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Bayes factors in practice 

ROBERT E. KASS 

Department of Statistics, 232 Baker Hall, Carnegie-Mellon University, Pittsburgh, 
PA 15213-3890, USA 

Abstract. Computational advances have facilitated application of various Bayesian methods, including the 
assessment of evidence in favor of a scientific theory. This is accomplished by calculating a Bayes factor. It is 
important to recognize, however, that the value of a Bayes factor may be sensitive to the choice of priors on 
parameters appearing in the competing models. This sensitivity is illustrated and discussed. The Schwarz 
criterion remains a crude yet useful approximation, but more accurate methods will generally require determina- 
tion of priors and subjective sensitivity analysis. 

1 Introduction 

Recent advances in computation have made Bayesian methods practical in a wide variety 
of settings. In particular, it is now possible to take a Bayesian approach to testing sharp 
hypotheses and to compute Bayes factors in non-trivial and multi-dimensional problems. 
On the one hand, this opens up exciting possibilities for scientific inference. On the other, 
it calls for greater scrutiny of the use of Bayes factors. In this paper, I will draw on several 
examples to discuss the status of Bayes factors as data-analytic inferential tools. I will not 
go into foundational issues in any depth, nor will I attempt a thorough review of the 
subject. (For a review emphasizing the contrast between p-values and Bayes factors, see 
Berger and Delampady, 1987; for a practically oriented review see Kass and Raftery, 
1993; important references neglected here may be found in these papers.) Instead, I will 
provide a perspective on the use of Bayes factors that is intended to serve as something of 
a guide and warning for anyone who has not yet thought carefully about them. The major 
issue I will emphasize is the sensitivity of Bayes factors to the choice of priors on 
parameters appearing in the two competing models. 

2 The role of testing in Bayesian methodology 

Bayes factors are commonly discussed as alternatives to p-values, which are criticized as 
being (i) poor measures of strength of evidence against a null hypothesis and (ii) 
improperly applied to problems that should be treated as involving estimation rather than 
testing. I will not dwell at all on (i) but will, below, make some remarks about the 
distinction between estimation and testing, because it is quite important and helps 
illuminate the purpose of calculating a Bayes factor. Here, I follow Jeffreys (1961) by tak- 
ing the position that Bayesian hypothesis tests provide quantitative evaluation of the evid- 
ence in favor of a scientific law or theory. An example should help to make this point of 
view clearer. 

Example: E. coli mutagenesis. In an experiment in molecular biology (Sklar & Strauss, 
1980) the investigators hypothesized that for particular traits in certain strains of E. coli, 
mutations would occur by an unusual error-prone DNA repair mechanism; this would 
lead to an absence of linkage of mutations at neighboring loci. They created a pair of cell 
lines, one of which contained cells 'selected' for the relatively rare trait of rifampin 
resistance, the other of which contained 'unselected' cells. The absence of linkage, 
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predicted by the DNA repair hypothesis, would imply that proportions Pi and P2 of bac- 
teria exhibiting acetate utilization deficiency in the 'selected' and 'unselected' cell lines 
would be equal, i.e. Ho: P1 = P2 . When the investigators took samples from each cell line 
and found 51 and I2 to be approximately equal they believed this ought to have 
represented fairly strong evidence in favor of DNA repair. 

This example illustrates an important situation, one where a scientific hypothesis may be 
translated directly into a statistical hypothesis and the problem is to quantify the evidence 
in favor of (or against) the hypothesis. In particular, the hypothesis in question may be, as 
it is in this example, the null hypothesis, in which case specific non-Bayesian 
methodology is clearly lacking. 

There is more to this example, which illustrates an additional important use of 
Bayesian methods generally, that of incorporating additional information. It turned out 
that data from many other strains were available, which were used (in calculations not 
reported in the paper cited) to formulate a prior under the alternative hypothesis. Bayes 
factor calculations led to the conclusion that the authors were quite justified in feeling that 
they had substantial statistical evidence in favor of their hypothesis. In Section 7, I will 
discuss a different example in which external information was incorporated into the 
analysis. Now, I wish to continue with the discussion of the circumstances in which Bayes 
factors are useful by contrasting an example in which it is not appropriate to phrase the 
problem as one of testing a sharp null hypothesis, i.e. one having the form Ho: = 4' for 
some parameter ip. 
Example: ECMO. A much-discussed randomized clinical trial of extra-corporeal 
membrane oxygenation (ECMO) as a treatment for severe lung disease among newborns 
was conducted by colleagues of Ware (1989). After the first stage in the trial, all nine 
babies treated with ECMO survived, while only six out of ten treated with conventional 
therapy survived. At this point, the question was raised whether there was sufficient 
evidence in favor of ECMO to stop randomly allocating babies to the two treatments. 

This example, like many clinical trials, differs from the E. coli example, in that it is not 
of fundamental interest whether the two treatments produce essentially the same survival 
probabilities. The treatments are, in fact, very dissimilar, and it is reasonable to assume 
the survival probabilities are at least somewhat different. The issue in the trial is how 
much difference there is in survival, and for which treatment is the survival probability 
larger. 

In the ECMO example, it is conceptually appealing to consider instead the 'one-sided' 
hypothesis that the difference of the survival probabilities (or the difference of the logits) 
is larger than some specific value, or to estimate the size of the difference. What I would 
like to emphasize here is that this is quite different from testing the sharp hypothesis of 
equality of probabilities. In Jeffreys' terminology, the problem of computing the interval 
probability is one of 'estimation'. The term 'testing' is reserved for testing sharp 
hypotheses which require priors on lower-dimensional spaces. I do not mean to imply, 
however, that all two-binomial clinical trials should be treated as estimation problems in 
this sense. Occasionally, genuinely interesting sharp null hypotheses arise. For instance, if 
a trial were conducted to compare vitamin C to placebo in its ability to prevent subjects 
from becoming infected with a virus, the null hypothesis of no difference-which would 
correspond to there being, for practical purposes, no relevant physiological effect of 
vitamin C-would, at least in my opinion, be quite plausible. A numerical example in this 
setting is given by Kass and Vaidyanathan (1992). 

This point deserves emphasis because, unlike in the frequentist approach, where tests 
of the form Ho: = Vf0 generate confidence sets and confidence sets generate tests, there 
is no complementarity between Bayesian testing of sharp hypotheses and estimation 
methods. When a sharp hypothesis is involved, the prior must put mass on that 
hypothesis, e.g. f = i', whereas for 'estimating' f a continuous prior is used. Thus, in 



Bayesfactors in practice 553 

each situation one must decide which analysis is the more appropriate. Furthermore, as 
illustrated in Section 5, sensitivity to choice of prior is a bigger concern in testing than in 
estimation, and thus the priors used in carrying out a test must be chosen with some care. 

3 The general form and interpretation of Bayes factors 

In general, the schematic form of the Bayes factor for comparing hypotheses H1 and H2 is 

Bayes facto. - P(data l HI) 
P(data H2) 

and when the probability of H1 (given HI or H2 holds) is transformed to odds we have 

posterior odds = Bayes factor x prior odds 

When there are unknown parameters in the specifications of the data distributions, the 
formula for the Bayes factor becomes 

B =fpi(y I l ) 2lr(p) d: 

P2(YI 0) 2r2(0)d( 

where ,3 and 0 are parameters of the probability densities Pl(y /3) and P2(Y I 0) for the 
data y that hold under the two respective hypotheses, and nr1(/3) and ;r2(0) are prior 
probability densities introduced to reflect initial uncertainty about the values of these 
parameters. In many problems the two sets of data distributions, parameters and priors 
that appear in the numerator and denominator of (1) are related in a simple way. Thus, 
when 0=(,3, ip) and under H1 we have ip= ip, ;r(wt) is often taken to be the marginal 
density found by integrating 2r2(/, p) over ip. In general, though, 7w1(P) and 7r2(0) need 
not be related and the form of (1) is thus quite general. 

Jeffreys (1961, Appendix B) recommended interpreting the Bayes factor in units of 2 

on the loglo scale. Thus, he said that -log1OB> represented 'substantial' evidence 
against the null hypothesis (here, against H1 and in favor of H2), - logIoB > 1 was 'strong' 
evidence and - log,OB > 2 was 'decisive'. These rough categories seem to furnish 
appropriate guidelines. It is perhaps worth mentioning that probability itself provides a 
meaningful scale made operational through betting and, thus, the labelling of these 
categories is not a calibration of the Bayes factor but rather a rough descriptive statement 
about standards of evidence in scientific investigation. 

4 Computation 

The integrals in (1) often must be evaluated numerically. In this case, several approaches 
are possible. First, it is usually not difficult to maximize the likelihoods appearing in the 
integrands of (1) and thus the Schwarz criterion (sometimes called the Bayes information 
criterion, or BIC) may be calculated. As discussed in Section 5.2, this furnishes a rough 
approximation to the Bayes factor that may be sufficient for many applications. Next, 
again assuming maximization may be carried out, Laplace's method (see equation (3)) 
gives a more accurate approximation. It is accurate enough for most practical purposes. 
Some discussion is given in Kass and Vaidyanathan (1992), and an application is briefly 
reviewed here in Section 7. 

Generally, it is advisable to at least check asymptotic approximations with a method 
that does not directly depend, in theory, on having large sample sizes. One such is 
numerical quadrature, of which there are different varieties (Naylor & Smith, 1982; 
Dellaportas & Wright, 1991; Genz & Kass, 1993). The approach discussed by Genz and 
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Kass (1991) is based on widely available numerical integration software that has been 
modified for statistical applications. These authors call the method 'subregion-adaptive 
integration'. It is currently undergoing further development, and appears quite promising 
for reasonably well-behaved integration problems of less than about 15 dimensions. An 
alternative is to use Monte Carlo importance sampling (e.g. Geweke, 1989). This can be 
quite effective in many problems, as well. 

Finally, much attention has been given lately to posterior simulation by Markov chain 
Monte Carlo. Unfortunately, there is, to my knowledge, no straightforward and effective 
general method of computing Bayes factors using samples from the posterior distribu- 
tions under the competing hypotheses. If the likelihood function is easily evaluated and 
the posterior is not drastically far from normal, then an improvement on Laplace's 
method is available (Kass & Wasserman, 1992a). Perhaps preferable is the use of the 
formula 

r 
~~~~~~~f(6) Jp(yj 6)ar(6)d06= S P(Y 0 ) z 0) = (E( It 0) g( )) 

where the expectation is with respect to the posterior and f(6) is any probability 
distribution. The expectation is approximated by a sum, using draws of 0 from the 
posterior. A simple choice for f (0) is the modal normal approximation to the posterior. 
This generalizes an idea discussed by Newton and Raftery (1991) and was mentioned in 
Gelfand and Dey (1993). However, no thorough study of the method has been published. 
See Kass and Raftery (1993) for further references. 

5 The problem of sensitivity to choices of priors 

As a general rule, one must be cautious in choosing the priors g, and ;r2 in (1) for they 
may have a more substantial influence on the results than they would if the problem were 
treated instead as one of estimation. I next illustrate this situation in the ECMO example 
mentioned earlier and then, in Section 5.1, point out that one would expect similar 
behavior to occur frequently. In Sections 5.2 and 5.3, I present methods and results that 
are helpful in nested models. In Section 6, I will note that the Schwarz criterion furnishes 
a very general, though very rough, approximation to the Bayes factor which avoids the 
introduction of the priors in equation (1), and in Section 7, I will briefly discuss an 
example in which a fully subjectivist approach was used together with substantial 
sensitivity analysis. 

Example: ECMO (continued). Kass and Greenhouse (1989) reanalyzed the ECMO data 
using independent priors on the difference 6 and the average y of the log-odds survival 
for the two treatments. ECMO would be the better treatment if 6>0 and it was 
considered to be substantially better if 6 > 0 4. Table 1 shows results obtained for four 
choices of priors (discussed by Kass and Greenhouse). Also shown is the Bayes factor in 
favor of equal survival probabilities for the two therapies. 

One may observe that the results vary more for the Bayes factor than for the 
'estimation' interval probabilities. Indeed, for the last prior, the Bayes factor turns in favor 

Table 1. Posterior probabilities and Bayes factors for ECMO 
example (from Kass & Greenhouse, 1989) 

Prior P{ 6>OYy} P{ 6 > 041 y} Bayes factor 

B 097 093 (3.7)-l 
C 095 090 (25)-l 
D 094 088 (2.1)-l 
F 096 093 2-1 
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of the null hypothetical equality of the two probabilities (HO: (= 0). In that case, the 
interval probabilities indicate ECMO is to be favored. The seeming paradox is explained 
by recalling that the Bayes factor is a ratio of the marginal probability of the data y under 
HO to its probability under the alternative HA. For this prior, the observed data were 
unlikely under HO but they are even more unlikely under HA. Thus, the ratio is greater 
than 1. (This may be regarded as a purely Bayesian version of the Jeffreys-Lindley 
paradox (Jeffreys, 1961, Appendix B; Lindley, 1957).) 

5.1 Understanding sensitivity 

A simple asymptotic analysis shows that even in large samples Bayes factors remain 
sensitive to the choice of prior. An approximation to the marginal density of the data 
under a hypothesis H having parameter 0 

p(yI H)= p(y I 0) 7r(O) dO (2) 

may be obtained by substituting for the integrand an approximation to it based on the 
usual modal normal approximation to the posterior. This posterior density approxima- 
tion is the normal( 0, i) density where 0 is the mode and i is the inverse negative Hessian 
(matrix of second derivatives) of the log posterior density logp(O 6y) c L(6) r(0) 
evaluated at the mode. This method is called Laplace's method (Tierney & Kadane, 
1986; Tierney et al., 1989) and the resulting approximation is 

p(y I H)-'(2.7 )/ E/L(O) .7(b) (3) 

where m is the dimension of 0. 
The important observation about this approximation is that the prior appears in it, in 

contrast to the analogous approximation for the posterior mean of a real-valued function 
g( 6) (which is also derived by Laplace's method), 

E(g( 0) I Y) = g( 0) 

Both of these approximations have errors of order O(n 1)* Furthermore, lest one think 
that, because the mode 0 involves the prior, the prior is exerting substantial influence on 
the approximate posterior mean, it should also be noted that both approximations hold if 
the MILE is substituted for 0. Thus, for large samples, we obtain the familiar insensitivity 
of the posterior mean to the choice of prior, whereas there is no directly analogous result 
in the case of Bayes factors: to compute the Bayes factor correctly in large samples one 
needs to evaluate the prior. 

I will return to asymptotics in Section 6 and we will find that if one is satisfied with an 
order-of-magnitude approximation to the log of the Bayes factor, the prior may be 
ignored for large samples. However, the elementary asymptotic statement above 
underscores the warning served by the example in the previous section. 

5.2 Nested models 

In many problems the parameter appearing in the denominator of (1) may be written 
0 = (f3, 4') and the data density p,(y I f) is an instance of the density P2(Y I j, 4') when 4 
takes some value 4', so that the numerator is specified as HO: 4 = V'. Taking ;rp( j) to be 
the prior under HO, a simplification is to assume that j3 and 4 are a priori independent 
under the alternative HA with prior density 

;(, V) = ;,(PA ;wT) (4) 

That is, the marginal prior on /3 under HA is equal to the prior on /3 under HO. Jeffreys 
treated a variety of problems having this form in the case in which 4 is one-dimensional, 
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including that of assessing extra-Poisson variability (Jeffreys, 1961, p. 319). A similar 
problem is the following. 

Example: Extra-binomial variability. When ostensibly binomial data are thought to be 
potentially over-dispersed, one may consider as a simple alternative the beta-binomial 
model. Here, under the binomial model, Yi -B(ni, p), i.i.d. for i = 1,..., k. Under the 
alternative, Yi - B(n, pi) independently for i = 1,...,k, and pi Beta(a, 1), i.i.d. The 
strength of evidence against (or in favor of) the binomial may be assessed using Bayes 
factors. Consider reparameterizing the beta distribution according to (a, 1) =(t/c, 
(1 -$)/c). In this parameterization, under the beta-binomial, E(Yil/ni) = and the 
binomial becomes a limiting case of the beta-binomial as w) - 0. In the notation used at the 
beginning of this subsection, p becomes w and 13 becomes $, which reduces to p when 
co= 0. The additional simplification is then to take t and a) to be a priori independent, 
with the distribution on $ being the same as that used on p under the binomial. One may 
put a Uniform(0, 1) prior on $ and p and then examine the Bayes factor as a function of w 
by plotting B- 1 vs w. 

In cases such as this where there is a one-dimensional parameter of interest 4 (here w) 
that takes a specified value V, under HO, it is convenient to examine the value of the 
Bayes factor as a function of the values taken by i under the alternative HA, since this 
avoids direct specification of the prior on 4 under HA. Furthermore, once several such 
values of the Bayes factor are computed, these may be weighted to produce the Bayes 
factor for any specified prior on 4p. 

The uniform prior on p and $ is a plausibly interesting choice, but the discussion of the 
previous section suggests its effect must be considered carefully. Nonetheless, as Kass and 
Hsiao show (in unpublished work), in this example the Bayes factor turns out not to be 
very sensitive to the choice of prior on t. The reason is related to results discussed by 
Kass and Vaidyanathan (1992) indicating that, for P and 4' as in equation (4), under 
certain conditions, the Bayes factor is sensitive only to choice of prior on the parameter of 
interest 4 and not to the choice of prior on 13. In particular, this insensitivity is likely to 
occur when 13 and 4 are 'null-orthogonal', which means that the Fisher information 
(expected information) matrix is block diagonal when 4 = V,. As a practical matter in 
analyzing data, one may examine the modal covariance matrix under HA. If 13 and 4 are 
approximately uncorrelated, they may be called observed-orthogonal (since then the 
observed information matrix is roughly block diagonal) and in this case, following the 
argument of Kass and Vaidyanathan, the Bayes factor will not be very sensitive to the 
choice of prior on 13. This may greatly reduce the effort needed in checking sensitivity to 
choice of priors. 

6 The Schwarz criterion 

It is possible to avoid the introduction of the prior densities ;rl(1) and 7r2(0) in (1) by 
using instead of log B the quantity 

S=logpl(y1/d)-logp2(y1 ^)-4(m, - m2)log(n) 

where /l is the maximum of log p1 (y 11) as a function of 13, 0 is the maximum of 
log Pi( y I 0) as a function of 0, ml is the dimension of 0, m2 is the dimension of y, and n is 
the sample size. As n - oo, this quantity, often called the Schwarz criterion, satisfies 

S - log B0 (5) 
log B 

and thus may be viewed as a rough approximation to the logarithm of the Bayes factor. 
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Equation (5) shows that in large samples the Schwarz criterion should provide a 
reasonable indication of the evidence. It is appealing insofar as it could be applied as a 
standard procedure even when precise formulation of ;rl(,l) and ;2( 0) is difficult. 

Schwarz (1978) derived (5) rigorously for linear subfamilies of exponential families. 
Since (5) is quite important, I would like to give a very simple sketch of the argument 
based on approximation (3). There are four steps. 

(1) First, we apply (3) to both the numerator and denominator of (1). For simplicity, let 
us consider the denominator. 

(2) Assume n - - for some X. This regularity condition will hold fairly generally; 
for instance, in i.i.d. sampling E1-l will be the Fisher information matrix at the true 
value of 0. We then have l l 12 = n m * I 1. This will explain the term 
2(MI - m2)log(n). 

(3) If we take logs and ignore terms of constant order (i.e. terms that are not becoming 
positively or negatively infinite as n - oo) we obtain 

log p(yI H) : log L(O)- - log n 
2 

(4) Finally, the posterior probability of a hypothesis is a consistent indicator of truth of 
the hypothesis in the sense that as n - oo, log B - oo under H1 while log B - oo 

under H2. Thus, if we apply step (3) to log B = log p(y I H1) - log p(y I H2), ignoring 
constant-order terms but retaining all terms that become positively or negatively 
infinite, we obtain (5). 

From the outline given here, it is apparent that (5) holds much more generally than in the 
restricted setting treated by Schwarz. The argument shows that the Schwarz criterion is a 
rough approximation to log B that remains a consistent indicator of truth of the 
hypothesis as n - oo. I should also mention that under certain conditions on nested 
models as described in Section 5.2, if the prior on p is normal and the amount of infor- 
mation in that prior is equal to the amount of information in one observation from the 
sample, then the Schwarz becomes a more accurate approximation to log B, with error 
O(n -1/2) (see Kass & Wasserman, 1992b). 

7 Subjective sensitivity analysis 

When there is doubt about whether the sample size is adequate to justify reliance on the 
Schwarz criterion, or when greater accuracy is desired for any reason, the priors r1(/3) 
and :r2(0) must be determined. Since this is rarely accomplished with assurance of 
precision, it is necessary to carry out some kind of sensitivity analysis to examine the way 
results would vary if alternative priors were used. 

Subjective determination of priors, especially in higher dimensions, is difficult. Once it 
is accomplished, however, the additional work of performing sensitivity analysis can be 
done fairly easily with the aid of asymptotic approximations. These are discussed in Kass 
and Vaidyanathan (1992). Briefly, if we wish to assess the effect of using priors Tl,NEW(P) 
and Jr2,NEW(0) in place of :rI(P) and 3x2(0), we may compute the resulting new Bayes 
factor using 

BNEW-: B 
r2( 0) 

where ri = 3rlNEW/b1, for i = 1, 2, and /3 and 0 are the posterior modes under each 
hypothesis. This approximation has a multiplicative error of order O(n - l), which is quite 
adequate for the purpose of checking for large discrepancies. The approach was 
illustrated in an application in the field of human-computer interaction by Carlin et al. 
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(1992), which I now outline. This example shows that all of the forgoing is indeed 
computationally effective in a non-trivial problem. 

Example: Predicting working memory failure. Carlin et al. (1992) considered alternative 
predictions of human 'working memory' failure in computer-based tasks. (Working 
memory is a concept in cognitive psychology that has refined what was once called 
short-term memory.) Two alternative characterizations of working memory overload in 
database management query tasks involve (1) the number of conditions in the query and 
(2) the complexity of the query. To determine which characterization led to better 
predictions of error rates, two alternative statistical models were constructed based on 
alternative predictor variables, either the number of conditions or a measure of query 
complexity. 

The database management system used in the study was SQL. An example of an SQL 
query is the following, in which information from a customer list is to be matched with 
that in an invoice list according to a criterion within the invoice list: 

SELECT name 
FROM customer, invoice 
WHERE amount> 200 
AND invoice. id= customer. id 

This query would obtain the names of all customers who have any single invoice over 200 
dollars. The last condition, called the 'join condition', is necessary to link the customer 
and invoice lists. If it were omitted, the results would be meaningless and the person 
attempting to generate the requested information would have to repeat the task. The 
focus of the experiment analyzed was omission of the join condition, which became a 
binary variable (omitted or not omitted). 

There were 20 experimental subjects, each of whom were given 50 tasks to complete. 
Half the subjects received a 'cue', which reminded them to include the join condition, and 
half did not. (Interestingly, presence or absence of the cue turned out to have little effect 
on the probability of omitting the join condition.) Carlin et al. (1992) used a hierarchical 
logistic regression model which took the form 

logit(p) = subject effect within cue + effects of explanatory variables 

Here, the subject effect was modeled with a single parameter varying according to a 
normal distribution. The competing hypotheses involved competing explanatory 
variables: under the first, a single variable representing the number of conditions was 
used, while under the second, two variables characterized the complexity of the query. 
The two competing models had four parameters in common, which were considered a 
priori independent, leading to eight prior hyper-parameters (a location and scale for each 
parameter, with normal priors being used). In addition, the first model required two more 
hyper-parameters for the coefficient of the explanatory variable 'number of conditions' 
and the second required five hyper-parameters for the coefficients of the 'query 
complexity' variables (which were not assumed independent, so that a correlation 
hyper-parameter had to be introduced). 

In total, then, there were 15 hyper-parameters that needed to be determined. The 
numerical problem involved 20 one-dimensional integrals nested within a five 
dimensional integral (for the first model) or a six-dimensional integral (for the second). 

The Bayes factor was initially approximated using the Schwarz criterion, which 
indicated substantial evidence in favor of the query complexity model. Then, the 15 
hyper-parameters for the priors were determined. Some of the information came from 
another related experiment, but some was based on rough guesswork. The Bayes factor 
was then computed using Laplace's method and was checked with subregion-adaptive 
integration. Sensitivity analysis was carried out, using the method described above, by 
shifting all prior means by one prior standard deviation unit in each direction, and then 
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doubling and halving each prior standard deviation. (Two seemingly appropriate 
alternative values were chosen for the one prior correlation, as well.) Thus, a total of 
about 315 = 107 alternative prior distributions were entertained. It was found that the 
common parameters and the explanatory-variable parameters were in fact observed- 
orthogonal in the sense of Section 5.2, and B was not very sensitive to the choice of prior 
on the common parameters. Some of the choices for the joint explanatory variable priors 
were eliminated as too extreme, and then over the remaining seemingly reasonable range 
the Bayes factors were found to be fairly consistent with the Schwarz criterion. The 
overall conclusion, taking into account the variation in the Bayes factors (and also the 
finding that a small number of subjects in the experiment carried a substantial portion of 
the comparative information), was that there was 'some evidence, though not strong 
evidence' in favor of the query complexity model. 

8 Discussion 

As I have tried to indicate, various advances in computational methods for Bayesian 
inference have made it possible to obtain Bayes factors in many practical problems. It is 
important, however, to keep in mind the sensitivity of results to the choice of priors that 
appear within the Bayes factor. In the face of this sensitivity, what is one to do? 

The easiest way to proceed in practice is to ignore the problem by computing the 
Schwarz criterion and using it as a rough indication of the amount of evidence in favor of 
one or another hypothetical model. With sufficiently large samples this should be safe, by 
virtue of (5), in the sense that the same conclusion (based on orders of magnitude, as 
reviewed in Section 3) would be reached with the Schwarz criterion as with a full-blown 
subjective treatment of the kind described in Section 7. Furthermore, the result of Kass 
and Wasserman (1992b) indicates that for nested models the Schwarz criterion could also 
be considered a suitable 'reference' procedure, that is, it approximates the log of the 
Bayes factor obtained from a formal rule for selecting the prior. The difficulty is that, as in 
the example of Section 7, one may not know whether the sample size is indeed adequate 
for reliance on the Schwarz criterion, or for reliance on a formal rule for selecting priors. 
In this case, there seems to be no alternative to proceeding with subjective determination 
of the priors, which entails a substantial amount of further joint work between the 
statistician and the scientific collaborator. 

It is perhaps of some consolation that computation for sensitivity analysis is relatively 
straightforward, but this still requires choices to be made for the priors. Thus, an 
important outstanding problem is to define a diagnostic that would allow a data analyst to 
determine, with minimal investment of additional effort, whether the Schwarz criterion 
(or, possibly, a Bayes factor with priors chosen by some formal rule) may be relied upon. 
In addition, while the advances in computation are encouraging, further progress is 
needed to bring the computational methods into the hands of those who are expert in 
using particular software implementations. Furthermore, though apparently useful 
suggestions have been made for computing Bayes factors using simulated samples from 
posterior distributions, a straightforward method that takes full advantage of the power 
and generality of Markov chain Monte Carlo simulation has not yet been devised. 
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