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Abstract: Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more com- 

plex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scien- 
tific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that 
MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among 
wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs 

sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathemat- 
ical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors gov- 
erning individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a 
discussion of the importance of individual heterogeneity for understanding population dynamics and designing 
management plans. 
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This paper is an introduction to Markov chain 
Monte Carlo (MCMC), a powerful statistical tool 
that is used to analyze large, complicated data sets, 

especially those with complex hierarchical struc- 
tures. The basic ideas of MCMC were introduced 
almost 50 years ago (Metropolis et al. 1953) and 

gained popularity during the 1980s in image pro- 
cessing (Geman and Geman 1984). A growing 
appreciation of the usefulness of MCMC has led to 
an explosion of publications in the statistical litera- 
ture (Gilks et al. 1996). However, relatively few 

examples are found in wildlife-related applications. 
We suggest several reasons why MCMC has not 

been more widely used in wildlife applications. 
First, MCMC has a decidedly Bayesian flavor, 
which may not appeal to data analysts with a clas- 
sical (Frequentist) training. However, MCMC can 
be used as a tool to obtain the maximum likeli- 
hood estimates used by Frequentists, even for 
models with complexity that defies conventional 

analysis. Markov chain Monte Carlo also can be 
used in Objective Bayes analyses, the results of 
which are similar to those of Frequentist analyses. 
We begin with a brief review of Bayesian model- 

ing, contrasting it with the Frequentist approach. 
This review lays the foundation for description of 
MCMC and describes Objective Bayes methods. 

1 E-mail: william_link@usgs.gov 2 Present address: Laboratoire de Biologie, Universite 
de Bretagne Occidentale, 29285 Brest Cedex, France. 

Another reason MCMC is not yet widely used 

among wildlife biologists may be a lack of famil- 

iarity. Markov chain Monte Carlo involves some 

complex mathematical ideas. A need exists for a 
clear accounting of what can be done with it and 
how it works. We describe the need for MCMC 
and its basic ideas and mechanisms. A simple and 

satisfactory intuition for MCMC does not require 
extraordinary mathematical sophistication. 

We illustrate the usefulness of MCMC by ana- 

lyzing the association between latent factors gov- 
erning individual heterogeneity in breeding and 
survival rates of kittiwakes. The data set consists 
of survival and breeding records for 845 birds, 
collected over 13 years. The question of interest 
was whether there are trade-offs between compo- 
nents of fitness. For example, is it true that better 
breeders tend to have lower survival rates? The 
models we fit to these data are quite complex- 
impossible to fit using conventional methods- 
but are satisfactorily estimated using MCMC. We 
illustrate the application of MCMC to these data, 
using software BUGS (Spiegelhalter et al. 1995), 
available for free download (http://www.mrc- 
bsu.cam.ac.uk/bugs/). 

FREQUENTIST, BAYES, AND 
OBJECTIVE BAYES MODELS 

The primary distinction between Bayesian and 

Frequentist analyses is in the interpretation of mod- 
el parameters. In both types of analysis, data (Y) 
are regarded as sampled from a sampling distrib- 
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ution f( Y I 0), governed by parameter 0. In a Fre- 

quentist analysis, 0 is regarded as a fixed, unknown 

quantity, while in a Bayesian analysis, 0 is regarded 
as a random variable. In this section, we describe 
some of the consequences of this distinction. 

Frequentist analyses describe the effects of vari- 

ability on data by reference to hypothetical repli- 
cate data sets. These hypothetical replicates are 
drawn from the same sampling distribution, or a 

hypothesized version of the sampling distribu- 
tion, that produced the data. Familiar statistical 

concepts such as P-values and unbiasedness are de- 
fined with reference to such hypothetical replicate 
draws. Statistical procedures are evaluated by their 

typical performance under similar circumstances. 
An important difference exists between an esti- 

mator and an estimate. An estimator can be 

thought of as a machine that produces estimates; 
accuracy and precision are properties of the 
machine rather than of individual products. 
Thus, it is incorrect to describe an estimate as un- 
biased: unbiasedness is a property of estimators, 
summarized over applications to hypothetical 
replicate data sets. Confidence interval coverage 
rates are similarly defined, as features of the 
machine rather than of the product. The correct 
interpretation of confidence interval coverage 
rates is conveyed by analogy to a 95% elephant 
gun, fired over the shoulder while running away: 
you don't know whether it has stopped the charg- 
ing beast, but there is some comfort in knowing 
that the desired result is obtained in 95% of sim- 
ilar circumstances. 

In a Bayesian analysis, the parameter 0 is 

regarded as a random variable. This paradigm 
has the consequence that direct probability state- 
ments are made about the parameters them- 
selves, in contrast to the more indirect statements 
of Frequentist analyses. 

Two probability distribution functions are used 
to make statements about 0, called the prior and 
posterior distributions. That the same random 
variable can be described by 2 different distribu- 
tions may seem strange, but the concept is not at 
all unfamiliar: one might say that the chance the 
home team will win today is 50%; however, if the 
manager chooses to start the ace pitcher, the 
chance increases to 70%. The additional infor- 
mation modifies the probabilities. This is the case 
with descriptions of parameters in a Bayesian 
model. The prior distribution (or simply, the 
prior) summarizes what is known about the 
ranges and associated probabilities for 0 without 
reference to the data Y. The posterior distribu- 

tion (the posterior) provides the same sum- 
maries, but as informed by the data Y. 

In a Bayesian analysis, inference about 0 is 
based on the posterior distribution f(0 I Y), ob- 
tained by applying Bayes' theorem to the prior 
7t(0), and the sampling distribution f(Y I 0), by 
means of the calculation 

(1) f(O IY) - f(YI 0)r(0) 
/f(Y 0)n(0)dO 

Thus, the posterior distribution describes the 

ranges of possible values for 0 and their proba- 
bilities as indicated by the combination of data 
and prior knowledge. The Bayesian paradigm 
provides a formal mechanism for combining 
existing knowledge with indications provided by 
the data at hand, expressed informally as 

Prior + Data = Posterior. (2) 

To give a concrete example, suppose that we wish 
to estimate the mean 0 of a normal distribution 
based on a sample of n observations; for simplicity, 
assume that the variance a2 is known. A Frequen- 
tist analysis neither requires nor allows for prior 
knowledge about the likely range of values for 0, 
simply using x, the sample mean, as its estimate 
for 0. A typical Bayesian analysis treats 0 as a ran- 
dom variable, itself sampled from a normal prior 
with mean rl and variance x2, both of which are 
assumed to be known. Under this model (the nor- 
mal-normal mixture), the posterior distribution 
of 0 also is a normal distribution, but with mean 

E(Oldata) = wri + (1 - w)x, (3) 

and variance 

Var(Oldata) = (1 -w) (2), (4) 

where 
(a2/n) W= (2/n) 

x2 + (2/n) (5) 

The posterior mean sometimes is referred to as 
a Bayes estimate, and written as 0. 

Two important features of this example are 
characteristic of Bayesian estimation. The first is 
that 0B is a weighted average of the prior mean 
and the sample mean (3), with weights deter- 
mined by the precision of existing knowledge 
(X2) relative to the new information provided by 
the data (i.e., Var(x) = (a2/n). Thus, Bayesian 
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estimation often is described as shrinkage toward 
a prior value: 0B is obtained by beginning at x and 

moving a portion of the way along a line toward 
the prior mean r. If x is a relatively imprecise esti- 
mate of 0, w will be close to 1, and the Bayesian 
estimate will be close to the prior mean. On the 
other hand, the greater the precision of x, the 
closer w is to 0, and the closer the agreement 
between x and OB. 

The second feature of interest in this example 
has to do with the mean squared error (MSE) of 
} as an estimator of 0. It can be shown that 

MSE(OB) = Var(Oldata), and since 0 < w < 1, it fol- 
lows from (4) that 

MSE(OB) < - -= Var(x) = MSE(x). (6) 

This reduction of mean squared error is a reflec- 
tion of the increased knowledge brought to bear 
on the estimation by the prior knowledge of 0. 
This is a common feature of Bayesian analysis. 
The improvement is the consequence of a richer 
model through specification of the prior. 

The Bayesian paradigm is useful for analysis of 

complex data sets that are governed by numerous 

parameters. For example, mark-recapture studies 

may involve hundreds of parameters, some gov- 
erning survival rates, and others related to resight- 
ing rates. In such cases, it is desirable to examine 

patterns among parameters, such as the temporal 
trend in survival rates. This is sometimes done by 
supposing that the survival rates, suitably trans- 
formed, fall precisely on a given line. A more nat- 
ural assumption is that the transformed survival 
rates more or less conform to a linear relation 
and are subject to additional temporal variation. 
The Bayesian approach, in which parameters are 

regarded as random variables, deals effectively 
with the existence of such pattern in parameters: 
the pattern of change is reflected in the means of 
the prior distributions (Link 1999). 

In the foregoing example, we supposed that the 

prior distribution was known. It is often possible 
to relax this specification, to suppose only that 
the prior distribution is of a known family, gov- 
erned by an unknown hyperparameter. We may 
then assign hyperprior distributions to the hyper- 
parameters, and so on, so that a hierarchy of rela- 
tions among parameters is established. At some 

point, however, Bayesian analysis must begin with 
a known distribution, and it is this specification 
of a prior that leads many classically trained ana- 

lysts to reject the Bayesian paradigm as too sub- 

jective. The increased precision noted in (6) 

comes at a cost: the performance of the estimator 

0B depends on the validity of the model specifica- 
tion, to which the Bayesian has added the specifi- 
cation of a prior distribution for 0. 

What, it may be asked, prevents an unscrupulous 
data analyst from selecting a prior on the basis of 
the posterior it yields? There are 2 answers: first, 
that the prior distributions used should be includ- 
ed in the presentation of a Bayesian analysis. 
Indeed, it is instructive to try several different pri- 
ors and to evaluate the relation between prior 
and posterior. We illustrate this principle in our 

subsequent analysis of kittiwake data. If the pos- 
terior distribution is highly sensitive to alternative 
(reasonable) choices of the prior, it is likely that 
the information content of the data is small. 

Another response to the concern of subjectivity 
is to carry out an Objective Bayes analysis. Objec- 
tive Bayes methods use prior distributions de- 
scribed as flat, vague, or noninformative; these 
terms sometimes are used in slightly different sens- 
es, but the basic idea is that the priors have been 
chosen so as to reflect only a very limited or impre- 
cise prior knowledge of 0. An objective Bayes 
analysis amounts to substituting 0 for Prior in (2). 

To illustrate, consider the foregoing example of 

estimating a normal mean: if the prior variance, 
2, is large, the shrinkage factor w will be close to 

zero and the Bayes estimate, OB' will be close to 
the classical estimate x. The posterior distribu- 
tion f(0 data) approximates a normal distribution 
with mean of x and variance o2/n, so that the 
usual Frequentist confidence interval 

i za/2m 

is legitimately interpreted as having probability 
(1 - a) of including ut. 

In cases where a uniform prior distribution is 
reasonable, a close look at the definition of the 

posterior distribution (1) leads to the observation 
that all of the Os on the right side of the equation 
are in the sampling distribution, f(Y I 0). The 
denominator is a function of Y alone; 0 is inte- 

grated out. And if 0 has a uniform prior, then 

7i(0) = constant, so there are no Os there, either. 
The consequence is that the posterior distribu- 
tion f(O I Y) is proportional to f( Y 0); this latter, 
when considered as a function of 0, is the likeli- 
hood function from which maximum likelihood 
estimators are obtained. If the posterior distribu- 
tion is proportional to the likelihood, they both 
are maximized by the same 0. Thus, in a flat prior 
Bayesian analysis, the mode of the posterior dis- 
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tribution is the same as the maximum likelihood 
estimator (MLE). Consequently, analysts who pre- 
fer the Frequentist philosophy to the Bayesian phi- 
losophy can still use Bayesian tools for model fitting. 
In particular, MCMC is a Bayesian tool for evalu- 

ating posterior distributions; specifying a flat prior 
analysis, a Frequentist can use MCMC to find MLE. 

MARKOV CHAIN MONTE CARLO 
The usefulness of Bayesian methods has been 

limited by difficulties associated with the calcula- 
tion of the posterior distribution (1). The nor- 
mal-normal mixture in the preceding section 
involves a conjugate prior: similarities in the func- 
tional forms of the prior and sampling distribu- 
tions cause the posterior to be of the same form 
as the prior, and hence easily calculable. Howev- 
er, for many models, calculation of the integral in 
(1) is prohibitively difficult; this is especially true 
for hierarchical models, such as the kittiwake 
model we describe later. Markov chain Monte 
Carlo methods provide a solution to this problem. 

Markov chain Monte Carlo methods are exten- 
sions of the ordinary Monte Carlo (simulation) 
methods familiar to readers of TheJournal of Wild- 

life Management (JWM) -151 of 2,113 JWM papers 
indexed in the BIOSIS database during 1985-2000 
include "Monte Carlo," "bootstrapping," or "sim- 
ulation" in their abstracts or keyword lists (Bio- 
logical Abstracts 2001). Monte Carlo methods are 
used in evaluating model predictions (e.g., in 

population viability analyses [PVA]). They are 
used to evaluate the distributions of test statistics, 
especially when asymptotic approximations are 

inadequate. Bootstrapping is another familiar 
Monte Carlo method that is used to evaluate the 
bias and variability of estimation procedures; 
bootstrapping is distinguished from other Monte 
Carlo methods because the simulated values are 
drawn from an estimated rather than a fully spec- 
ified model (Manly 1994). 

The common feature of Monte Carlo applica- 
tions is that simulation is used in place of an 
intractable mathematical calculation. Interest 
focuses on some function of model parameters 
g(0) that can be expressed as the expected value 
of a function of data, h( Y). Typically, an analyst 
simulates independent data sets Ys, i = 1, 2,..., N, 
and approximates g(O) by 

N 

g(6) = E h(YP). (7) 

In a PVA, for example, h( Y) could be a zero-one 
indicator of population extinction, and g(O) the 

extinction rate. A Monte Carlo evaluation of the 
bias of an estimator T(Y) of a parameter q(O) is 
described by (7) with h(Y) = T(Y) - q(O). 

Given the difficulties associated with calculat- 

ing posterior distributions, it is natural to ques- 
tion whether some sort of Monte Carlo approach 
could be applied in a Bayesian analysis. Recall 
that in a Bayesian analysis, interest focuses on the 

posterior distribution f(0 I Y); the roles of data Y 
and parameters 0 are switched relative to the 

sampling distribution f(Y l 0). Thus, a Bayesian 
Monte Carlo analysis would consist of estimating 
a function G(Y), expressible as the expected value 
of a function of parameters H(0), with 0 sampled 
from f(01Y). Unfortunately, drawing independent 
samples from the posterior distribution is not 

easy due to the difficulties in calculating the inte- 

gral in (1). 
Although it may not be easy to generate inde- 

pendent samples from the posterior, it is easy to 

produce a first-order Markov chain of values sam- 

pled from the posterior distribution, even without 

calculating the integral in (1). A first-order Markov 
chain is a sequence of dependent observations, 
{Xt}t), with the property that the distribution of 

Xt+1 given all previous observations, depends 
only on Xt. Numerous technical details must be 
considered, but the basic idea is simple: instead 
of the difficult task of generating a sequence of 

independent observations from the posterior dis- 
tribution, the analyst generates a first-order 
Markov chain of dependent draws 0i from the 

posterior, and approximates features of the pos- 
terior distribution, G(Y), in analogy with (7) by 

N+M 

G(Y) 1=N H(Os); i=M+1 (8) 

note that, for technical reasons described later, 
the first M values from the Markov chain are dis- 
carded. The mean, median, standard deviation, 
percentiles, and other descriptors of the posteri- 
or distribution can be approximated in this fash- 
ion, allowing a Bayesian analysis of the data Y. 

Non-Bayesian applications of MCMC choose flat 
priors, and approximate maximum likelihood 
estimates by the posterior mode. 

METROPOLIS-HASTINGS ALGORITHM 
In this section, we describe the Metropolis-Hast- 

ings algorithm, which is the basis for producing 
the Markov chains used in MCMC. We begin with 
a brief review of certain features of Markov chains. 

A mental picture of a Markov chain can be made 
by considering the activities of an absent-minded 
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and aimless bureaucrat with strong habits. I 
bureaucrat has no particular goal in mind, w: 

dering from activity to activity, deciding what 
do next simply on the basis of what he currentl 

doing (all of the Markov chains we discuss in t 

paper are first-order). The set of activities is call 
a state space, and the changes in activities 
transitions. The bureaucrat's absent-mindedn 
is the defining Markov property. Transition pr4 
abilities are entirely determined by his curr4 
state, without regard to what he has done pr 
ously. The bureaucrat's strong habits make hi 

stationary Markov chain: not only are his trai 
tion probabilities determined by his current sta 
but they do not evolve through time. If there i 
30% chance that he goes from reading the ne 

paper to looking out the window on Thursday, 
same transition probability will hold on Frida) 

Many bureaucrats wander into some subset 
activities from which they never emerge, or 
least not for arbitrarily long numbers of tral 
tions. If we require that our bureaucrat act c 
erwise, his Markov chain will be irreducible a 

positive recurrent. That is, we require that e2 
state can be reached from each other state, a 
that the average return time to a given statt 
finite. A feature of stationary, irreducible, posit 
recurrent Markov chains is that they have a 

tionary distribution describing the long-term 
ative frequency of time spent in each state, a 
that this stationary distribution is attained in 

pendent of the initial state of the system. Bic 

gists familiar with age- and stage-structured F 
jection matrices (Caswell 2001) will recognize 
property of strong-ergodicity, which leads to st 
distributions independent of the initial st 

(stage structure) of the system. 
Suppose that there are 4 possible behavic 

states for the bureaucrat (W = looking out 

window, N= reading the newspaper, E= check 
e-mail, and C = visiting at the water cooler) C 

that every 10 min his watch beeps to remind 1 
to make a transition. A matrix of transition pr 
abilities may look as follows: 

To: 
W N E C 

W '0.45 0.48 0.07 0 
N 0.30 0.20 0.10 0.40 
E 0.55 0.05 0.39 0.01 
C .0.41 0 0.49 0.10. 

Thus, for instance, if the bureaucrat is read 
the newspaper, there is a 30% chance that he 

start looking out the window, 20% chance that he 
will continue reading the newspaper, 10% chance 
that he will check his e-mail, and a 40% chance 
that he will hop up to visit the cooler. These prob- 
abilities determine his stationary distribution: 

denoting by Pthe transition matrix in (9), the sta- 

tionary distribution can be found either by mul- 

tiplying P by itself numerous times (the rows will 

converge to the stationary distribution) or by find- 

ing the eigenvector corresponding to the domi- 
nant eigenvalue of Ptranspose: the percentages of 
time spent in activities W, N, E, and Care specified 
by a vector V= [42.4%, 26.6%, 18.9%, 12.1%]. 

The usual question is: "Given transition matrix 
P, what is the corresponding stationary distribu- 
tion V?" Markov chain Monte Carlo turns the 

question around: "Is there a transition matrix P 

yielding a specified stationary distribution .?" In 

particular, we seek a transition matrix for a 
Markov process taking values in the range-space 
of 0, with stationary distribution equal to the pos- 
terior distribution f( 0 Y). If we could produce 
such a Markov chain, we could use it to make infer- 
ences based on the posterior distribution. The 
mean value of the chain would converge to the 

Bayes estimate of 0. Given flat priors, the posterior 
mode of the chain would approximate the maxi- 
mum likelihood estimator of 0. The central 95% 

range of values of the chain would approximate 
the central 95% region of the posterior distribu- 
tion, creating a Bayesian confidence interval for 0. 
In short, if we could produce such a Markov chain, 
it could be used as the basis of a Markov chain 
Monte Carlo calculation, as described by (8). 

It turns out that this is quite easily accom- 

plished. A simple algorithm, due to Metropolis et 
al. (1953) and Hastings (1970) does the job. Its 
transition structure is as follows: from state Ot, 
generate a candidate state 0* by random sam- 

pling from a distribution C(0*1 0t). Next, compute 

r(0,) mi f(0*\ Y)/C(*I O) 1 r("t) = 
min.f(Ot IY) / C(Ot Iff') 

(10) 

and determine the next state of the chain on the 
basis of a Bernoulli trial: 

0 _ 
* with probability r(Ot) 

Q(9) 
-t1 = 

Ot with probability 1 - r(Ot) 

the process stays where it is with probability 1 - 

r(0t), or moves to the candidate value with prob- 
ability r(0t). The resulting sequence 0t, t= 1,2,..., is 
a Markov chain with the desired stationary distrib- 
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ution. For a heuristic description of why the algo- 
rithm works see Gelman et al. (1998:325). The per- 
formance of the algorithm depends on the choice 
of candidate generating distribution, C(0*10t), as 
discussed subsequently, and may sometimes be im- 

proved by multiplying the transition probability 
by a scalar a, 0 < a < 1 (Goggins et al. 1998). 

The movement probabilities (10) depend on 
the posterior distribution only through ratios of 
values at the present and candidate values. The 

beauty of this feature is that the integral in (1), 
which sometimes stands in the way of calculating 
the posterior, cancels out. Thus, MCMC can be 
used to approximate features of the posterior dis- 
tribution, even when the posterior distribution 
itself cannot be calculated. 

IMPLEMENTATION OF MCMC 
Markov chain Monte Carlo is becoming a stan- 

dard technique in the repertoire of applied sta- 
tisticians. A significant contribution to the field 
has been the development and distribution of 

program BUGS (Spiegelhalter et al. 1995). Gibbs 

sampling is a particularly adroit implementation 
of the Metropolis-Hastings algorithm. (For 
details on Gibbs sampling see Casella and George 
[1992]; for its interpretation as a special case of 
the Metropolis-Hastings algorithm, see Gelman 
et al. [1998:328].) 

With the availability of software such as BUGS 
and the increasing speed of personal computers, 
we anticipate that MCMC will be routinely 
applied to biological models. Users of MCMC 
need not have a sophisticated knowledge of the 
details of its implementation-MCMC is simply a 

procedure for simulation. A practitioner needs to 
be aware of 2 important issues for evaluating the 

performance of an MCMC simulation. These 
relate to the distinguishing feature of MCMC sim- 
ulation-rather than drawing independent sam- 

ples from a target distribution, MCMC produces 
a Markov chain of values with the target distribu- 
tion as its stationary distribution. This distinction 
has important consequences for the precision 
and accuracy of simulation summaries. 

Precision and Autocorrelation 
Most summaries of simulated data are averages 

of 1 sort or another (as equations [7] and [8]). 
The precision of averages increases with the 
number of observations (i.e., the number of sim- 
ulations) but is reduced by positive correlation, 
such as in a Markov chain. For chains generated 
using the Metropolis-Hastings algorithm, the 

0- 

0 100 200 300 400 500 

Sequence Number 

Fig. 1. Realizations of 2 Markov chains produced using the 
Metropolis-Hastings algorithm, each with standard normal 
stationary distribution. Candidate values produced by adding 
mean 0 normal noise to current values. Standard deviations of 
candidate values were 0.10 (thick curve), and 10.0 (thin curve). 

magnitude of the correlation depends on the 
relation between current values Ot and candidate 
values 0*. If candidate values are too close to cur- 
rent values, sampling of the target distribution 
will be slow, and autocorrelation will be high. On 
the other hand, if 8* is likely to be too far from Ot, 
it may not represent the posterior distribution 
and consequently will have a small acceptance 
probability (10). In this case, the candidate values 
tend to be rejected, the chain does not move 
(i.e., 0t1 =- t), and autocorrelation will be high. 

The 2 extremes are illustrated in Fig. 1. We gen- 
erated 2 Markov chains using the Metropolis- 
Hastings algorithm. We obtained candidate val- 
ues by adding normally distributed noise to the 
current values. Both chains have standard nor- 
mal stationary distributions. The lighter line cor- 

responds to a candidate distribution with stan- 
dard deviation of 10-83% of the candidate 
values were rejected, and the lag-1 autocorrela- 
tion was 0.86. The heavier curve was generated 
using a candidate distribution with standard devi- 
ation of 0.10-only 4% of the candidate values 
were rejected, but the step sizes were very small, 
and the lag-1 autocorrelation was 0.97. 

It is possible to tune the choice of candidate 
distribution to optimize the performance of the 
MCMC simulation. For the example presented 
here, Fig. 2 presents empirical evidence that set- 
ting the standard deviation of the candidate dis- 
tribution to an intermediate value of 2.3 mini- 
mizes the lag-i autocorrelation at a value of about 
0.63. Such matters may be beyond the concern or 
interest of most users of MCMC. However, users 
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Fig. 2. Autocorrelation (solid line) and rejection rate (dashed 
line) for Metropolis-Hastings Markov chains with standard nor- 
mal stationary distributions and candidate values generated by 
adding mean 0 normal noise to current value, plotted as a func- 
tion of standard deviation of candidate generating distribution. 

should be aware of the existence of problems 
relating to excessive autocorrelation and routine- 

ly evaluate the results of MCMC simulations for 
its effects. 

Accuracy and Starting Values 
Another consideration in summaries of MCMC 

relates to accuracy-whether the chain of values 

sampled can be thought of as a sample from the 

target distribution. At issue is the starting value of 
the chain, which must be supplied by the practi- 
tioner. If the starting value could be sampled 
from the target distribution there would be no 

problem: every value in the Markov chain could 
be considered a sample from the target distribu- 
tion. However, if the starting value does not rep- 
resent the target distribution, neither will other 

early values in the chain; the chain exhibits tran- 
sient behavior, moving gradually into the range 
of the target distribution. 

This phenomenon is clearly evident in Fig. 3. 
We generated the Markov chain according to the 

Metropolis-Hastings algorithm, with a standard 
normal target distribution. We obtained candi- 
date values by adding normally distributed noise 
with standard deviation of 0.10 to the present val- 
ues. The starting value of 10 being well outside 
the range of the stationary distribution, the chain 
exhibits transient behavior-a burn-in period of 
500 or 1,000 values is needed before the chain 

appears to be sampling in the range of the sta- 

tionary distribution. Thus, in equation (8), an 

analyst would set M = 1,000, and discard these val- 
ues from MCMC calculations. 

10 - 

6- 

4 - 

0- 

0 1000 2000 3000 

Sequence Number 

4000 000 
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Fig. 3. Transient behavior of Metropolis-Hastings Markov chain 
resulting from the starting value outside of range of stationary 
distribution. The stationary distribution of the chain is standard 
normal. Candidate values were produced by adding mean 0 
normal noise with standard deviation of 0.10 to current values. 

The selection of candidate distributions and 
assessment of convergence to the stationary distri- 
bution are areas of active research. For a more in- 

depth, yet readable account of the issues involved, 
readers are referred to the report of a roundtable 
discussion of MCMC in practice (Kass et al. 1998). 

The value of MCMC as a statistical tool 
becomes apparent when one considers fitting 
complex statistical models to data. In the next 
section, we illustrate the use of BUGS to analyze a 

moderately complex hierarchical model, one 
that defies analysis by conventional methods. 

AN ILLUSTRATION OF MCMC USING BUGS 

J.-Y. Monnat, E. Danchin, and a team of collab- 
orators have studied several colonies of kittiwakes 
on the Brittany coast of France for 20 years 
(Danchin and Monnat 1992, Danchin et al. 1998). 
Here, we describe an analysis of association in 

individual-specific latent factors governing sur- 
vival and breeding rates. The data set consists of 
survival and breeding records over 13 years for 
845 birds known to have bred at least once. The 

question of interest was whether trade-offs exist 
between components of fitness. For example, do 
birds that are more productive tend to have lower 
survival rates (Stearns 1992, Cam et al. 1998)? 

The collection of data is described elsewhere 

(Cam et al. 2002), but several important features 
are noted here. First, we note that new birds of 
known age were individually marked through the 

study period; the number of individuals first 
included in years 1, 2, ... 12 were 98, 82, 88, 97, 
76, 30, 73, 69, 54, 52, 60, and 66, respectively. This 
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feature of the data allows the analyst to distinguish 
age and year effects on breeding and survival. 

Another important feature of these data is that 
the resighting probability for marked birds was 1 
(Cam et al. 1998). Thus, for each bird alive in 

year t, there is a record of whether the bird 

attempted breeding in year t, and of whether it 
survived to year t +1. We modeled the 2,947 sur- 
vival events, S, as Bernoulli trials with success 

parameters, p, and the 2,344 breeding events, B, 
as Bernoulli trials with success parameter, P. The 
effects of covariates on survival and breeding 
probabilities were modeled as linear on the logit 
scale, logit(p) = ln(p/(1 - p)). 

We evaluated a cross-classification of 32 candi- 
date models. All of the models included year 
effects on breeding and survival as factors. We 
modeled age effects on survival and breeding as an 
additive factor, a quadratic function, a linear func- 
tion, or constant. We compared the adequacy of 
these models with and without bird-specific effects. 
The model selection process is reported elsewhere 
(Cam et al. 2002), along with a discussion of the 

biological implications of the model. Here, we 
describe the fitting of the model that was eventu- 

ally selected using Akaike's Information Criterion. 
The selected model included bird-specific 

effects, specified that the effect of aging on survival 
was linear, and that the effect of aging on breed- 
ing was quadratic. Thus, the model specified that 

logit((birdyr) 
= 

Altp 
+ ap Abird,yr+ 

+ abPd ' 

and (12) 

logit(bird,yr) 
= t + cta A bird + r + 

+ abird; 

here, A is age, 6 is year effect (a factor having 12 
levels each, the first of which was set equal to 0 
for identifiability), and a is individual effect. Sub- 
and superscripts (p and P distinguish parameters 
related to survival and breeding, respectively; 
subscripts bird and yridentify individual birds, bird 
= 1, 2, ..., 845, and years, yr= 1, 2, ..., 12. Pairs of 
bird-specific parameters, (acbrd, aibrpd) are of spe- 
cial interest in this analysis. 

Clearly, it is neither practical nor desirable to 
include 1,690 = 845 x 2 parameters describing 
individual effects in the model. Even were such 
an approach feasible, the analyst would end up 
calculating statistics on statistics, summarizing 
and evaluating the collection of parameter esti- 
mates, attempting to correctly account for the 

sampling variation in the estimates. Instead, we 
treated individual effects as bivariate random 
effects. Thus, corresponding to each bird is an 
unobservable pair of latent effects, a bivariate 

parameter cbird (abid, aPbit)'. These are assumed 
to have bivariate normal distributions, with mean 
0, and variance-covariance matrix S. Therefore, 
the individual effects are described by 3 parame- 
ters: 2 variances and a correlation. The correla- 
tion in individual effects is of special biological 
interest. Negative values would indicate that birds 
with higher survival probabilities are less likely to 

attempt breeding, given that they survive. Positive 
correlations indicate that birds with higher sur- 
vival probabilities are more likely to attempt 
breeding, given that they survive. 

Calculation of the likelihood for this model is 

prohibitively difficult, so fitting by conventional 
methods is not possible. However, an objective 
Bayes analysis is fairly straightforward using BUGS. 

Analysis in BUGS is aided by the specification of 
a directed acyclic graph as illustrated in Fig. 4, and 

explained below. A directed acyclic graph is a visu- 
al metaphor for a hierarchical model, consisting of 
nodes, plates, and edges (respectively, the ellipses, 
rectangles, and arrows, in Fig. 4). Nodes are drawn 
for each parameter and for the data, and for para- 
meters that are obtained as functions of other 
parameters. Arrows are added specifying hierar- 
chical relations and dependencies; collections of 
related nodes are summarized by plates. Thus, in 

Fig. 4, the lower left-hand plate has nodes S[i] for 
the 2,947 survival events in the data set; these are 
modeled as Bernoulli trials, with success rates 
phi[i], which is a function of the quantities rep- 
resented by nodes with arrows leading to it. 

Highlighting a node in BUGS allows the specifi- 
cation of whether the node is stochastic, logical 
(i.e., a deterministic function of the values of other 
nodes), or constant. In Fig. 4, B[J] (the jth breed- 
ing event) is seen to be stochastic, a Bernoulli 
trial with success parameter beta[J]. If the node 
beta[J] were highlighted, it would be observed to 
be a logical node, calculated by the specification 

logit(beta[j]) = mu_beta + a_beta * 

(BreedAge[j]) + b_beta * pow(BreedAge[j],2) 
+ delta_beta[BreedYr[j]] 
+ alpha_beta [BreedID [j]], (13) 

corresponding to the second portion of the 
model specification (12). 

Founder nodes, those without arrows leading to 
them in the directed acyclic graph, must either 
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name: B[3] type: stochastic density: dbern 
proportion: beta[] 

Fig. 4. Directed acyclic graph for kittiwake model (equation [12]), from program BUGS. Nodes are drawn for each parameter and 
for the data, with arrows specifying hierarchical relations and dependencies. Highlighted node B[J] indicates a stochastic type, with 
density dbern and parameter beta[J]. The node represents a Bernoulli trial with success parameter specified by node beta[J]. 

be pre-specified constants or random variables. 
Thus in Fig. 4, the nodes corresponding to ,, 
a,, ot, ap, bo, yr, and 5 r in the model specifica- 
tion (12) are random variables (as in a Bayesian 
analysis) rather than fixed but unknown con- 
stants (as in a Frequentist analysis). Since we 
desired an objective Bayes analysis, we specified 
prior distributions that were mean zero normal 
with standard deviations of 1,000. These priors 
are essentially uniform over a large range. The 

density values on [-50,50] are always within 
99.87% of the maximum value. Values outside of 
that range are meaningless on the logit scale. 
Therefore, we may consider these priors as essen- 

tially uniform. As previously mentioned, it follows 
from equation (1) that the maximizer for the 

posterior distribution of 0 is the same as the max- 
imum likelihood estimator. Thus, the modes of 
the posterior distributions for u, a, a, po, a, bp, 

9r, and ? P will be the maximum likelihood esti- 
mators in a Frequentist analysis. 

The remaining founder nodes in Fig. 4 relate to 
the latent individual-specific effects. Nodes 
X[bird] and Y[bird] are independent standard 
normal variates, linear combinations of which 
were calculated so as to produce pairs abird = 

(acbd, cbird)' with covariance matrix 

s= I[C PClC2 

PCI C2 C2 
(14) 

We specified vague inverse gamma priors (a stan- 
dard noninformative prior for variances) for the 
2 variances, and gave p a uniform prior on [-1, 1 ]. 

Once the model has been completely specified, 
BUGS selects an appropriate algorithm and pro- 
duces Markov chains for each of the parameters. 
These chains can be output as ASCII files for analy- 
sis in other software packages (e.g., a collection of 
S-Plus functions named CODA is available from the 
BUGS website). Some graphical and descriptive 
summaries also are available within BUGS. Some 
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Fig. 5. Summaries from Program BUGS of a Markov chain of values of p from analysis of model (12) include a smoothed his- 
togram, an estimated autocorrelation function, and a tabular summary. Tabular summary provides approximate values for the 
mean, standard deviation, and percentiles 2.5, 50, and 97.5 of the posterior distribution. These were computed from a chain of 
length 30,000, the first 500 values of which were discarded as a burn-in period. 

of these are shown in Fig. 5, for the parameter p. 
Fig. 5 displays a smoothed histogram and an 

estimate of the autocorrelation function of the 
Markov chain of values of p. The tabular summa- 
ry for p shows approximate values for the mean, 
standard deviation, and percentiles 2.5, 50, and 
97.5 of the posterior distribution; also, that these 
were computed from a Markov chain of length 
30,000, the first 500 values of which were discard- 
ed as representing a burn-in period. 

The interval (0.33, 0.98) contains the central 95% 
of the mass of the posterior distribution and some- 
times is called a 95% Bayesian confidence interval 
or credible interval, although these terms some- 
times are reserved for the shortest interval contain- 
ing 95% of the posterior distribution. In the pre- 
sent case, the shortest such interval is (0.39,1 ]. The 
mean and median values of the posterior distrib- 
ution are both close to the mode (estimated, out- 
side of BUGS, as 0.68 using a histogram smoother). 

As mentioned at the outset, the possibility of 
varying the prior is an asset, rather than a liabili- 
ty of Bayesian analysis. In Fig. 6, we report the 
results of an analysis with an informative prior 
(triangular distribution at top). This prior places 
3:1 odds on p < 0, and 15:1 odds on p < 0.50, and 
hence is hardly objective. This prior might repre- 
sent strongly held views of individual trade-offs in 
breeding and survival probabilities. Under this 
prior, the 95% credible interval [0.28, 0.90] and 
posterior mean (0.61) are only slightly changed 
from those obtained using the uniform prior 
([0.33, 0.98] and 0.69). This sort of result often is 

described as the data overwhelming the prior- 
the contribution of Prior to Posterior is small rel- 
ative to that of Data, in equation (2). 

The evidence is that p > 0 : latent factors gov- 
erning survival rates and breeding rates are posi- 
tively correlated. Thus, the birds that are more 
likely to survive also are more likely to breed, 
given that they survive. There is no evidence of a 
trade-off at the individual level. 

We discuss some of the biological and manage- 
ment implications of this finding in the next sec- 
tion; a more detailed discussion is in Cam et al. 
(2002). The 2 main conclusions are: (1) differ- 
ences in survival and breeding probabilities 
among individuals are substantial; models includ- 
ing individual effects systematically had a better 
fit than others, which supports the hypothesis of 
heterogeneity in vital rates among individuals; 
and (2) the pattern of age-related variation in 
breeding and survival rates detected at the indi- 
vidual level differed from that observed at the 
population level. Our approach provided evi- 
dence of senescent decline in survival. Such a 
decline was undetectable when analyzed using 
classic approaches to the effect of age on survival. 
This phenomenon has been extensively studied 
in humans (Vaupel and Yashin 1985a,b) and cap- 
tive animals (Service 2000), but very rarely in wild 
animal populations (McDonald et al. 1996). From 
a modeling perspective, the analysis includes esti- 
mation of variation and covariation in fitness 
components at the individual level. Evaluation of 
these fitness components is crucial for the study 
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Fig. 6. Summaries from Program BUGS for an alternative analysis of model (12). Top panel is a histogram of 500,000 draws from 
an informative prior representing strong prior convictions that p < 0. Histogram, estimated autocorrelation, and tabular summaries 
of posterior distribution based on a chain of values of 11,000 after a burn-in of 500. 

of age-specific reproductive strategies (Charles- 
worth 1994), and is also important for studies of 
natural selection (Endler 1986). Accurate descrip- 
tion of age effects has major implications for 

designing management plans as well (see below). 
Markov chain Monte Carlo allowed the fitting of 
what otherwise might have been regarded as pro- 
hibitively complex models. 

THEORETICAL AND MANAGEMENT 
IMPLICATIONS OF INDIVIDUAL 
HETEROGENEITY 
Individual Variation and Population Dynamics 

Understanding the processes underlying popu- 
lation dynamics is of fundamental interest in most 
conservation programs, or to design management 
plans (Nichols et al. 2000). Many classical ecolog- 
ical models are based on the assumption that pop- 
ulations consist of identical individuals. However, 
as emphasized by Bjornstad and Hansen (1999), 
extensive evidence exists that natural populations 

exhibit much genetic and nongenetic variation in 

life-history traits and demographic parameters. 
The sources of variation among individuals coex- 

isting in a population at a given point in time 
most commonly incorporated into population 
models are age, size, or stage (i.e., Caswell 2001). 
However, our results show that these sources of 
variation may not be sufficient to adequately 
account for heterogeneity among individuals. 

The population consequences of variation 

among individuals in vital rates associated with dif- 
ferences in access to resources resulting from 
social hierarchy or habitat heterogeneity, some- 
times combined with stage or age, are receiving 
growing interest (e.g., deJong 1979, Hassell and 

May 1985, Lomnicki 1988, Bj0rnstad and Hansen 
1999, Bj0rnstad et al. 1999). Results obtained using 
models incorporating these sources of hetero- 

geneity indicate that individual variation can 
influence population growth rate, equilibrium 
density, and stability (Bj0rnstad and Hansen 
1999). Doebelli and de Jong (1999) investigated 
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the influence of genetic variability in sensitivity to 

population density and reached the same conclu- 
sions. They extended their conclusions to envi- 

ronmentally induced variability. Other sources of 
variation among individuals and their conse- 

quence on population dynamics also are receiv- 

ing growing interest, such as cohort and maternal 
effects (Hansson 1984, Albon et al. 1987, Schluter 
and Gustafsson 1993, Sedinger et al. 1995, Boon- 
stra and Hochachka 1997, Rose et al. 1998, Lind- 
str6m 1999). Both sources of heterogeneity among 
individuals are suspected to have lagged demo- 

graphic consequences and result in destabilization 
of the population (Albon et al. 1992, Ginzburg 
1998). However, Bj0rnstad and Hansen (1999) also 

emphasized that the consequences of individual 

heterogeneity strongly depends on the form of the 
model, and further work is needed to reach gen- 
erally applicable conclusions. So far, attempts to 
use age-structured models accounting for addi- 
tional sources of individual heterogeneity in vital 
rates have been rare, mostly because of the com- 

plexity of the models required (Lomnicki 1988). 
The importance of individual variation recently 

has been emphasized in studies focusing on the 

relationship between individual decisions and pop- 
ulation dynamics (e.g., Marrow et al. 1996). Exten- 
sive evidence exists that the number of young 
produced in a population during a given year is 
influenced by environmental conditions (e.g., 
resource availability). This type of effect could be 
viewed as a simple constraint shaping the repro- 
ductive potential of individuals at that point in time 

only. However, a fundamental assumption of life- 

history theory is that individual reproductive deci- 
sions depend not only on the specific conditions at 
that point in time and their consequences on the 

probability of raising young successfully, but also 
on future fitness (i.e., trade-offs between current 
and future fitness; Steams 1992). Recent develop- 
ments in that field (e.g., McNamara and Houston 
1992, 1996; Clark and Mangel 2000) rely on the 
influence of individual state (e.g., condition) on 
decisions, individuals in different states making dif- 
ferent decisions in terms of age of first breeding, 
clutch or litter size, migration routes, or dispersal 
(e.g., Festa-Bianchet and Jorgenson 1998). Indi- 
vidual state reflects both underlying differences be- 
tween individuals (i.e., the type of differences 
addressed in this study) and the influence of 
environmental conditions recently experienced 
(McNamara and Houston 1992, 1996). As the cur- 
rent and future fitness prospects of individuals 
with different underlying survival or breeding 

potential are not the same, individuals are 

expected to make different decisions in the same 
environmental conditions. The overall produc- 
tion of young in a population during a given year 
may depend on the proportion of individuals with 
different underlying characteristics. Assessing the 
distribution of individuals with different underly- 
ing vital rates is critical to understanding the pop- 
ulation consequences of individual decisions. 

In addition to the difficulty raised by the com- 

plexity of population models accounting for many 
sources of individual variation in demographic 
parameters, quantifying this heterogeneity in wild 
animal populations is a challenge (Cooch et al. 
2002). The models used here to assess individual 
variation in breeding and survival rates can be 
described as models where each individual has its 
own mortality risk (Service 2000), or its own 

reproductive potential. In this study, we account- 
ed for the correlation between breeding and sur- 
vival rates at the individual level; fitting such mod- 
els using conventional approaches is prohibitively 
difficult (Cam et al. 2002). One of the strategies to 
build population models accounting for individ- 
ual variation is to assign a growth rate depending 
on some parameter with an individual value to 
each individual in the population (Bj0rnstad and 
Hansen 1999). Now, as emphasized by Bj0rnstad 
and Hansen (1999), the influence of individual 
variation on population dynamics is strongly 
dependent on the distribution of the parameter 
in the population. Describing the form of varia- 
tion among individuals thus is critical to under- 

standing the consequences of individual hetero- 

geneity on the dynamics of the population. 
Development of approaches to fitting complex 
hierarchical models permitting estimation of the 
distribution of the parameters in the population 
is a promising advance and should provide means 
of addressing the population consequences of 
individual variation in life-history traits and 

demographic parameters using empirical data. 

Individual Variation: Management and 
Conservation 

The potential relevance of individual hetero- 

geneity to harvest management was explicitly 
noted byJohnson et al. (1986, 1988). They con- 
sidered the hypotheses of additive and compen- 
satory hunting mortality as originally described 
for waterfowl by Anderson and Burnham (1976). 
They then considered a heterogeneous popula- 
tion in which probabilities associated with both 
hunting and nonhunting mortality differed 
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among individuals and were positively associated 
within individuals (individuals with low nonhunt- 

ing mortality probabilities also had low hunting 
mortality probabilities). Even in the case where 
hunting mortalities acted as instantaneous com- 

peting risks (additive hunting mortality hypothe- 
sis), the population appears to compensate for 
increased harvest mortality. The mechanism 

underlying this compensation does not involve 

density-dependent changes in nonhunting mor- 

tality, but simply results from a postharvest popu- 
lation that contains an increased proportion of 

low-mortality individuals. Patterns of individual 

heterogeneity that showed no covariance within 
individuals for hunting and nonhunting mortali- 

ty probabilities, or that showed a negative covari- 
ance, would yield different responses to harvest. 
In fact, a negative covariance would yield an espe- 
cially severe population-dynamic effect of harvest. 
In addition to the effect of harvest mortality, the 

postharvest population would have a higher non- 
hunting mortality probability than would a non- 
harvested population. The point is that individual 

heterogeneity in vital rates, specifically the pat- 
terns of variation and covariation of vital rates 

among individuals, are very relevant to population 
responses to management actions such as harvest. 

The concept of reproductive value is important 
to various kinds of management and conservation 

problems. With respect to conservation, the age 
classes with the largest reproductive value make 
the largest contributions to future population 
growth and are thus selected for restocking and 
reintroduction programs (see MacArthur and Wil- 
son 1967). With respect to harvest management, if 
all age classes are of equal value to the hunter, 
then the age classes with the smallest reproduc- 
tive values should be harvested (e.g., MacArthur 

1960). The shape of the reproductive value func- 
tion is heavily dependent on whether or not indi- 
viduals experience senescent decline in either sur- 
vival or reproductive rates (e.g., see Nichols et al. 
1980, Fig. 4). If our perception of senescence is 
obscured by individual heterogeneity (as illustrat- 
ed in the kittiwake example above; see also Cam et 
al. 2002), then management actions that are based 
on reproductive value or-more generally-age- 
specific patterns of survival and reproduction, 
may be misdirected. It is important to draw strong 
inferences about the existence of senescent 
decline in vital rates among individuals. We do 
not know how to draw such inferences in the ab- 
sence of analytic approaches that properly incor- 

porate individual heterogeneity in vital rates. 

Population viability analysis (PVA) has become a 

popular tool in certain areas of conservation biol- 

ogy. Population viability models frequently include 

temporal and sometimes spatial variation in vital 
rates, but typically have not included individual 

heterogeneity in birth and death rates. However, 
such heterogeneity can be very important for esti- 

mating extinction probabilities associated with 

populations. Specifically, extinction probabilities 
have been shown to typically decrease in the pres- 
ence of individual heterogeneity in vital rates 
(Conner and White 1999). Results of models that 
do, and do not, incorporate individual hetero- 

geneity can show substantial differences in such 

quantities as persistence time and probability of 
extinction (Conner and White 1999, White 2000). 

The above examples illustrate the importance 
of individual heterogeneity to population man- 

agement and conservation. The relevance of indi- 
vidual heterogeneity in vital rates extends well 

beyond these examples to virtually all manage- 
ment or conservation actions. Patterns of varia- 
tion and covariation of vital rates among individ- 
uals are important determinants of population 
dynamics and responses to management. We 
believe that the usefulness of the methods pre- 
sented here for estimating such variation and 
covariation will be increasingly recognized in 
wildlife management and conservation biology. 

DISCUSSION 
Markov chain Monte Carlo is a tool for fitting 

complex statistical models to data. It is becoming 
more widely used in a variety of biological and 
related fields (Fig. 7). We found 235 citations in- 

cluding "Gibbs sampling," "Markov chain Monte 
Carlo," "Metropolis-Hastings," or related terms in 

Biological Abstracts (2001). Most of the citations 
were in statisticsjournals (83x: including Statistics 
in Medicine 30x, Biometrics 26x, and Biometrika 9x); 
genetics journals (63x: including Genetics, Selection, 
Evolution 18x, Genetic Epidemiology 13x, and Ameri- 
can Journal of Human Genetics 8x); and animal sci- 
ence journals (36x: including Journal of Dairy Sci- 
ence 1 5x and Journal of Animal Science 9x). None of 
these terms were found in The Journal of Wildlife 
Management, Ecological Applications, or Ecology. 

This is not to say that none of these applications 
would interest readers of The Journal of Wildlife 
Management. In particular, we note extensions of 
conventional mark-recapture methodologies 
(George and Robert 1992, Dupuis 1995, 
Vounatsou and Smith 1995), and of the Cox pro- 
portional hazards model (Gauderman and 
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Fig. 7. Number of citations found in BIOSIS database for 
1985-1998 including "Gibbs sampling:' "Markov chain Monte 
Carlo," "Metropolis-Hastings" or related terms in their ab- 
stracts or keyword lists; plotted against publication year. 

Thomas 1994, Goggins et al. 1998, Sargent 1998) 
using MCMC. Applications of MCMC in ecologi- 
cal journals include autologistic modeling for the 

spatial distribution of wildlife (Augustin et al. 

1996), modeling of nitrogen flows in the world's 
oceans (Harmon and Challenor 1997), and assess- 
ment of fisheries stock (Meyer and Millar 1999). 

Given the growing number of applications of 
MCMC in all branches of statistical application, 
the availability of software such as BUGS, the spec- 
tacular rate of increase in clock speeds of person- 
al computers, the consequent feasibility of ever 
more computationally intensive statistical meth- 

ods, and the potential for fitting complex hierar- 
chical models, we predict MCMC will be used as 
a tool in many future wildlife applications. 
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