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A Primer on Maximum Likelihood Estimation in R Using the bbmle Package 

N. T. Hobbs 

 

R provides several tools for estimating model parameters using maximum likelihood.  

The package we will use was written by a prominent young ecologist, Ben Bolker from 

(formerly of the University of Florida, now at Guelph), who in my opinion is one of the 

smartest people in the world.
1
 Here, I cover the essentials of using bbmle()to get you 

started using a couple of example models. This code can provide a template for the work 

you will do. 

WHEN TO USE bbmle 

If you have relatively a relatively simple non-linear model that predicts a response based 

on an observation and if you can assume are normally distributed (like the light and trees 

example), then R’s nls( ) function is easier and simpler to use than bbmle.  

Similarly, lm( ) is vastly easier to use when you have linear models with normal data. 

However, we have learned that the first step in thinking about stochasticity is to 

thoughtfully consider how the data arise.  Based on that consideration, we choose an 

appropriate likelihood function.  The bbmle package is designed for cases where you 

can’t assume a normal likelihood—so it works well for Poisson, binomial, multinomial, 

beta, gamma, and other distributions.  Moreover, it is ideal for dynamic models where we 

recursively estimate the value of state variables over time.  So, if you can’t assume 

normality (or transform the data to normal) or if you have a dynamic model, then bbmle 

is the tool of choice for maximum likelihood estimation.   

 

FITTING A STATIC MODEL 

Program structure 

I find it useful to think of likelihood estimation in  four parts:  1) a function describing 

your model, 2) a function that calculates the negative log-likelihood, 3) a call to a 

function that does the non-linear search for the best parameter values, and 4) analysis of 

the results. 

A function for the model 

Your first task is to write a function for your model, a function that returns a vector of 

predictions.  This vector should have the same length as the number of observations that 

you will use to estimate the model’s parameters.  I will show you some example code for 

a static model, the observation model for count data that we looked at in lecture. Consider 

the following code: 

 
 

 

#estimating parameters in observation model 

                                                 
1
 I highly recommend his book--- Bolker, B. 2008. Ecological Models and Data in R. Princeton 

University Press, Princeton, N. J  USA. 

. 
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# get bbmle library 

 

library(bbmle) 

# 

#Generates random counts for a calibration curve 

a = -2.25 

b = .60 

 

#We want the independent variable to have global scope--

i.e. to be available to all functions. 

x = sort(runif(50,1,20)) 

 

#function for model 

yhat = function(a,b){ 

 mu = a + b*x 

 mu[mu<0]=0 

 return(mu) 

 } 

 

# The generating function 

y = yhat(a=a,b=b) 

plot(x,y, typ='l', col="red", cex.lab = 1.5, cex = 1.5, 

xlab="Number Present", ylab="Number Observed", 

ylim=c(0,12)) 

#generate data from fucntion 

data=rpois(length(y),y) 

points(x,data) 
 

In this example, I simulated the data, which is always a good place to start to be sure that 

your procedure can estimate known parameter values. It also gives you a set of 

reasonable starting values for maximizing likelihood using numerical methods. For 

complex models, particularly dynamic models, getting these starting values in the 

“ballpark” is really important. 

 

Take a look at how I simulated the data. I created a function yhat( ) representing the 

deterministic model.  To work properly with the next steps (below), this function must 

have arguments for every parameter that you want to estimate. It must return a vector or 

array or list of predictions that you want to compare with observations.  The independent 

variable (x) must be declared globally.  (At least, I haven’t figured out any other way to 

do the steps below with x as an explicit argument.) Note that if the independent variables 

is a vector, the function yhat returns a vector of length = length(x). 

 

So, in the code above, we accomplished two things.  We wrote a function for the 

deterministic model and we used it to simulate some data. We plotted the data against the 

model. 
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A function for the negative log-likelihood 

The next step is to use your model function and the data to create function that returns the 

summed negative log-likelihood.  Consider the following example: 

 
#The function for the negative log likelihood 

LL1 = function (a,b,y=data){ 

 mu = yhat(a=a,b=b) 

 #get the total negative log likelihood 

 loglike= -sum(dpois(y,mu,log=TRUE)) 

 return(loglike) 

} 

 

Look carefully at this code.  First, we get a vector of predictions using the function for 

the deterministic model (yhat).  Next, we use a a Poisson likelihood function (Why?) to 

get the total negative log likelihood by summing across the individual likelihoods, just as 

you did in your tree growth example in Excel.  Our function then returns this sum. 

 

It is also possible to forgo writing a function for your model and instead embed the model 

the equation directing in the likelihood function.  For example: 

 
LL1 = function(y,k1, sigma){ 

 Mhat=100*exp(-k1*CDI*t) 

 return(-sum(dnorm(Mhat,M_t,sigma,log = TRUE))) 

} 

 

In this case, the second line of the LL1 function is the model you want to fit.  However, 

this approach is not well suited to data simulation, so I urge you to write a function for 

your model. 
 

Obtaining the mle’s 

The next step is a single line of code, rich with things you need to understand: 
 

#The call to bbmle 

m1 = mle2(minuslogl = LL1, start = list(a = -2, b = .8), 

control = list(maxit = 5000)) 

Again, let’s look at individual parts. 

 

The function that we use to obtain the maximum likelihood estimates is called mle2(). 

We, assign the results of the mle2 function to the model object m1, which we will use 

later in the analysis. Next, we tell the function to use the negative log-likelihood function 

that we wrote (minuslogl = LL1) to find the likelihood.  The statement start = 

list(a = -2, b = .8) tells mle2 the parameters that you want estimated and a 

guess at their initial values.  Finally there is an optional statement 

control=list(maxit=5000). This can include a plethora of options telling mle about 

the method to use to search for the parameters.  In this case, I have set the maximum 
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number of iterations of the search to 5000.  Most models I work with converge well 

before 5000 iterations (actually, before 50). The control options are a very deep topic that 

I will cover in a not terribly deep way.  See the help for the optim() function which 

does most of the sweaty labor behind mle2().   

 

 

 

#The call to bbmle 

m1 = mle2(minuslogl = LL1, start = list(a = -2, b = .8), 

control = list(maxit = 5000)) 

 

 

Look at the results: 

 

Below, see code for summarizing the estimates of the coefficients and for plotting the 

estimates against the observations. 

 
#Analysis 

summary(m1) 

 

#make a vector for plotting the esimates 

y.est=numeric(length(y)) 

#get the estimated parameters 

a.est = coef(m1)[1] 

b.est = coef(m1)[2] 

y.est=yhat(a=a.est,b=b.est) 

 

#plot the fitted model agains the generating model and the 

data 

lines(x,y.est, lty='dashed') 

legend(3,12,c("generating","estimated"), lty=c("solid", 

"dashed"), bty="n") 
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Putting all of the code together: 

 
#estimating parameters in observation model 

 

# get bbmle library 

 

library(bbmle) 

 

#Generates random counts for a calibration curve 

a = -2.25 

b = .60 

 

#We want the indepdendet variable to have global scope--

i.e. to be available to all functions. 

x = sort(runif(50,1,20)) 

 

#function for model 

yhat = function(a,b){ 

 mu = a + b*x 

 mu[mu<0]=0 

 return(mu) 

 } 

 

# The generating function 

y = yhat(a=a,b=b) 

plot(x,y, typ='l', col="red", cex.lab = 1.5, cex = 1.5, 

xlab="Number Present", ylab="Number Observed", 

ylim=c(0,12)) 

#generate data from fucntion 

data=rpois(length(y),y) 

points(x,data) 

 

#The function for the negative log likelihood 

LL1 = function (a,b,y=data){ 

 mu = yhat(a=a,b=b) 

 #get the total negative log likelihood 

 loglike= -sum(dpois(y,mu,log=TRUE)) 

 return(loglike) 

} 

 

#The call to bbmle 

m1 = mle2(minuslogl = LL1, start = list(a = -2, b = .5), 

control = list(maxit = 5000)) 

 

 

#Analysis 

summary(m1) 
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#make a vector for plotting the esimates 

y.est=numeric(length(y)) 

#get the estimated parameters 

a.est = coef(m1)[1] 

b.est = coef(m1)[2] 

y.est=yhat(a=a.est,b=b.est) 

 

#plot the fitted model against the generating model and the 

data 

lines(x,y.est, lty='dashed') 

legend(3,12,c("generating","estimated"), lty=c("solid", 

"dashed"), bty="n") 

 

 

FITTING DYNAMIC MODELS 

Program structure 

Again, we think of likelihood estimation in  four parts:  1) a function describing your 

model, 2) a function that calculates the negative log-likelihood, 3) a call to a function that 

does the non-linear search for the best parameter values, and 4) analysis of the results. 

A function for the model 

Your first task is to write a function for your model, a function that returns a vector of 

predictions.  This vector should have the same length as the number of observations that 

you will use to estimate the model’s parameters.  Consider the following code: 

 
#Logistic likelihood examples using bbmle 

#Reworked on 2/02/11 

 

# make sure that you are starting from scratch 

rm(list=ls()) 

#set up 3 rows and columns for plots 

par(mfrow=c(3,3)) 

par(cex.lab=1.2) 

 
#get the Serengeti data 

obs=read.csv( "C:\\Documents and Settings\\tom\\My 

Documents\\Ecological Modeling Course\\2011 Spring Semester\\Labs\\Lab 

6\\Serengeti data.csv") 

names(obs) = tolower(names(obs)) 

obs=obs[,1:3] 

head(obs) 

 

# scale to N * 1000 

obs$obs_n=obs$obs_n/1000 

plot(obs$year,obs$obs_n) 

 

yrs=nrow(obs) 

 

##########################logistic model 
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# make a discrete logistic function.  It returns a vector of  

# population estimates given initial values and parameters r and K. 

logistic <- function(N0,K,r,yrs=30){ 

  N <- numeric(yrs) 

  N[1] <- N0 

  for (t in 2:yrs) N[t] = N[t-1] + N[t-1]*r*(1-(N[t-1]/K)) 

  return(N) 

} 

 

#use the function to find some reasonable starting values 

N = logistic(N0=200,K=1400,r=.17,yrs=30) 

plot(N,typ="l") 

points(obs$obs_n) 

 

After some preliminaries (getting the data, etc.) I created a function logistic( ) that 

returns a vector of 30 estimates of population size as a function of the parameters N0, r, 

and K.   Here are the key points:  The function must have arguments for every parameter 

that you want to estimate. It must return a vector of predictions that you want to compare 

with observations.  (This vector is exactly analogous to the column in your spreadsheet 

that contained the model predictions.) 

 

Note the default value for yrs.  This assures that the length of my predictions matches the 

length of the observations (with an important caveat, below).  Note that the first thing that 

I did with the function was to plot the predictions against the data to find some parameter 

values that are reasonable starting points for the mle search What I did was to vary the 

arguments to logistic( ) by looking at the data and the model  predictions, and 

adjusting the parameters until I found a set that produced predictions roughly matching 

the observations (N0=200,K=1400,r=.17,yrs=30). This is a very important step—you 

should always plot your model’s predictions before you do any estimation.  It may be that 

you have coded something that can’t actually fit the data very well no matter what 

parameter values you give it.  In this case, no amount of fussing with the estimation 

procedure will yield useful results.  Always, always, always plot your model’s prediction 

to assure they make sense and to obtain some reasonable initial values for parameters to 

be estimated.  The first step in any estimation procedure is to know your model. 

 

One other reason to get your initial parameters in the “ballpark” has to do with local 

optima. Non-linear search routines can converge to a low point in the likelihood surface 

(assuming we are minimizing the negative log likelihood as you will do here) that is not 

the true minimum.  This can be particularly problematic if initial conditions are far from 

the global minimum.   

 

It is also important for you to understand that you could have write a model that is much 

more complicated and detailed than the one I use here.  It could have several parameters, 

covariates, and require several lines to code to specify.  Writing a function for the model 

keeps it separate from the likelihood function, which I describe next. 

A function for the negative log-likelihood 

The next step is to use your model function and the data to create function that returns the 

summed negative log-likelihood.  Consider the following example: 
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#a negative log likelihood function for the model and the data 

#Assume lognormal distribution for data 

#Log transformation of the data allows us to use 

#a normal (Gaussian) likelihood function. 

LL1 <- function (y, K, r, N0, sigma){ 

 N = logistic(K=K ,r=r, N0=N0 ,yrs=30) 

 N[N<0]=0.001 

 N=log(N[c(1,4:14,16:yrs)])  # eliminate missing data from log-

likelihood 

 y=log(y[c(1,4:14,16:yrs)]) 

 return(-sum(dnorm(y,N,sigma,log = TRUE))) # the negative log 

likelihoods: the order of N and y don't matter) 

} 

 
 

Ok, there is a lot to learn here and we will proceed step by step.  First, the arguments to 

the function must include 1) the data (y) and the parameters to be estimated (K, r, N0, 

sigma): 

 
LL1 <- function (y, K, r, N0, sigma) 

 

As you will see later, I will hand the function a vector of the observations (y = 

obs$obs_n), so the y’s in this function are simply the observations of population size.   

 

Next, I create a vector of predictions (N) using the model function that I created above: 

 
N = logistic(K=K ,r=r, N0=N0 ,yrs=30) 

 

You need to understand the arguments for the parameter values.  In this case I am using 

the same variable names in the likelihood function and the model function—this is why I 

have K=K, r=r, N0=N0.  

 

In the next two lines, 

 
N=log(N[c(1,4:14,16:yrs)])   

y=log(y[c(1,4:14,16:yrs)]) 

 

 I do two things.  First, I log transform the data and the model predictions because I am 

assuming a log-normal likelihood function.  If we give log-transformed data to a normal 

likelihood, it is the same as using a lognormal likelihood.
2
  Next, I eliminate predictions 

and observations for which the observations are missing. Look at the data file and you 

will understand what I am doing here.  It is tempting to use R features for dealing with 

missing data like na.rm = TRUE to deal with this problem, but these create problems of 

their own when you get to the maximization step.  It is also tempting to simply eliminate 

the missing data when it is imported.  This doesn’t work because your model must make 

30 sequential predictions, i.e., it must predict years 1961 and 1962 even if they are 

                                                 
2
 You could use a lognormal likelihood like dlnorm() but it requires arguments mean of log N and sd of log 

N.   
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missing from the data, in order to predict year 1964.  If you don’t understand this trick for 

dealing with missing data, ask me about it in lab. 

 

Almost done.  The last bit is the function’s return statement: 

 
return(-sum(dnorm(y,N,sigma,log = TRUE)))# the negative log likelihoods 

 

This is perfectly analogous to the column in Excel that you summed to create a target cell 

for Solver.  We are summing the individual log likelihoods.  We have a normal likelihood 

function (remember the data transformation—we are assuming a lognormal distribution) 

with arguments for a model prediction, a corresponding observation, and the standard 

deviation.  We set the argument log = TRUE so that we get the log likelihoods rather than 

the likelihoods.  We then make the whole thing negative because bbmle( ) minimizes 

the negative log-likelihood rather than maximizing the log-likelihood. 

 

Obtaining the mle’s 

First, make sure that you have the library for mle open. 
 

library(bbmle) 

 

The next step is a single line of code, rich with things you need to understand: 
 
#Now find the MLE's of the parameters 

library(bbmle) 

m1 = mle2(minuslogl = LL1, start = list(r = .17, K = 500, N0 = 90, 

sigma=.01),data = list(y=obs$obs_n), control=list(maxit=5000))  

 

Again, let’s look at individual parts. 

 

First, assign the results of the function to m1.  This become a model object that we will 

use later.  Next, we tell the function to use the negative log-likelihood function that we 

wrote (minuslogl = LL1) to find the likelihood.  Initial values for the parameters are 

given in start = list(r = .17, K = 500, N0 = 90, sigma=.01).  This list tells 

mle2 the parameters that you want estimated. We tell mle what data to use in  data = 
list(y=obs$obs_n).   

 

Finally, there is an optional statement control=list(maxit=5000). This can include a 

plethora of options telling mle about the method to use to search for the parameters.  In 

this case, I have set the maximum number of iterations of the search to 5000.  Most 

models I work with converge within well before 5000 iterations (actually, before 50). The 

control options are a very deep topic that I will cover in a not terribly deep way.  See the 

help for the optim() function which does most of the sweaty labor behind mle2().   

Analysis 

The analysis proceeds at two levels, analyzing the model and its parameters and 

analyzing the model relative to other models. 
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Analyze the model and its parameters 

There are lots of things you can do with the m1 object you created with your call to mle2.   

 

1) Get summary statistics and profile confidence intervals 

 
summary(m1) 

confint(m1) 

 

2) Look at the fit of your model relative to the data.  Notice how I obtain the parameter 

estimates from the model object.  

 
#check fit against data 

Nhat=numeric(yrs) 

N0=coef(m1)[3] 

K=coef(m1)[1] 

r=coef(m1)[2] 

Nhat=logistic(r=r,K=K,N0=N0) 

plot(obs$year, obs$obs_n, xlab="Year", ylab = "Population 

size (x 1000)") 

lines(obs$year,Nhat) 

 

 
 

2) The likelihood profile is obtained by varying a single parameter, finding the mle 

values of all parameters for each value of the varied one, and plotting the likelihood or 

the deviance.   

 
#plot the likelihood profile 

#y axis is sqrt(deviance) = sqrt(2*(-log likelihood)) 

plot(profile(m1)) 

 

 

Analyze the model relative to other models  

One of the nicest features of bbmle is its ability to compare models, which we will do 

later in the course.  But for those of you familiar with information theoretics, consider the 

following: 

 
AICctab(m1,m2, nobs=27, sort=TRUE, delta=TRUE, 

weights=TRUE) 

 

Presume you have two model objects m1 and m2 created by the logistic model with 

variable K.  AICctab does what you might think—it constructs a table of AICc values, 

i’s, and and Akaike weights for all of the models you give it.  In this case there are only 

2, but you can include as many model objects as you like.  Notice that to use AICc, the 

version for small samples, you must provide an argument specifying the sample size 
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(nobs =27).   If you want AIC’s or BIC’s (as opposed to AICc’s) then use, duh, 

AICtab( ) or BICtab( ) with the same arguments but omitting the nobs =. 

 

All of the IC in bbmle tables calculate the k term [i.e., the k in -2(log L() – 2k)] as the 

number of parameters in the model.  Strictly speaking it should include the standard 

deviation as well, because it is calculated from the data.  Bolker assures me this doesn’t 

matter, that the results will be the same regardless.  However, I am not sure about that 

and the fastidious side of me wants it to be right.  So here is how you do it: 

 
attr(m1,"df") = 4  

attr(m2,"df") = 5 

AICctab(m1,m2.1, nobs=27, sort=TRUE, delta=TRUE, weights=TRUE) 

 

Some problems and potential fixes 

As I told you earlier, searching for the mle is a bit of an art.  You are bound to 

occasionally encounter, shall I say, difficulties, getting reliable estimates.  Maximum 

likelihood is an extremely powerful and flexible approach to parameter estimation, and 

power and flexibility never come free.  They are paid for with suffering.   Here are a few 

problems that are likely.  You will discover others.  (When you do, please tell me how 

you fixed them!) 

 

1) Failure  to converge.  Increase the number of iterations using maxit =. You can 

also increase the threshold for convergence using reltol = , e.g.,  

 
control=list(maxit=5000, reltol=1e-4)) 

 

2) If you get the message 

 
error: 

 

Error in optim(par = start, fn = objectivefunction, method 

= method, hessian = !skip.hessian,  :  

  initial value in 'vmmin' is not finite 

 

don’t be alarmed.  All it likely means is that you like have missing values in your data.  

Deal with them as I showed you above.  You also may have NaN’s, which I describe 

below or, you may be trying to estimate a parameter that is just too small.  See point 10, 

below. 

 

 

3) The most cryptic error message in the world: If you get the error 
 

Error in inherits(minuslogl, "formula") :  

  argument "minuslogl" is missing, with no default 

 

it means that you have put a one at the end of minuslogl instead of a lowercase L. This is 

astonishingly easy to do. 
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4) System is exactly singular: If you get the dreaded error 
 

Error in solve.default(oout$hessian) :  

  Lapack routine dgesv: system is exactly singular 

Warning message: 

In mle2(minuslogl = LL1, start = list(r = 0.25, K = 3000, 

B0 = 10000,  : 

  couldn't invert Hessian 

 

then you have some work ahead.  The Hessian is a matrix that must be inverted to 

properly estimate stochasticities associated with your parameter estimates, which is one 

of the reasons that Bayesian methods based on MCMC often work when likelihood 

methods fail utterly.  There are several things you can try to get around this problem, but 

in my experience it sometimes means you have an ill-formed model or bad initial 

conditions.  I urge you to take a look at pages 387-398 in Ben Bolker’s book (Bolker, B. 

In Press. Ecological Models and Data in R. Princeton University Press, Princeton, N. J  

USA) to get a flavor of the kinds of efforts you need to go through to fix this problem. As 

a last resort, you can get parameter estimates and AIC values by setting 

skip.hessian = TRUE, as shown below: 

 

m1 = mle2(minuslogl = LL1,  

 start = list(r = .25, K = 3000, B0 = 10000, q=.0004),  

 data = list(C.obs=C.obs, tend = tend),

 skip.hessian=TRUE, control=list(maxit=50), 

 trace=TRUE) 

 

You can then try using the estimates of the parameters to rescale the numerical search 

using the parscale statement.  This trick is below and it is vital to success with the 

Ricker problem in your assignment.  

 

5) mle2() is not as smart as you are: Occasionally, mle2 will return estimates that are the 

same as those you gave it, or are only different in one or two parameters.  This can occur 

with no error message.  You may simply need more iterations or you may have an ill-

formed model, that is, one that contains parameters that are not identifiable.  Basically 

this means that you can get the exact same solution, or virtually the same solution, with 

many combinations of the parameters.    

 

6) Unreasonable estimates of parameters:  You may get a nice fit to the model, but your 

parameter estimates exceed biological meaningful bounds.  For example, you might get a 

survival rate that exceeds 1.  To restrict the range of parameters to values that are 

realistic, use code like this: 

 

 
start = list(b0 = 3, b1 = -.0025, 

  s1=.75,s2=.90,s3=.75,s4=.90, 

  N1=65, N2 = 184, N3 = 65, N4 = 184, m=.5, 
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  a1 = .26) 

 

 m3 = mle2(minuslogl = LL1, start = start,  

skip.hessian = FALSE, trace=TRUE, 

  method="L-BFGS-B",  

  upper= c(4, 0, .70, .99, .70, .95, 130, 260, 130, 260, .55, .35), 

  lower = c(1, -.01, .3, .85, .3, .85, 20, 20, 20, 20, .45, .25), 

  control=list(maxit=50, trace=TRUE, parscale=abs(unlist(start)))) 

 

Notice that I have specified method ="L-BFGS-B".  This allows you to specify upper 

and lower bounds for each of the parameters in the vectors, upper and lower.  Note 

that the elements of these vectors must be in exactly the same order as you parameter list 

(which makes sense) and in the argument list to your likelihood function (which, I know, 

doesn’t make sense.  Get over it.)   

 

When your model converges, be sure you check to see if parameters bump against 

constraints.  If they do, you will probably want to change their ranges, at least those that 

can be changed.  There is a bit of an art to using this method---you may need to 

experiment with different combinations of constraints to get good results. 

 

Note that this method will not work if the optimization produces any NaN’s, which is 

really not hard to do, particularly if your dataset contains any outliers.  Dealing with 

those is the next topic. 

 

7) Those pesky NaN’s.  NaN’s arise whenever your code produces mathematically 

undefined results like, for example, the log of zero. If you get a few of these and an 

associated warning from R, it is not a big deal unless you are using the method ="L-

BFGS-B" or unless you are compulsively tidy. If you have model predictions that differ 

enormously from the data, which can happen when you have an outlier or if you give the 

optimization poor starting values (remember, always find those using “fit by eye”), then 

the likelihood can be 0. This makes sense, but the log of 0 is NaN.  There are several 

things you can do.   

 -Check to be sure that no quantities are going negative (e.g N[N<0]=0.001).     

- You can also check to be sure that your log likelihood statement returns finite 

values in code something like 

 
sum_log_like = 0 

log_like=numeric(length(N)) 

 #note that missing values have already been removed from N and y 

 for(i in 1:length(N)){ 

  log_like[i] = -dnorm(y[i], N[i],sigma,log = TRUE)  

if(is.finite(log_like[i])) sum_log_like = sum_log_like + 

log_like[i] 

 } 

return(sum_log_like) 

 

In this case, you are simply excluding the NaN’s from the sum of the likelihood, 

which is the same as assuming their likelihoods are 0. 
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9) Finding the global minimum.  As I described above and in lecture, it is quite possible 

that bbmle() will happily report that it has converged on a minimum that is not the 

global minimum.  In this case, the answer you get depends on the initial conditions.  This 

is not the software’s fault—it has done exactly what you told it to do—starting at the 

initial conditions, search the area around them until a minimum is found with acceptable 

tolerance.  There are two ways this can go wrong.  The solution space may be very flat, 

which means that many different combinations of parameter values give very similar 

likelihoods.  The second problem occurs when the likelihood surface (think of a 3 

dimensional plot with 2 parameters as the x and y axes and the likelihood as the z) is very 

complex with lots of hills and valleys, the search can get stuck on the top of a local hill (if 

we are maximizing the likelihood) or stuck in a local valley (if we are minimizing the 

negative likelihood).  This is the problem of a local minimum. In either case, you find 

that you get different results when you use different initial conditions. 

 

The first of these problems (flat solutions) can be solved by adjusting the way the 

algorithm searches.  The optimization methods implemented by mle2 are performed by 

the R function optim( ).  It is valuable to take a look at the help on this function.  The 

optim() function approximates derivatives using methods resembling those we  

learned earlier (Eulers and Taylor series).  Avoiding the gory details, the accuracy of this 

approximation depends (as before) on  x , that is the step size.  You can adjust the step 

size using a control argument to optim( ). Consider the following code: 

 
 

start=list(N0=200,B1=.15,K=2000,r=.16, sigma=.01) 

##############first call to mle2 

m2 = mle2(minuslogl = LL1, start = start, data = list(y=obs$obs_n),  

 skip.hessian=FALSE,  control=list(trace=TRUE, maxit=5000)) 

summary(m2) 

#confint(m2) 

 

start=list(N0=200,B1=.15,K=2000,r=.16, sigma=.01) 

 

 

##############second call to mle2, notice adjusted step size in 

parscale( ) using results of first model object, m2. 

m22 = mle2(minuslogl = LL1, start = start, data = 

list(y=obs$obs_n),  

 skip.hessian=FALSE,  control=list(trace=TRUE, maxit=5000, 

 parscale=abs(coef(m2)))) 

summary(m22) 

 

By changing the initial conditions for the first call to mle2, you discover to your 

enormous distress that the estimates you get are subtly dependent on the initial conditions 

specified in the list start. Moreover, your attempt to get confidence intervals and 

likelihood profiles causes all sorts of output from R that resembles swearing.  However, 

you are probably very close a true maximum (or minimum).  So, in a second call, you 

scale the step size to the magnitude of the parameters that you discovered in the first call, 

i.e., the bit of code that reads: parscale=abs(coef(m2)).  You will very likely find 
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that the parameter estimates you get from the second call to mle are not sensitive to the 

initial conditions (unless you give it totally unreasonable values—remember, you 

discovered you starting point by plotting the data, right?) 

 

The problem of a very complex likelihood surface can easily arise with models of high 

dimension (i.e., many parameters) and if you have too many parameters relative to the 

data, well, you deserve to suffer.  The only sure fix in this case is to embed your call to 

mle2( ) in a series of nested for loops where you iterate over a set of values for the 

initial conditions for each parameter, storing the parameter values and the associated 

negative log likelihood for each iteration in an array.  You then search the array for the 

minimum negative log likelihood. This is a bit tedious and because of that, I won’t cover 

it in the course.  But it is a brute force, if time consuming, approach to assuring that your 

minimum is global. 

 

 

10) Never try to estimate really small things. 

 

Consider the following code: 

 

 
#The first version of the Ricker model with Rainfall 

> ##########################Ricker model 

> # make a  Ricker function where the carrying capacity is 

#modified by rainfall. x[t]is the normalized rainfall for 

#the current years growing season (just before census) it 

#is 0 when = mean rainfall, negative when below it, and 

#positive when above it. 

Ricker2 <- function(N0,B2, K,r, x=norm.rain,yrs=30){ 

 N <- numeric(yrs) 

N[1] <- N0 

for (t in 2:yrs) N[t] = N[t-1]*exp(r-r/K*N[t-1]+B2*x[t]) 

return(N) 

 } 

 

#The second version: 
Ricker2 <- function(N0,B1,B2r, x=norm.rain,yrs=30){ 

 N <- numeric(yrs) 

N[1] <- N0 

for (t in 2:yrs) N[t] = N[t-1]*exp(r-B1*N[t-1]+B2*x[t]) 

return(N) 

 } 

 

These two models are algebraically identical where 
  
B

1


r

K
.  However, the first version 

fits nicely, where the second version returns infinite values and never produces an 

estimate.  This is because B1 is a tiny, tiny number.  The numerical methods used here 
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simply cannot estimate it.  There are many tricks for avoiding very small values, 

changing parameters like this is one of them, rescaling the data is another. 
 

 

 
 


