require a determination of
model dimension. In predictive space, using (6), the appropriate penalisation falls out as
a by-product.

In (6), letting k->oo, we have

D(m) = lim Dk(m) = P(m) + G(m);
k-

D(m) is proposed, without formal justification, by Laud & Ibrahim (1995). Here, we see
it as an extreme choice of (6). In practice, the ordering of models under Dk(m) will typically
agree with that under D(m). This is observed in the example of § 4 where (6) is studied at
k=l, 3, 9 and oo.

Consider the normal linear model, y ~ N(Xfi, a11), where y is n x 1 and /? is p x 1. For
convenience we assume a2 known. We adopt as our prior fl~N{pLp, V). If F " 1 — 0, that
is the prior is very imprecise, the vector yn^ given yoht is approximately distributed as
N{X$,(j2{I + X(XTXy1XT}), where ^(X^X)~1XTy. Then

G(m)^(y-XfoT{y-Xh Pim^^n + p).
Thus, in the Gaussian case, G(m) is approximately the error sum of squares and P(m)
penalises linearly in dimension as do most other model choice criteria proposed in the
literature; see Gelfand & Dey (1994) for further discussion.

2-4. Development for more general losses
Explicit calculation of (5) is generally not possible. Nonetheless, if L(y, a) is sufficiently

smooth, we can approximate (5) by a form resembling (6), enabling simple approximate
computation of the criterion. If L(y, a) is convex in y, we can interpret this approximation
as in the discussion below (6). Finally, we can study the behaviour of (5) when k is large,
obtaining a generalisation of the above D(m).

Using customary notation, let Ln{y, a) = dr+sL(y, a)/d/ da*. Suppose LQ2
 a n d ^20 e x i s t

over s/ x &/ and that L is nonnegative with L(b, b) = 0 and L^^b, b) = 0. For instance, for
a location loss g{\y - a\) if we take L(y, a) = g*{\y - a\), where g*(z) = g(z) - g(0) + zg'(0),
these conditions hold. In § 3-3, for a very general one-parameter family of density functions
we create an L{y, a) for which these conditions hold. Considering the /th term in (5),
expand L(yliTep; at) in yUnp about /4m) to second order. Taking expectations, we obtain

1 = 1 1 = 1 "i

where b\m) = L^/i j"0 , yltObt)/2. Next, expand L{fi\m); a,) in a, about /i|m) and L(yUoht\ a,) in
a, about yi,ob,- The above assumptions on L lead to

V ( m ) + t min {cj">(«, - n\m))2 + Ufa - yUohtf), (7)
1=1 ai
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where c\m) = Lo2(/4
m), /4m))/2 and dt = Lo2(y,i0b5, y,,ob,)/2. The minimisation in (7) can be

done explicitly as in that leading to (6). In particular,

and (7) becomes

Dk(m)^ t b\mWm) + t c\m)kdMm) ~ y,.ob.)7(cJM) + kd,). (8)

In fact, since L(/zjm), y,,ob,) —cim)(/xjm) -y, ,o b f)
2 , we may replace (8) by

t (m) + £ kdMa\ y,,ob.)/(c\m) + kd,). (8')
1=1

Note the similarity between (8) and (8') and (6). The only additional computation
required is b\m), c\m) and dh which is routine given L and fi\m). Hence, the right-hand side
of (80 is proposed as the criterion rather than Dk(m). If L(y, a) is convex in y, all the
b\m) > 0; if L(y, a) is convex in a, all the c\m) > 0 and dt > 0. Then the first term on the right-
hand side of (8') can be viewed as a weighted penalty term with the second being a
weighted goodness-of-fit term.

As fc-»oo, (8^ tends to

1=1 1=1

However, let

D(m) = t Eyi^yobtm L^,,rep, y,,ob,). (9)
i = i

Expanding L(ylnp, y,,obt) in yt rep about fi\m) to second order and taking expectations, we
obtain

Hence, we may view D(m) as an approximation to Dk(m) and adopt (9) as our model
choice criterion. Moreover, if L(y, a) is convex in y and we let G(m) = H%1L{n\m\ yi.obi).
by Jensen's inequality P(m) = D(m) — G(m) ^ 0. We can factor D(m) exactly into two posi-
tive pieces, one interpretable as a goodness-of-fit measure, the other as a penalty function.

Lastly, use of the form (8) or (8') requires computation of /ijm) and of(m). For (9) we
require an expectation under the predictive distribution of y1>rep given yobt under model m.
If simulation-based methods are used to fit models and if 9im) denotes the vector of all
parameters under model m, we can assume a sample 0*<m) (j = 1 , . . . , B) essentially from
the posterior of 0(m). Then, however, if, for each ;, y*np;j is drawn from /(y^nplOf^), we
obtain a sample from the predictive distribution for y,>rep which enables Monte Carlo
integrations for the above expectations.

2-5. Censored observations
If the /th data point is censored then the actual value of y, will not be seen. Rather, it

is only known that yt fell into a set AlobM, say. We illustrate below with the case of right
censoring, with Alobt = [s,, oo) for a known s,. To extend the notation to all observations,
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for uncensored data points let Alobs = {)>iiObt} and let Aobi denote the collection of all the
^i.obt- We can then extend (4) to

Liyi,rcp, "h Aobt) = L{ylTep, at) + k inf Liy^a,). (10)
yie ^i,ob«

For squared-error loss, at a given ah the expectation of (10) with respect tof(ylnp\yobs, m)
becomes

(n\m)-ai)
2 + k inf (y,-a,)2. (11)

For a censored observation, if fi\m) > sh the minimising a, is /x{m) and (11) becomes of(m).
If f4m) < sh the infimum occurs at yt = sh at = (k + l)-1(/i{m) + kst) and (11) becomes

Hence, Dk(m) becomes

" k "
Dk(m) = 2_, °i + 7 £ (f^m) ~ uim>)2>

where without censoring v\m) = yl>obt, but with censoring v\m) = max(/x$m), s,).

3. CHOICES OF L(y, a)

31 . Introduction
Here we consider choices of L(y, a) motivated by the form of the density of y. In § 3-2

we develop a deviance version of the criterion. Applied to the one-parameter exponential
family, as in (6), explicit calculation of (5) is possible. In § 3-2 we develop a version of the
criterion for a very general one-parameter family of densities, using the results of § 2-4.

3-2. A deviance version of the criterion
The deviance, the logarithm of a ratio of likelihoods, is a familiar discrepancy-of-fit

measurement (McCullagh & Nelder, 1989, Ch. 2). Using it as loss function in (4) and (5)
leads to a maximised utility version of the deviance which provides a model choice criterion
for generalised linear mixed effects models.

We assume a customary exponential family model for yt of the form

(13)

Hence, E{yl\6l,<\>) = x'{Ql) and var(_y,|0,,^) = (^/w,)x"(0i). Since x' is strictly increasing,
X'~l{-) exists and is strictly increasing. We denote it by 9(.).

As McCullagh & Nelder (1989, p. 33) note, it is natural to express the loglikelihood in
terms of the mean parameter rather than the canonical parameter, using 9(.). In particular,
taking s4 to be the mean space, we propose

(15)

for insertion into (4) and (5). The form in (14) invokes the familiar log scoring loss notion;
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i.e. for a given y, we lose more as ah and hence 6(at), becomes less likely for that yt. Since
(14) is connected to the form of the distribution for the data, model choice would select
among specifications of the mean of yh equivalently of 0,.

Let t(y) = yB(y)-x{6(y)}. Then t{y) is convex with t"{y) = B\y). Also, (15) becomes
2w,(t(yi) - [flflfa) - Z{0(a,)}]) and (5) becomes

Dk(m) = 2 £ w,min[tj'"> + My (.ob.)-(^m) + ^ . o b . ) ^ , ) + ( fc+l)x{^)}] , (16)

where t\m) = E{t{ylinp)\yobt,m}. As in the squared-error loss case, the minimising a, is
(k + l)~\n\m) + kyitOh,) and (16) simplifies to

Dk(m) = 2 £ w , [ t r + fct(>'I,obS)-(fc+l)({(fc + l)"1(^m) + ^,ob.)}]- (IV)
1=1

Jensen's inequality implies that t\m) ̂  t(fi\m)), so adding and subtracting t(fi\m)) in (17) yields

DM) - 2 £ », w
(18)

In (18), the first term on the right-hand side is positive and is viewed as a penalty term.
In fact, since t\m) — t(n\m))^6'(fj.\m))of(m)/2, this term is approximately a weighted sum of
predictive variances. The second term on the right-hand side is also positive since t is
convex. It is viewed as a goodness-of-fit term since it takes the value 0 when all
/jjm) = y,iObs and increases as fi\m) moves farther away from y/iOb8.

In the Poisson case (f> is intrinsically specified to be 1 so that (14) becomes

2{yl\og(yl/al)-(yl-al)} (19)

and t(y) = y logy — y. Similarly, in the binomial case (14) becomes

2{yf logy,/a, + (n, - y,) log(n, - y,)/(n, - a,)} (20)

and

In order that (19) can be calculated when yi,obt = 0 and to ensure that the expectation
of (19) exists with regard to the predictive distribution of y/frep, we suggest customary
continuity corrections, replacing (19) by

2(3'i+i)log{(tt + *)/(a, + !)}-( j ' i -f l i ) . (21)

Similar corrections are applied to (20).
Consider the case of a multivariate exponential family. Suppressing the dispersion

parameter <j>, assume for the r x 1 vectors yt and 0t the density

j] (22)
Now, dx(0l)/d8lJ = E{yl}\6i), yielding the mean vector E{yl\6i) as a function of 6h Since
the matrix with (_/, j1) entry d2x{8)/d0j dOy is positive definite, the inverse transformation
from the mean vector back to the canonical parameter vector 6 is uniquely defined.
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Denoting this transformation by 6(.) we extend (14) to

f{yi\G(y,)}
( 2 3 )

where al is now an element in the r-dimensional mean space. Inserting (23) into (4) and
(5) and imitating the above calculations yields a multivariate version of (18). We omit the
details. Hence, with suitable continuity corrections, our approach is applicable to multi-
nomial and multidimensional contingency table models.

32. The criterion for general one-parameter families of densities
We can extend (13) and (14) to a general family of densities as follows. Suppose

yi,- • • ,yn are such that, given {9U . . . , 9n}, yt are independent with y,~f(yi\9t). Here
f(y\6) is a family of univariate densities parameterised by a one-dimensional parameter
9. Also, suppose given y there is a unique finite value of 9 which maximises f{y\6) as a
function of 9. Denote this 6 by 6~(y), that is f(y\6)^f{y\&{y)} for all 9. By analogy with
(14) we define

( 2 4 )

Obviously Up, b) = 0. Assume L20 and LQ2 exist. By the definition of B, Loi(ft, b) = 0. Hence,
the approximations to Dk(m) in (8) and (8') are applicable though, without further con-
ditions, the b\m\ c\m) and dt need not all be positive.

If /(y |0) is log-concave in 9 for each fixed y, an immediate consequence is that / (y |0)
is unimodal, so that 9(y) is unique. Also, d Iogf(y\9)/d6 is decreasing in 9. Suppose in
addition that f{y\9) has monotone likelihood ratio in y. Then, as in Lehmann (1986,
p. 114), d log f(y 19)1 d9 is increasing in y. However, since d log f{y\ 6)/86 = 0 at {y, 8{y)},
we then have d(y) increasing in y. The monotone likelihood ratio assumption also implies
that the mean function fi{9) = \yf{y\9)d9, provided it exists, is strictly increasing in 6,
following Lehmann (1986, p. 86). Hence #(.) and the inverse mean function 6(.) are one-
to-one and (24) may be written in terms of 6(.). In this sense, for a given <f>, (14) is a
special case of (24).

4. ILLUSTRATIVE EXAMPLE

We illustrate the performance of our proposed model selection criterion using a dataset
consisting of 7014 residential sales over the nine-year period 1 January 1985 to 31 December
1993 for 50 subdivisions in Baton Rouge, Louisiana. A detailed discussion of this dataset,
the models in Table 1 and ensuing inference appears in Gelfand et al. (1998). Here we
note that the objective of the study is effective forecasting of individual house selling prices.
Baton Rouge provides an attractive setting for such a study as it exhibits considerable
spatial, temporal, structural and neighbourhood variation. Since prediction is a primary
goal, model choice using Dk(m) seems sensible. Customarily, ytiJ, the log selling price of
the ;th transaction in the ith subdivision in the tth year, is assumed normal with mean
Htii and variance a2. The log transformation encourages the homogeneity of variance
assumption.

We consider elaborations of ^,y which reflect the main factors anticipated to influence
selling price of a home: location, house characteristics and time of sale. The /z,y are defined
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Table 1. Model choice, m, for the residential sales data

m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Model for

a, + 0,+ xJ,jP(a, flat)

(a, flat)

1738-7

1550-3

1671-3

1601-0

1020-1

853-7

891-5

906-3

822-6

1006-4

1004-9

759-3

8811

742-3

737-7

P(m)

1742-3

1653-8

1674-7

1623-8

1034-6

887-4

984-7

920-7

997-8

1007-0

1006-2

8811

9111

899-7

883-8

DM)
2611-6

2410-9

2510-3

2424-3

1544-6

1314-2

1430-4

1373-8

14091

1510-2

1508-7

1260-8

1351-6

1270-9

1252-6

D^m)
3046-3

2816-5

2928-2

2824-5

1799-7

1527-7

1653-3

1600-4

1614-7

1761-8

1759-9

1450-6

1571-9

1456-4

14371

D9(m)

3307-1

30491

3178-9

3064-7

1952-7

1655-7

17870

1736-4

1738-1

1912-8

1910-6

1564-5

17041

1567-8

1547-7

D(m)

34810

32041

3346-0

3224-8

2054-7

17411

1876-2

18270

1820-4

2013-5

20111

1640-4

1792-2

1642-0

1621-5

using customary linear models which consist of additive contributions involving a house
characteristics component, a time effects component, a subdivision effects component and
a time-subdivision interaction component.

With regard to house characteristics, a transaction tij provides a 4 x 1 covariate vector
xtlJ whose components are number of square feet of living area, number of square feet of
other covered area, number of bathrooms and age in years. Hence, the contribution to
Utij would take as its most general linear form x]tjflti. However, since we incorporate effects
for time and subdivision heterogeneity separately, we assume a common /? for all t and i
with a fiat prior. The at's are the main effects for time within /x,y. We consider a, constant,
a, a quadratic, that is at = tx0 + a1t + a2t

2, a, exchangeable or a, from an A R ( 1 ) process.
As a general catchall for subdivision heterogeneity we introduce random effects 0, modelled
as exchangeable normal variables. Acknowledging the importance of location on selling
price and the geographic nature of subdivision sites, we introduce spatial effects <t>t given
a Gaussian conditional autoregressive prior, as in Besag (1974). Time-subdivision associ-
ation is captured by modelling the evolution of spatial and heterogeneity patterns over
time using nested effects, that is 6\'} and <f>\l) are nested hetero-temporal and spatio-temporal
effects respectively. The 0j° are modelled as exchangeable normal variables for each t, and
the <j>\l) are given a Gaussian conditional autoregressive prior for each t.

In Table 1 we consider a selection of models for \itii incorporating these various effects
as indicated. Table 1 presents G(m), P(m) and Dk(m) for k = 1, 3, 9 and oo. As expected,
G(m) generally decreases with increasing model complexity. For instance, comparing
models 2 and 3, models 6 and 8, and models 12 and 13, we see an advantage to individual
year time effects rather than a quadratic time trend. Comparing models 5 and 9, and
models 10 and 14, we see a clear advantage to permitting temporal evolution of the
heterogeneity and spatial effects. The P(m) show evidence of overfitting in comparing
models 6 and 9 and to a lesser extent in comparing models 12 and 14. Model selection is
not sensitive to k; models 12, 14 and 15 emerge as best choices. Covariates are needed as
are spatial and temporal effects, but an additive specification for the latter seems as effective
as the more complex nested form.
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In conclusion, while powerful computational tools enable us to fit remarkably complex
models we should not lose sight of the need to make suitably parsimonious choices. The
criterion Dk{m) offers a justifiable means for doing this.
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