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Foreword

Protection of endangered or threatened plants and animals is a principal
focus in the continuously evolving realm of environmental management
policy. Motivation for protecting individual species may arise from a variety
of considerations, including esthetic principles, human and ecologicat
health, conservation ideals, biodiversity valuation, and commercial interest.
In addition, in order tobe effective, environmental policy must balance these
concerns with a wider range of technical, economic, and social issues,

An understanding of the basic principles of population ecology is
essential to the development of technically sound environmental policy as
well a5 to the creation of specific management strategies for protecting pop-
ulations. In this text, Akgakaya, Burgman, and Ginzburg-—~through the use
of simple computer simulation models—teach those principles and illustrate
their application t0-a brofid spectrum of practical problems. The models used
not only take into accéunt the temporal behavior of populaiens but also the
significance of their spatial distribution. A modeling approach is heipful
because models are such a powerful means for integrating large amounts of
information and data and conducting analyses of uncertainties. Models also
provide a means to analyze population responses to alternative management
strategies and policies.

A major theme of this text is uncertainty —how to account for it and
analyze its implications. For those involved in the development of environ-
mental policy, it i5 essential to recognize uncertainties inherent in our
knowledge of popillétion dynamics, individual species, and the environ-
ment. The policy Bnalyst needs 0 understand the implications of these
uncertainties with respect to predicting population behavior. For example,
the analyst might nged to know whether uncertainties in a specific situation
are sufficiently small 1o permit practical distinctions betwéen predicied
resylts of alternative management scenarios. The analyst also needs to be
able to determine what research or monitoring programs would most effect-
ively reduce uncertainty in predictions of a specific population’s response.

For over a decade, the Electric Power Research Institute (EPRI) has been
funding the development, testing, and application of the RAMAS software
used in this book. The motivation for this investment has been to produce
risk-based technical tools to address practical questions concerning endan-
gered and threatened species. EPRI supports the publication of this text as a
means of transferring the technical knowledge and insights that have been
acquired during this process to students, environment professionals, and the
general public.

Robert Alan Goldstein
Environment Group
Electric Power Research Institute



Foreword

To many people, population ecology seems, at first acquaintance, to be the
antithesis of mathematics. Ecology is about living things, not numbers. It is
about the relationships of living things to each other and their environment,
not about formulas. Complex things in a complex world that require quali-
tative observation and description for understanding. Where do deer live?
What do they eat? What species of songbirds are found in old-growth
forest? Why do some plant species seem to grow everywhere, but others
only in gpecific places? Not the kind of questions that beg for numerical
answers.

Eventually, however, 2s our qualitative knowledge increases, quantita-
tive questions emerge. How many deer can live in a thousand-acre woods?
How much food does each need to survive? Why are there more songbird
spedies in larger patches of old-growth forest? How big a patch of old-
growth do we need if we want to be sure of keeping all its songhirds around?
1t does not take long for population ecology to reveal jtself as an intensely
quantitative discipline.

For whatever reasons, many people drawn to the fascination and
beauty of the qualitative aspects of ecology are put off by the quantitative
aspects. Mathematics seems far too abstract and inanimate to describe pal-
pable flesh and blood. Yet, it is enly through the application of mathematics
that we can begin, not jusk to see, but to understand the underlying patterns
in the distribution and abundance of living things that is the essence of pop-
ulation ecology. This book is meant for such people. The text is clear and the
examples real. But more than this, the book is accompanied by a friendly
computer program that allows the reader lo interact with the quantitative
aspects of ecology without first having to become a mathematician. A little
time with this program and the exercises the authors provide quickly illus-
trates how dynamic and fascnating quantitative population ecology can be.

Another strength of this text is its scope of coverage. Too many treat-
ments of pepulation ecology start and stop with the basic models of popula-
tion growth and life tables. This text and computer program capture the
basics but go beyond to include such current and difficult topics as metapo-
pulation dynamics and population viability analysis. The authors also pro-
vide the best treatment of variation and its effects on population dynamics
that ! have seen anywhere.

By making this discipline far more accessible to a wider audience, the
authors deserve much credit and our sincere thanks.

Mark Shaffer
Vice President for Program
Defenders of Wildlife



Preface

Practical ecological problems such as- preservation of threstened species,
design of nature reserves, planned harvest of game animals, management of
fisheries, and evaluation of humar impacts on natural systems are addressed
with quantitative tools, such as models. A model is a mathematical repre-
sentation of a natural process. Many bialogists now use models
implemented as computer software to approach the quantitative aspects of
these practical problems.

In addition to their practical use, such models are excellent tools for
developing a deeper understanding of how nature works. You can use the
program described in this book, RAMAS Ecolab, to apply most of the con-
cepis discussed in the book and develop your own models. At the end of
each chapter, there is a set of exercises. Some of these require only pencil and
paper, some require a calculator, and others require the program. Although
the book can be used without the program, we believe that most of the more
complicated concepts will be much easier to understand when you demon-
strate them to yourself using the program.

We hope that, in addition to teaching you the principles of, and prac-
tical methods used in, population ecology, this combination of textbook and
software will also stimulate you to learn more about modeling, mathematics,
and programming. It might even inspire you to write your own computer
program for developing ecological models. The principles of building
medels using a software such as RAMAS EcoLab are the same as those of
writing your own equations or computer programs (even though the tech-
nical details are very different). Our focus here is not on the mechanics of
how a model is implemented, but rather on understanding how various
interacting ecological factors should be put together and on understanding
the implications of the model’s assumptions. Our aim is {o discuss principles
of population ecolegy, to show a collection of methods to implement these
principles, and to help you appreciate both the advantages and limitatians of
addressing ecological problems with the help of models.

To the teacher

This book introduces principles of population ecology, with specia)
emphasis on applications in conservation biology and natural reseurce mar-
agement. Each chapter includes examples and laboratory exercises based on
lhe software RAMAS Ecolab. While less powerful than the research-grade
software developed by Applied Biomathematics, RAMAS Ewolab incorpo-
rales all features of the RAMAS Library essential for teaching the basic
principles of population ecolopy, at a level accessible lo undergraduate
students.

xdi



Preface it

In an introduction ko population ecology, most undergraduate students
consider leamning the mathematics required by traditional texts to be an
unnecessary hindrance. The aim of this book is to teach quantitative methads
that are necessary to develop a basic understanding and intuition about eco-
logical processes, without intimidating or discouraging students who do not
have extensive mathematical backgrounds. Even students who are
intimidated by mathernatical equations are usually not afraid of using com-
puters. We hope that our integration of software that implements
mathematical models in population ecology with an undergraduate texthook
will make these models accessible to undergraduates in the biological and
enviranmental sciences.

It should be emphasized that we do not consider developing models
with the use of software as an alternative to learning the underlying mathe-
matical concepts. The goal of this book is to introduce mathematical ecology
by developing an intuffive understanding of the basic concepts and by
motivating the students through examples that put these concepts to prac-
tical use. We believe that use of software greatly enhances the understanding
of the concepis while encouraging the use of, and ernphasizing the need for,
quantitative methods.

In addition to the use of software, there are a number of other points in
which this text diverges from the more traditional textbooks on population
ecology. For example, we decided to develop the models almost exclusively
in discrete time (with difference equations) and only briefly mention such
things as instantaneous birth and death rates. The equations we use are
qualitatively equivalent to the corresponding differential equations, but we
believe they are much more intuitive and easy to grasp.

Another important difference i our emphasis on, and early treatment of
variability and uncertainty. Use of software instead of analytical models has
allowed us to incorporate these important concepts early on, in a way that is
simple enough to be easily understood by undergraduate students without
strong mathematical backgrounds.

We develop the models from the very beginning in a way that will
make the later addition of concepts such as demographic slachasticity and
age structure very natural and intuitive. In discussing population regulation,
we postponed writing down the famous logistic equation almost to the end
of the chapter, congentrating instead on the general, qualitative aspects and
dynamic consequences of density-dependent population growth. We started
the chapter on age structure with analyzing census data to build a matrix
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model, rather than the more traditional life-table approach. We suspect that
starting with life tables causes some of the confusion that arises when life
table variables are to be used to build age-structured models.

We designed the book and the software with sufficient flexibility to
allow their use in lecture classes, computer laboratories, or both. They can be
used in a lecture class accompanied by a computer laboratory, or in a tecture
class in which the examples that require software are assigned as homework
exercises, or in a laboratory course where the exercises are the main focus
and the conceptual materiat is read by students. Qur hope is that the soft-
ware toot we provide, in combination with our practical approach, will make
population ecology easier to learn and toteach.

Acknowledgments

We thank Martin Drechsler (Botany, Univetsity of Metbourne), Alexa
Ryhochuk {Zoology, University of Melbourne), Karen Kernan (Applied Bio-
mathematics), and Claire Drill (University of Melbourne) for reviewing the
entire book and the software; Scraya Villalba (State University of New York
at_Stony Brook) for her help in finding many. of the examples; Matthew
Spegger {Applied Biomathematics) and Sheryl Sougy (SUNY at Stony Drook).
for commenting on parts of the book; and Amy Dunham (SUNY at Stony
Brook) for the drawings,



Chapter 1
Population Growth

1.1 Introduction
Population ecology is concerned with understanding how populations of

planits, animals, and othervrganisms change over time and from one place to
another, and how these populations interact with their environment. This
understanding may be used to forecast a population’s size or distribution; to
estimate the chances that a population will increase or decrease; or to esti-
mate the number of individuals that may be harvested while ensuring a high
probability that similar harvests will be available in the future. Thus, the
focus of any given study in population ecology may be motivated by very
practical considerations in fields as diverse as fisheries harvest regulation,
wiidlife management, pest control in agricultural landscapes, water quality
monitoring, forest harvest planning, disease control strategies in naturai
populations, or the protection and management of a threatened species. This
chapter examines some fundamental concepts in the definition of popula-
tions and their environmental limits, and describes first principles of
developing population models.
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»

1.1.1 Definition of a Population

The first step in developing an understanding of a population is to define its
limits. A population may be defined as a collection of individuals that are
sufficiently close geographlcally that they can find each other and réproduce.
The implicit assumption in this definition is that if individuals are close
enough, genes wﬂi il flow-among individuals. Thus, it restion thq ,blologmal
species conceph; - R

In practice, a population usually is any collection of individuals of the
same species distributed more or less contiguously. It may refer to a group of
individuals in a glass jar, or to a group of individuals that occurs in a conve-
niently located study prea. This approach to the delineation of a popuations
is particularly pertingnt - “tor plant species in which there is vegetalive
repmducnon -,

Ofteft, biologists md‘lj:ne field peed to degermine the geograp}uc bound-
aries of a‘pdgulation, TH2 dimits of 2 populdtion depend on the $%éand
lifeform of a species, its mode of reproduction, mode of seed or juvenile
dispersal, its habitat specificity, and pattern of distribution within its geo-
graphic range. Subpopulations may be defined as parts of a population
among which gene flow is limited to some degree, but within which it is
reasonable to assume that mating is panmictic (i.e., an individual has the
same chance of maling with any other individual). Al of the factors that
make it difficult to define the limits of a populatior-are magrified when *
trying to determine the limits of subpopulatxons Thus, reliance on the
underlymg principle of reproductive criteria may not be reasonable for some
species, and it may not be practical to establish even when sexual teproduc- -
tion is the dominant mode. In practice, if individuals are grouped and the
groups are far enough apaﬂ that djspersal or reprodugtion may be partially
limited, we call these groups subpopulations.

1.1.2 Limits to Survival and Reproduction: Niche and Habitat

Animal and plant species are limited in where they can survive and repro-
duce. Biologists have recognized for many cenhuries that limits must exist for
most species, either in the form of extremes of physical variables or in the
form of competitors and predators. The concept of a niche is useful in
describing the conditions to which a species is adapted. The niche of a spe-
cies is its ecological role, its functional relationships with other ecosystem
components. It is defined by the limits of ecological variables beyond which
the species cannot survive or reproduce. These ecological variables may be
abiotic (e.g., temperature, rainfall, concentration of chemicals) or biotic (e. B
food sources, predators, competitors). Each of these variables can be thought
of as an axis {Hutchinson 1957). If we focus on two of these variables, the
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boundaries of the niche may be represented as edges of a rectangle. More
usually the edges are drawn as smooth curves. Thege suggest an interaction
belween the factors, so that the tolerance to one extreme depends on the
levels of the other factors. For example, Figure 1.1 depicts the niche of a spe-
cles of Sand Shrimp with two ecological variables important for this species:
temnperature and salinity. Each of these two yariables is represented by one
axis of the graph. The lines represent percentage mortality, which is lowest
when both salinity and temperature are moderate. Extremes of bath salinity
or temperature cause increased mortality. The response of a species to orie
niche variable will depend to some degree on the values of the ‘other vari-
ables. For exampie, the Sand Shrimp might tolerate a higher temperature if
salinity is within the optimal range (Figure 1.1).

- .

70 /50

24 1

.

Temperature

N \
S\\

Figure 1.1. The niche of the Sand Shrimp {Crangon sepiemnspinesa)
in terms of temperature ("C} and salinity (%), under conditions of low
concentrations of dissolved oxygen. The curves represent percentage
mortality. After Haefnar (1870).

Salinity (%)

The fundamental niche is the niche defined by all the abiotic environ-
mental variables that affect a species. It represents the hmlts “of physaca]
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conditions that a species can tolerate. The realized niche is defined by both
bictic and abiotic variables. It includes things such as food availability, toler-
able physical conditions, competition with other species for resources (such
as nest sites or nutrients), and the avoidance of predators. The niche may be
determined by the availability of potentially limiting resources, or by phys-
ical properties ot disturbances that limit a population. For example, the
quality of a particular part of the niche space may depend on the abundance
of predators and their ability to éxploit that niche. The niche of a speclesmay '
vary in time and space because the physiclagical or behavioral properties of
individuals in the population may differ at different limes and in different
places.

The size and shape of the niche will change through time, responding to
changes in the properties of individuals in the population, as well as in the
environment. An example of interaction among different niche dimensions
{food, cover, and predators) is provided by the effect of predation on young
perch. The diet of juvenile Perch (Pertn flusiatilis) changes front predomi-
nantly copepods in the zbsence of predators to predominantly
macroinvertebrates in the presence of predators (Figure 1.2). This change in
the niche preferences of the species is caused by the Fact that individuals
forgo foraging opportunities in open waler when predators are present, and
focus on prey associated with structures offering protection such as rocks
and crevices. Such dynamics affect the interactions among species thal
wauld compete for food in the absence of predators. Thus, sttuctural com-
plexity of the physical habilat can determine the composition of fish
communities because of its effects on the feeding behavior of young fish.

Not all points in the niche space of a species are equally conducive to
survival and reproduction. In cancept, at least, the space includes a prefer-
endum, a region in which reproduction and survival are maximized. Beyond
this region, the quality of the niche declines monotomcally to the boundaries
of the niche space, to regions where survival and reproduction are barely
possible. The niche that is necessary for regeneration and survival through
juvenile life stages is usually different and frequently somewhat more
restricted than the niche that is necessary for survival as an adult. The envi-
ronmentai limits that an adult can tolerate may be narrower during the
reproductive season than during the rest of the year.

The habitat of a species is the place where the species lives. It is a geo-
graphical concept, the place in which the set of conditions necessary to
support a species exists. The envirorunental and biotic variables that define
the niche of a species are not fixed, but change in time and space. Thus, a
place that was habitat in one year may not be habitat in the next if the requi-
site environmental conditions no longer exist at that place; the individuals
that live there may move, fail to reproduce, or die. Drought, for example,
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Percent In diet

Mo refugeNo predator Reluge/No precator
No refuge/Predator RefugaPredator
Treatment

Cyciopoid copepods | Other (mainly macrainvenesrates)

Figure 1.2. The diet of juvenile Perch in the presence and absence of
compelition, and the presence and absence of a refuge (afier Persson
and Eklov 1995). The refuge was a structurally diverse substrale and
offered a number of feeding opportunities that were noi present in
open walor. The results in fhe ligure were oblained from rapllcaled
laboratory axparimenls.

will contract the geographic range in which a species can survive and repro-
duce. In such circumstances, the niche of the species is not altered, but the
habitat contracts. In this book, we examine population ecology with a
particular focus on vnderstanding and explaining a species’ response Io
changes in its environment, including its habitat.

1.1.3 Mathematical Models in Population Ecology

Population ecology, as we discussed above, is concerned with changes in the
abundance of organisms over wer time and over space. Abundance and how il
changes can be described by words such as "abundand or "rare," and 'fast’
or "slow,” bui population ecology is fundamentally a quanﬁtative science. To
make population ecology useful in practice, we need o use quantifative
methods that allow us to forecast a population’s future and express the
results numerically.
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“Frequently, the need to make forecasts leads to the development of
models. A model is a mathernatical description of the population. A model
may be as sxmple as an equation with just one variable, or as complex as a
computer algorithm with thousands of lines. One of the more difficuit deci-
sions in building models (and one of the most frequent uustakes) concerns
detail about fhe ecolo@y of the specics to add to the model.’

Simple models are easier to understand and more hkely to give insights
that are applicable in a wide range of situations, They also have more sim-
plistic assumptions and lack realism when applied to specific cases. Usually,
they cannot be-used to mke reliable forecasts in practical situations,

Including more details makes a model more realistic and easier to apply
to 5peclﬁc Cases. Howey’erm most practical cases, available data are limited
and Bgmut' an.iy,-ihe mp&@st els. More car?zx mocf&—requm ‘mare.
data f0-mafere aﬁteeasts Attempts to intlude mbre d¥tails thankan be -
justified by the quality of the available data may result in decreased predic-
tive power and understanding.

The question ¢ of the appropriate level of ccmplexjty {ie.. the trade-off

(1) charactenshcs of the species under smdy (e.g.. its ecology),
(2} whatwe know of the spegies (the uanlabxhty ofdafa),and _ .,
(3} whatwe want to know or predict (the questions addressed}

Even when detaﬂed Qata are available, general questions requim sunpler
models than more spemﬁc ones. For example, models intended to generalize

the effect of one factor (such as variation in growth rate) on a population’se..

future ma$incdude less détall than fose interded to-forecast the long-term~
persistence of a specific species, which in turn, may include less detail than
those intended o predict next year's distribution of breeding pairs within a
local population.

The purpose of writing a model is to abstract our knowledge of the
dynamics of a population. It serves to enhance our understa.ndmg of a
problem, to state cur assumptions explicitly, and to identify what data are
missing and what data are most important. If the data required for building
the model are plentiful, and if our understanding of the dynamics of a pop-
ulation are sound, we may use the model to make furecasts of a population’s
size or behavigr. In the rest of this chapter, we will introduce some very
simple models. In later chapters, we will add more details to these models.

vll. .
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1.2 Births and deaths, immigrants and emigrants

The Muskox {Ovibos muschabis) is a large mammal that was eliminated from
substantial areas of its natural range in North America and Greenland
during the 1700s and 18005 by excessive hunting. The last individuals on the
Arctic Slope of Alaska were killed in 1850-1860. In 1930, the legislature of
the Territory of Alaska autherized funds to obtain stock from Greenland for
reintroduction to Nunivak island. The island was to serve as a wildlife
refuge in which the reintroduced population coudd grow. It was chosen
because it was relatively accessible, was free of predators, and permitted
confinement of the population to a large area of apparently good habitat. A
population of 31 animals was reintroduced Jp Nunivak Island in 1936. Once
grown, the population was Lo serve as a source for further reintroductions on
the Alagkan mainland. -

~ The popu'l" tion was censused itregularly between 1936 ‘and 1947, and
then annually between 1947 and 1968 (Figure 1.3). The objective of this sec-
tion is to use the census information to construct a mode! that may be useful
in managing the population.
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Figure 1.3. Population censuses of Muskox on Nunivak Island
batween 1936 and 1968. During the last four years of the census, from
1965 to 1968 {shown as closed circles), some animals were removed
from the island and relocated to new sites (after Spencer and Lensink
1970).
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The tokl number of individuals (N} in a fixed region of space can onty
change because of births, deaths, immigration and emigration. Change in
population size over a discrete interval of time from ¢ to f+1 can be
described by the equation

Netl)=NO)+B-D+I-E

where B and D are the jotal-number of births and deaths respectively during
the time interval from ¢ to {+], while ] and E are the total rumber of indi-
viduals entéring and leaving the region during the same time interval (the
time interval in this example is one year). Of course, we may replace
immigration and emigration by processes that are mediated by humans,
such as reintroductions, harvesting, or poaching. Change in population size
from year ¢ to t+1 is given by N{t+1) - N(f).
.o Many populations like. the Nunivak Island Muskox papn.ﬂh&m are:
iff the sensZ that lheféts snp jnimifratign oz efriggationt [n these pases -
the model for the population becomes

N+ =N +B-D

1.2.1 Exponential Growth

Rather than express births and deaths as numbers of individuals, we may
express them as rates. For an anndial species, the formulation of an equiation”
to express population growth is relatively simple. In an annual species, all
the adults alive at year + die before year t+1. Thus the number of individ-«-
uals in the population next year is equal to the numnber in the population this
year, mul tlplled by the average number of offspring per ind hndual

- -~ ,- wooo- -

N+ 1) = N(7) f

We express births as the fecundity rate, f. It may be though! of as the
average number of individuals born per individual alive at time ¢ that sur-
vive to be counted at the next time step, £+1.

For an annual species, fecundity is equal to the growth rate of the pop-
ulation,

N+ 1) =N R

The rate of population increase (or, population growth) is conventionally
represented by the symbol R. 1t is called the "finite rate of increase” of a pop-
ulation. Despite the use of words such as "grawth” and “increase" in its
definition, R can describe both growth and decline in abundance. If R is
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greater than 1, the population will increase, and if R is less than 1, the pop-
ulation will decrease. When births and deaths balance each other, R equals 1,
and the population abundance stays the same.

If we want to predict the population size for two years, instead of one,
we can use the above equation twice:

N(t+2) =N+ R
NED =N R

1 we combine these two equations, -

N(t+2)=NORR
N(+2y =N B

) Mure generally, if there is a need to predict the population sfze ¢ time steps
-into the_future beginning from time step 0, the equation for population
growth may be written as

N =NO) R

which says that, to estimate the population size at time step ¢, multiply the
population size at the beginning, N{0), with the growth rate, R, raised to the
power of  {"raised to the power of " means multiplied by itself t times).

This equation represents a model for the dynafnics of a populdtion. A
simple model such as this one is an equation describing the relationship
between independent variables, parameters, and dependent varisbles. A
dependent variable (or state variabie) is the quantity you want to estimate
{such as the future population size). 1t depends on the other factors, called .
independent variables. Parameters are those components of a model that
mediate the relationship between independent and dependent variables. The
equation above allows us to estimate the population size at any time in the
future. The population size at time ¢, N(f), is the dependent variable, and
time {f) is an independent variable. The growth rate (R} and the initial pop-
ulation size, N{D), are parameters. The type of population growth described
by this model is called exponential growth because of the exponertiation in R'.
Sometimes, it is also called geometric growih or Malllwsian growth (after
Thomas Malthus).

1.2.2 Long-lived Species

Many species are not annual: they survive for more than one year and
reproduce more than once. To allow for the survival of individuals for more
than a single time step, we may introduce a survival rate {s), which is the
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proportion of individuals alive at time ¢ that survive lo time ¢+1. Thus the
population size at the next time step is the sum of two numbers: (1} the
number of individuals that survive to the next time step (out of those that
were already in the population), and (2} the number of offspring produced
by theon that survive to the next time step. We can wrile t!us sentence as the
following formula

- e

Nty =N s+ MDD f

This is a model of population growth in which births and deaths are
expressed as fecundities and survivals. By rearranging the formula we get

N(z+l) N(:) (s +f)

:"' - L L
.]:ﬂe sum § + J tepresents ﬂ\e.-mmbmed eﬁect of fecungdtties andsurvwal‘s on’
the population abundance. If we add these two numbers, we can rewrite the
equation as

Ne+1)=N{O R

where R is the same growth rate that we discussed above. In the rest of this
chapter, we will only use R and not concentrate on its components s and f.
These components ‘will becothe important in the next chapter, because’the
effect of certain types of variability depends on how the growth rate is parti-
tioned into survival and reproductiorf"We will further develop. this
Yistinction between survival and reprodigtion when we learn about
age—structured mndels in Chapter 4 -
v R - D :

1.2.3 Using the Model

The first task in applying the model above is to estimate R. We may
rearrange the equation so that

N(+1YN() = R

Let's consider the growth of the Muskox population on Nunivak Island
(Figure 1.3). Knowing the sizes of the Muskox population in 1947 and 1948
(49 and 57, respectively), we can estimate the growih rate of the population
in 1947 simply as 57/49, which equals 1.163. This estimate of R does not use
all of the information available to us. We know the population sizes in all
years between 1947 and 1968. Figure 1.4 below provides values for R for all
years during which observations were made in consecutive years.
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Figura 1.4, Growth rates of the Muskox population on Nunivak Island
between 1347 and 1868. The closed circles reprasent years in which
animals were removad from the. population. These rates were
exduded lrom the estimation of the- average growth rate for the pop-
ulation, rapresented by thé dashed ling,

Perhaps the nost striking aspect of Figure 1.47is that the growth rate of
the population is not fixed, but varies from one year to the next. There is no
apparent trend through time. We will explore the causes and consequences
of this variation in the next chapter. For the moment, if we want to make
forecasts about the size of the population, it will be necessary to cafculate the
average growth rate of the population. The growth of a population is a muf-
tiplicative process. That is, we estimate next year's population by
multiplying the current population by the average growth rate. Because
growth is a multiplicative process, the appropriate way lo calculate the
average growth rate is to find the geometric mean of the observed growth
rates. There are 17 growth rates between 1947 and 1964, so we calculate the
geometric mean of the series by multiplying these 17 numbers, and taking
the 17th oot af the result:
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it

(1.16x1.14x094x1.25x L1 x L. 17x1.11 % 1.16x 1.09x1.14

i
i
1]

¥ 27x1.14x1.24x1,14x1.2x1.15x1.15

it

10.392

= "V10.392

= 1,148

L]
i

The population increased by an average af 14.8% per year between 1947
and 1964. We can use this statistic to make predictions for the population.
Far example, if the island population continues to grow at the same rate as it
has in the past, what is the population size likely to be in 1968, given that
there were 514 Muskox in 1965? To answer this, we would calculate
o MR e NGRS e a3 M el Sl

N(1968) =N(1965)- R
=514 - (1.148)
=711

Thus, in three years, we can expect that the population will increase to about
778 anjmals.

If a population is growing exponentially, then the population size should
“appear 10 be linear when it is expressed on = log scale, The¥tg scale is a -
means for verifying visually that a population is indeed growing exponen-
tially. The Muskox data fit a straight line quite well when population size is

on a log scale (Figure 1.5).

124 BoublingHime -

Frequently, the rate of increase is expressed in terms of doubling time. Given
that the average rate of increase is known, how long will it take for the pop-
ulation to double in size? We know from above that

N(tHy=ND)- R

where N{0) is the current population size and N{t} is the population size t
time steps in the future. We may write the question above as: If N{t)/N(0}
equals 2, what is /7 In other words, if

R =2

then what is t?7 Taking the nahural logarithms of both sides of the equation,
and rearranging, we get
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Figure 1.5, Plot of population size versus time for the Nunjvak I1sland
Muskex population. Note thet the population size {p-axis) is in loga-
Athmic scale.

t- In{R)
{

In(2)
In(2}/ In{R)

[ [

In the case of the' Muskux, the doubling time is In(2)/1n(1.148), which is
equal U5 years. I

1.2.5 Migration, Harvesting, and Translocation

We estimaled above that the population in 1968 would be close to 778 indi-
viduals. In fact, the population size was recorded at 714 animals. Note that
the growth rate of the population ir the pericd from 1965 to 1968 was
comsistently below average (Figure 1.4). Al least part of the reason for this
was that 48 animals were removed from the population and released in sites
elsewhere in Alaska, a process called translocation. Without these removals,
the population would have been 762, much closer to the predicted value of
778. Of course, this ignores mortality and repreduction among those animals
that were removed, had they remained,
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One may use calenlations of the growth rate of the population to &3-
mate the number that may be removed in perpetuity. The basic idea is that if
things continue in the future as they have in the past, one could remove or
harvest a number of animals from a population so that the effective growth
rate is 1. In the case of the Muskox, the natural rate of increase is 1.148, so
0.148 {or about 15%) of the pozu]atlon, on average, will be available. In a
population of 714 animals, this would be about 106 animals. Werhavé
already seen that the growth rate varies from year to year, which means that
the number of additional individuals in the population may not be 106 every
year. A more intelligent strategy would seek to remove all those animals in
excess of a base population of, say, 700 animals. Nevertheless, we could
expect to have about 100 animals available each year for translocation to
other sites. If we were managing, the population for harvest rather than

“Hanslqeation, the calctdmtions wotild be thesame. -

If the population were not completely closed, so that mtnugramm or
emigration could occur, this could be incorporated into the existing model
quite easily. For instance, a fixed number may arrive on average each year,
but a fixed proportion of the existing population may disperse to other
places. immigration could be expressed as the addition of a fixed number (I},
because the number that arrives in 2 population often does not depend on
what is already in the population. Emigration could be expressed as a rale
(¢}, if we assurne that moze am,mals would emigrate fram a_gpore crowded
population. The model would becomg'_ -

NG+ 1) = NG) 5+ NOYE VNG & e+l
...N(r)(s-r-f-e)h_' . L
R ey L DU L .. S
In this model, the emigration rate is incorporated into the growth rate term,
R.Emigrants are treated in the same way as deaths.

In some eases, it may be better to represent emigration as a fixed number
rather than a rate. For example, the management strategy for a species may
stipulate a fixed number of removals. However the model is written, it
should best reflect the dynamics of the species in question. There are no strict
rights and wrongs in building mathematical expressions to represent the
dynamics of a population. The anly rule is that they should represent the real
dynamics of the population as faithfully as possible.

1.3 Assumptions of the exponential growth model

Whenever a model is constructed, it employs a set of assumptions reducing
the complexity of the real world to manageable propaoriions. Assumptions
are all those things not dealt with explicitly in the model but that must nev-
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ertheless be irue for the mode] to provide reasonably accurate prediciions.
The model above makes a number of assumptions; it is obviously a vast
oversimplification. A list of assumptions of this model is:

{1) There is no variability in model parameters due to the vagaries of the

environment. The model for exponential population growth above is
clearly a determindstic model; there is no uncertainty inits prediction. It
says that at some time, £, in the future, the population size will be N{1),
and it can be calculated exactly by the right-hand side of the expression.
We have already seen that the rates are pot likely to be constant over
time. We will explore the consequences of varying growth Tates in the
next chapter. -

(2) Population abundance can be described by a real number. In other words,

the model ignores that populations are composed of discrete numtiers of
individuals. In fact, birth and death rates (and immigration and emigra-
tion rates) may vary simply because real populations are discrete and
structured. We will explore this factor in the next chapter. However. this
kind of varjation is unimportant in large populations.

{3) Populations grow or dedine exponentially for an indefinite period. This

implies that population density remains low enough for there to be no
competition among members for limiing resources. These processes (re-
lated to density-dependent efiects) are discussed in Chapter 3.

(4) Births and deaths aré iﬁdegendent of the ages or of any other unique
properties of the individyals. Essentially, we assume that individuals are
identical. In real populations, the probability of surviving, the number of
suhrviving offspring produced, and the propensity to immigrate or emi-
grate are ot likely to be-the same for different individuals in.a
population. They may depend to some extent on the age. sex, size,
health, social status, or genetic properties of the individuals, However, it
turns out that even i birth and death rates are, say, age-dependent, the
mean rate per individual will remain constant if the proportions of the
populztion in each age class remain constant over time {see Chapter 4).
Thus, it is sufficient to assume that the proportion of individuals in these
different categories (such as age) remains the same. This assumption will
be violated by, for example, genetic changes in the population, or by
changes in the sex ratie (the relative numbers of males and females}, or
by changes in the age structure (the relative numbers of individuals at
ditterent ages). In Chapters 4 and 5, we will discuss models that track
changes in the composition of a papulation.
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{5) The species exists as a single, panmictic population. Within the popula-
tion, the individuals are mixed. The interaction with other populations of
the same spacies is characterized by the rates of emigration (as a constant
proportion of the abundance per time step) and imrmigration (as a con-
stant number of individuals per Bme step). The interactions with other
species are characterized by their constant eflects on the population
growth rate. In Chapter 6, we will explore models in which the dynamucs

. of several populations of the same species are simultaneously described.-

(6) The processes of birth and death in the poputauon can be approximated
by pulses of reproduction and mortality; in other words, they happen in
discrete tine steps and are independent. Of course, the timeinterval may
be made arbitrarily short, in which case the models would approach for-
mulations in continuous time. The continuous time analogues of these
expressions will be explored in Section 1.5.

- e, o— nt

-
4.4 Applications -

We have already explored some applications of the exponential growth
model in the above discussion. These applications are relevant to wildlife
management, translocations and reintroductions, and harvesting control. In
this section we describe applications to human population projections and
pest control.

. - —

1.4 Human Populafion Growth
The exponential model for pupulation growth iss60. simple that one might
hesitate to use it in any real circumstances, However, we have seen that it
approximates the population dynamics of the Muskox population reason-
waply.well, atleagt in the shogtderm Jwas invented originally by Makhug-in
1798 to predict the size of the human population. It still fits the growth of
human populations, both glohally and within individual countries. Table 1.1
shows estimates of the human population size in the recent past.

In the 45 years between 1950 and 1995, the population grew from 2.51
billion to 5.75 biltion {"billion” has different meanings in different countries;
here we use 1 billion = 10° = 1,000 million). Usmyg these figures, and the
equation

N(5)= N} - R
or
N(1995) = ¥(1950) - R®

we can calculate the annual rate of growth. Rearranging the equation,
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Table1.1. Estimates of the human population size.

Year  Population in billions

{ie., x10%
1800 091
1850 113
1870 130
1890 149
1910 1.70
1930 202
1950 251
1970 3.62
1975 397
1980 441 .
- 1985 A8 N -
1990 * 529
1995 575
After Holdren (1991}, and Pulliarm and
Haddad (1994).
R = N(1995) / N(1950)
R =5.75/2.51 = 220084,

which means that R, multiplied 45 times by itself equals 2.29084. To find the
value of R, we need to find the 45th ro6t of 2.29084, or find

R=2.290844
. - . -
You can do this with a calculator or a computer (using spreadsheet software,
for example). Another easy way is to use logarithms. Taking the logarithm of
both sides, simplifying, and then exponentiating, we get

In(R) = (1/45) - In(2.29084)
In(R) =0.02222 - 0.32892
In{R)=0.01842

R =exp(0.01842) = 1.01859

These figures suggest a rate of increase per year between 1950 and 1995 of
about 1.0186, ar 1.86% per year. At this rate, the human population doubles
every 37.6 years. The rate between 1800 and 1950 was about 1.0068, or 0.68%
each year (which corresponds to a doubling time of 1025 years). The
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increase in the growth rate betweeh these two periods is generally attributed
to improvements in medicine and standards of living that have served to
reduce the death rate.

Predicting the size of the human population holds a great deal of interest
for r_organizations that deal with pubhc _health, i mtematmnal I:radg, _and
development planmnj The moclels that are used for these purposés are
more complex than the ofes developed so fa? in this book, buit they use the
same kinds of parameters such as fecundities, survivorships, and migration.
They differ mainly by assuming that growth rates are not fixed but will
change over {he coming few decades, and by assumning that the growth rate
will decline to 1.0 in most countries in the first half of the next century.

A few pro]echona of the human population have been carfied out
without assuming that the human rate of increase will slow down, resulting
inclearly unreasorkblé predifions. For exampleridsthe growth rate of 1.0186.
was to be sustained until the year 2100, there would be 40 billion people on
earth, and by 2200 there would be 262 billion people. There is Tittle doubt
that the planet cannot sustain this many people, even given the most benign
assumptions sbout the interactions between people and the environment.
Using a different model in which the rate of population increase was itself
increasing, Von Foersler et al. in 1960 suggested that the human population
would become infinite in size on November 13, 2026 {this date is the so-
called Doomsday predmtpn) The United Nations takes a more conservative.
‘view, assuming appropriate slowing in _tt_tg_growth rate of Kuman
go 5, and it predicts a total population size of between'7.5 and 14:2

en’ people 'ov the _year 2100 “This view rests on the assumption that the
_Birth rate {n many ndtjons will decline to equal the death ratebve_c the next
few deEM}g uged-@). The reasoning.ig that there is a ce amount of,,
cultural inertia that résults in Jarge family sizes, developec tiginally to
compensate for child mortality, and that this propensity towards large fami-
lies will erode over one or two generations as people realize that most of
those born will survive.

The size of the human population is also of considlerable interest to ecol-
qg;sts and wildlife managers, not least because of the relationship between
the size of | the human populatmn and the rate of the use of natural resources,
both within most countries and globally. For example, collection of firewood
and charcoal for domestic and industrial use is an important cause of forest
clearance, particularly in savanna woodlands, and increasingly in tropical
moist forests, However, the relationship is not simple. Frequently, the
unequal distribution of land and other resources plays an important part in
determining the rate at which resources are used.
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Figure 1.6, The “benign demographic transition® assumed In models
used to predict human papulation growth in the 21st century (after
Hardin 1993}. The differenca between the death and birth rates causes
population growth, but birth rates eventually decline and the population
grewth stops.,

- -~

Humanpopulation growth raises three issues. They includé'the absolute

* size of the population (P), the per capita consumption of biclogical resources
(called affluence, A), and the environmental damage of the technologies®
employed i supplying each unit of consumption (T). The impict {) of-the <
human population on the natural environment may be expressed a5 (see.
Ehrlich and Ehrlich 1990; Hardin 1993)

I=PxAxT

Human population size and energy use are relatively easy to measure (Table
1.2, Figure 1.7). Environmental impact per unit of consumption is more diffi-
cult. Energy use per person has risen over the last 150 years. Even if the
environmental impact per unit of consumption remains constant, changes i
environmental impact are measured by the product of increasing affluence
and increasing population size,_

Of cowse, the equation above is a vast oversimplification of the issue of
human population growth. For instance, it ignores interactions and cumula-
tive effects that may be felt long after the impact is made. Humans make
direct or indirect use of about 30% of the terrestrial net primary production

of the planet, and the changes caused by human impacts have reduced ter-
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Figure 1.7. Energy use per person, 1850-1990 {(atter Holdren 1891
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restrial met primagy- production by about 13%. As a species, humars’
currently uburp dpproximately two-fifths of the productivity of terrestrial -
ecosystems. The product of population size, per-capita_consumption and
environmental damage.per it of ‘consumption sets the limit to human acti-

~Vities. 1t remains to be seeh exactly what Hat h?rﬁt__ Lsﬁ_‘;l_’ef-c‘agj!'a -
consumption of energy is one indicator of environmental load, and recent
estimates for different parts of the world are provided in Table 1.2 Japan is
considered to be an industrial country that is an efficient energy user. The
United States alone has been responsible for 30% of the world’s cumulative
use of industrial energy forms since 185(.

Malthus pointed out about 200 years ago that increasing human popula-
tions would eventually create unsupportable demands on natural resources.
Even in countries with little or no population growth, per-capita
consumption grows mare or léss exponentially. The solutions to many prob-
fems Tie in managing resource consumptl(m and in the equitable distribution
of acress to and use of resources. In the case of nonrenewable resources, net
consumption eventually will Rave to be reduced to zero. It is relatively easy
to become pessimistic about the way in which humans use natural resources,
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Table 1.2. Population size and average energy consumption
for different demographic groups in 1990

Per-capita energy  Population

consumption size
Population (gigajoules per year).  (millions)
Industrial countries 205 1210
Developing countries 22 4081
india 11 g5
Africa 25 550
Japan 134 150
Australia 230 18 -
North America 330 280
Global average &8 '

* Atter Holdren {1991). and Boyden and Dovers {1992).

although there are still many people who believe in the ultimately benign
nature of human development and interactions with the environment.
Despite such optimism, it is likely that as the human population and its
standard of living increase, the effects of human activities on the earth’s
resources will accelerate in the near future. .

1.4.2 Explosions of Pest Densities

Ecological explosions are rapid, large-scale and frequently, spectacular
increases in the numbers of a species. They have had long-term and impor-
tant impatts on ecosystems and on the health and economic well-being of
human communities. The term explosion was coined in reference to plant
and animal invasions by Charles Elton in 1958, to describe the release of a
population from controls. Diseases often show explosive growth. Influenza
broke gut in Europe at the end of the First World War and rolled around the
world. It is reputed to have killed 100 million people. The rabbit viral disease
myxomatosis is 2 nonlethal disease of Cotton-tail Rabbits in Brazil, which
has a lethal effect on European rabbits. It was introduced to Europe in the
early 1900s and eliminated a great part of the rabbit population of Western,
Europe. It was also introduced as a biclogical control agent of feral rabbit
populations in Australia, dramatically reducing rabbit populations there
after its introduction in the early 1950s. Explosions also cccur when plants
and animals are deliberately or accidentally introduced to islands and conti-
nents where they did not exist before. There were several attempts to
introduce the Starling (Sturnus vilguris) to the United States from Europe in
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the 1800s. A few individuals from a stock of 80 birds in Central Park, New

York, began breeding in 1891, By 1510, the species had spread from New

lersey and Connecticut. By 1954, the species spread throughout North

America as far as the West Coast of the United States and northern Canada,
and was beginning to invade Mexico.

Agricultural systems and natural communities in many countries are
threatened by the inttoduction of pests and diseases that, in their country of
origin, are harmless or tolerable annoyances. We live in a period of the
world's history when the rate of movement of species among contirents and
between regions is perhaps higher than it has ever been, lazgely as a result of
detiberate translocations by people.

Exotic animal populations usually are defined as pests because they
damage production systems such as creps or livestock. Similarly, 2 weed is
simply aw unant®® plant- usually defin®® by is-mmpact oF producti®
systems. Environmental pests and weeds are species that invade natural
comrmunities, changing the composition or adversely affecting the survival
of the native biota. Pests and weeds may be the result of an introduction
from anether region or country, or they may be local {endemic) species that
have become more abundant because of changes in the landscape or because
of natural cycles in the population. Most deliberate introductions between
continents or regions have been for ormamental or utility reasons. Movement
within continents may involve natural dispersal (by wind or water), animal .
movements (native, domestic, and feral animals disperse. lhe seeds of %
weeds), vehicles, transport of agricultural produicts and so on. ;5 zv Sard

F'requenlly, explosions in the population m.e of pest ; arq;}als tajit
form of an exponential increase. For éxample, jn 1916 about dozerr indi- .,
viduals of, the .Japanese Beetle (Popjflin ;apomca‘) were. noncétl W arplant -
nursery in New Jersey. In the first year, the beetle had spread across an area
of less than a hectare. By 1925, it had spread to over 5,000 km?, and by 1941 it
had spread to over 50,000 km?® (Elton 1958).

The beetles probably arrived in 1911, on a consignment of omamental
plants from Japan. In Japan, they were seldom a pest, held in check by their
own natural predators, competitors, diseases, and limited resources. In
America, their numbers became formidable. By 1919, a single person could
collect 20,00k individuals in one day. The species fed on and often defoliated
over 250 species of plants, including native North American plants, and
many commercially important species such as soy beans, clover, apples, and
peaches,

Genetic improvement of species, by selection and Feld trials, has long
been a focus of agricultural science. The development by plant molecular
biologists of transgenic crop plants that are resistant to predation by insects
and infection by fungal and viral pathogens is an area of active research, and
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one with immediate potential for economic gain. Targets for research include
the development of plants for pesticide resistance, nitrogen fixation, salt tol-
erance, and tolerance to low nutrient status. Many results of transferring
genes between species may be environmentally beneficial. For example,
development of innate pest resistance will decrease the dependence of agri-
culture on pesticides. Genetic engineering also provides advantageous
prospects for wildlife management, such as fertility control of feral animals
and the biclogical control of weeds.

However, genetically engineered organisms pose risks through (1) the
effects of transgenic products (primary and secondary); (2) the éstablishment
and spread of ransgenic crop plants in nontarget areas; and (3) the fransfer,
by hybridization and introgression, of transgenes from crops to wild, related
material. It is ty'pically difficult or impossible tq predict the effect of the
‘products of a transgenic species on the multitude ol species and proresses
with which the species will comne into contact. Most predictions for the fike-
lihood of transgenic plants forming feral populations assume that their
potential is the same as other exptic species and that, if successful, such
species are likely to spread in an exponential fashion, at least in the short
ferm. Such dynamics may be adequately modeled by the exponential growth
model.

14.3 Exponential Decline

It is well known that humnan exploitation of mazine mathgial papulations has

resulted in steady declines. The harvesting pressure on“fhany species con-

tinued over much of this century unti] the animals becaine so scarce that it

was no longer economically viable te-catch themi. Several unportant ‘whale®
fisheries have followed this pattern, including Fin, Sei, and, Blue Whales, all

baleen whales of the Antarctic Ocean. We will explore the dynamics of the

Blue Whale population, using available data to fit a model of exponential

decline.

For Aniarctic whales, virtually complete and reasonably accurate data of
the catches are available (Figure 1.8). A decline in Blue Whale stocks was
clearly evident from catch data before the Second World War. The war
resulted in a cessation of whale harvest, which commenced again in earnest
after 1545,

The declines in stocks had been a cause for concern among whaling
nations. The International Whaling Commission, set up in 1946, set limits to
the tofal Antarctic catch. The Biue Whale catch was largely replaced by Fin
Whale catches after 1945, as Blue Whales became rarer. The general quota
provided no differential protection of species, and there was provision for
revision of the quota if there were declines in stocks.

-
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Figure 1.8. Total catch of Blue Whales in the Anlarclic, 1920-1983,
and an index of abundance of Biue Whales in the Antarctic (estimated
as the number of whales caught per catcher-lon-day), 1945-1963
(after Gulland 1971).

Blue Whale populations were already very depleted by the Hime quotas
were introduced in 1945, The stocks of the species continued to decline, and
a shorter open season for the species was introduced in 1953. However, the
difference between the catch and the productive potential of the whale pop-
ulation continued to widen because the quotas were more or less fixed and
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the population did not reproduce quickly enough to replace the numbers
removed. The imposition of quotas, and the allocation of the catch among
countries, were topics af intense political and scientific argument from the
1950s through 1967, In 1960 and 1961, the International Whaling Comumis-
sion failed to set quotas at all because of disagreements among its member
nations. As late as 1955 there was no agreement on the extent, ar even the
existence, of a dedline in Antarctic whale stocks. Fin Whales were the main-
stay of the industry at this time, and their abundance did notbegin to dedline
dramatically until 1955, even though the abundances of other whale species
were obviously falling. Throughout the period of the early 19608, Blue Whale
stocks continued to decline. The population abundance data for the Blue
Whale from the period 1945-1963 fit a siraight line quite well, suggesting
that the decline in the population size was approximately exponential
(Figure 1.9). -
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Figure 1.9, The abundance index for Blue Whale in Figure 1.8 plotted
on a logariihmic scale.

In 1963, evidence was presented to the whaling industry that its quota
was three Umes higher than the level at which further depletion of the stock
could be avoided. The industry reduced its harvest to these levels by 1967.
One critical failure in the process of regulation of the industry was that sci-
entists failed to provide clear advice to the industry after 1955, when &
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reduction in the quota was clearly necessary and would have been much less
drastic than the reduction that eventually was necessary. The Blue Whale
population was reduced from about 20 to 50 thousand individuals in the
1930s to between 9 and 14 thousand in the mid 1950s. It remained approxi-
mately constant at about 14,000 individuals between 1965 and 1975.

1.5 Additional topic

1.5.1 Population Growth in Continuous Time

Most examples in this book involve populations of species living in tem-
perate_regions, which have distinct t reproductive seasons ted to the

seavonality of the environment. This proferty, together with the way most

field studies estimate demographic parameters (by penqdlcally obsemng a

population), make it easy and natural to use the discrete-time formulations
of population models. However, some natural populations zeproduce and
die continuously, as does the human population. The basic model for pop-

ulation growth in discrete time was

N+l) =N+ B-D

This could be rewrltten as
oAl A
"""'_':' ANYE NQ+1) & N(D
‘-B D‘ . . e

d
-4 lad q.-

-

The symbol ANis the difference in populahon size. lf the time interval rep-
resented by AN is small, we can approximate it by the derivative dN/dr.
Rather than express. bm'chs and deaths as numbers of individuals, they may
be expressed as instantaneous rates, giving

daivids = bN - dN
= (b-d) N
=N

The difference between the birth rate an the death rate in continuous time is

called the mstantaneous growth rate (). The equation above may be solved, .
giving

N()=N(0)- "'
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the current population size, multiplied by ™. In  this equation, ¢ is a con-

stant (about 2.7); somelimes 2"’ is written as exp{rt). By analogy with the
equivalent discrete time equation, you can see that

This equation says that the population size at Hme ! in the future is given by

R=¢

because R'=(¢") =e"". The equation for _exponential population growth in
continuous time is equivalent to the model in discrete time, in which the time
mferval is made  acbitrarily small. Frequently, models for population growth
are wntten in continuous time because they are analytically tractable, i.e.,
one can find solutigns to the equations using calculus. Equatians in discretg
time, although more plausible £ for many biological scenarios, are generally
less tractable However, this is not a big disadvantage when numerical solw-

tions can be obtained using computer simulations. We will ignore models in
continuous time in this book because discrete-time models are more
applicable to most of our examples, and they are easter to explain and
understand. While we shall mention analytical solutions where they exist,

we will use computer simulations to solve most of the problems.

1.6 Exercises

Exercise 1.1: Blue Whale Recovery

This exercise is based on the Blue Whale example of Section 1.4.3, The pop«~
ulation dynamies of the Blue Whale population and predxcnons of harvest
levels have been made using exponential models. The growth rate {R) of the
population during the period represented in Figure 1.9 was (.82, je, the
populaticn declined by 18% per year. The fecundity of Blue Whale has been
estimated to be between 0.06 to 0.14 and natural mortality to be around 0.04.
In the absence of harvest, the growth rate of the population would be
between 1.02 and 1.10. We want 10 estimate the time it will take for the Blue
Whale population to recover its 1930s level. Assuming a popultation size in
1963 of 10,000 and a target population size of 50,000, calculate how many
years it will take the population o recover:

{a) if its growth rate is 1.0

{b) if its growth rate i31.02
Hint: Use the method for calculating doubling time, but with a factor dif-
ferent from 2.
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Exercise 1.2: Human Population, 1800-1995

In this exercise, we will investigate the data on human population growth
given in Section 1.4.1. Before you begin the exercise, look at your watch and
record the time.

Step 1. Calculate the growth rake of the human population for each
interval in Table 1.1. Note that each interval is a different number of years:
initially 50, then 20, later 5 years. It is important ta convert all these into
annual growth rates, so that we can compare them. Use the method
described in Section 1.4.1 to calculate the annual growth rate from 1800 to
1850, from 1850 to 1870, s0 on, and finally from 1990 to 1995. Enter the results
in Table 1.3 below (in the table, the first growth rate is already calculated as
an example).

Table 1.3. Calculating the annual growth rate of the human population,
Year Popuation Time  Popdaton  Growirte  Annual growth rate
(bilions)  interval i previous in Tyears {R)
(years} consus (A"
t N(t) T Ni-T)  N/N@-T) [N@/NE-D T

1800 o — — — —

850 113 50 091 1.24176 1.00434
%0 130 7 1.1 - o
1890 1383 &°. . 130 .

_&.1919 170 | d cote . e
1930 202 ' 1.70 o= -
1950 251 202
1920 362 251
1975 397 362
1980 441 397
1985 494 441
1950 529 484

1985 5.75 529
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Step 2. Plot the growth rate against year and comment on any pattern.

Step 3. It is important to know the difference between relative and
absolute growth. Even though the annual growth rate (a relative measure of
growth) declines, the number of individuals added to the population each
year (an absolute measure of growth) may increase. The number added to
the population in one year is equal to N-(R-1), where N is the population
size and R is the annual growth rate. For example, in 1850,

1.13 billion - 0.00434 = 4.9 million

people were added to the population. {Strictly speaking this is not correct,
because the two numbers refer to different times: 1.00434 is the average
growth from 1800 to 1850, whereas 1.13 billion is the population size in 1850.
However, for the purpose of this exercise, it is a reasonable approximation.)

Calcuiate the number of people added to the human population each
year, for 1975, 1985, and 1995, using Table 1.4 below. Compare the change in
annual growth sate with the absolute increase in the population size per
year.

Table 1.4, Calculating the number of individuals added to the
human population.

Year  Population size Annual Annual number of people
——— growth rate added to the population .

1975 3.97 billion

1985 4,83 bilion ' .
< e ) .

r j=n

1895 5.75 biflion

Step 4. Using the estimated number of people added to the human pop-
ulation in 1995, calculate the approximate number of people added to the
human population:

{a) per day

{b) per hour

{c) per minute

(&) during the time you completed the exercise
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Exercise 1.3: Human Population, 1995-2035

In this exercise you will investigate one rather optimistic scenario of the
slow-down and stebilization of human population. Specifically, you will cal-
culate the population size in 2035, assuming that by that time the growth rate
has reached 1.00 (no growth). For this exercise, assume that (i} the fecundity
in 1995 is 0.0273, (i} the survival rate will not change in the future, and (ii} in
the 40 years after 1995, the fecundity will decrease so as to make the annual
growth rate in 2085, R(2035) = 1.0.

Step 1. Using the annual growth rate for 1995 you calculated above, esti-
mate the annual decrease in fecundity necessary to make R{2033) = 1.0,
Assume a linear decrease, i.e., an equal amount of decrease in fecundity for
each year.

w = Sep 2. Calculate the fecundity and the annual growth rale for years
2005, 215, 2025, and 2035, and enter them in Table 1.5 below.

Step 3. Calculate the 10-year growth rales for the periods 1995-2005,
20052015, 2015-2025, and 20252065, by multiplying each annual growth
rate by itself 10 tirmes. For example the 10-year growth rate for 19952005 is
R{1995)"°. Enter these in the table below (enter the 10-year growth rate for
period 1995-2005 in the line for 1995.)

Table 1.5. Projecting human population growth. ,

Yeai  Fecundity Annual 10year - P pulation stthe  Populatonatthe

) {(f) .. growthrite growth raie” " '“ O T2 end of the 10-year
(R {A®) .-10-yegrinterval *- integral

N - i, -

1995 0.0273 o .. 57lfon - = - -
ol . Gy a a2

s i

2015

2025

A3 1.0000 10000

Siep 4. Estimate the population size at the end of each 1Q-year period by
multiplying the 10-year growth rate you calculated in the previous step with
the population size al the beginning of the time period.

How much did the population increase while the fecundity was
decreasing for 40 years? If the fecundity decreased to the same level in 80
years instead of 40, would the final population size be larger or smaller?
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Chapter 2
Variation

2.1 Introduction

We view population ecology as an applied science that helps find solutions
to practical problems in wildlife and game management, natural resource
management and conservation, and other areas. All of the cases explored in
Chapter 1 dealt with real world problems. Yet they ignored a fundamental
component of the ecology of populations, namely variability in populations
and in the environment in which they live. Such variabon is pervasive. The
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growth rate of the Muskox population on Nunivak [sland varied substan-
tially around the average of 1.148 that was used to predict future population
sizes, The rate of decline in the Blue Whale population averaged 0.82
between 1947 and 1963, but in no year was it exactly .82, In this chapter, we
introduce the concepts and the framework that are necessary o deal with
natural variation in population ecology.

Ecologists think in terms of what is known as the central tendency of
their data. The first questions to cormne o mind in any population study usu-
ally are of the kind: "What is the average growth rate?” A somewhat more
thoughtful ecologist might also ask "What is the vear-to-year variation in the
growth rate?” or even "What are the confidence limits on the predicted pop-
ulation size?” These are all important concepts. It is equally important to
consider the distribution of outliers. In practical situations, for example, it is
often important to know the worst case we might expext, and how likely it is.
The chances of extreme evenls are particularly relevant to people interested
in keeping population sizes within predetermined limits. To look at data or
to make predictions in this way first requires a special vocabulary.

2.1.1 Vocabulary for Population Dynamics and Variability

Stochasticity is unpredictable variation. If the long-term growth rate is less
than 1.0, the population will become extinct, no matter how stable the envi-
ronment.” These' popiilations are said to be the vu:tlms of systemahc
pressure’; their decling results from deterrpinistic <duses, ngu!.a.uons that
would perstst mdefuute[y in a consta‘htéuﬁ{h‘n‘mﬂt neverMeless X% some
risk of extincion through variationth fecundity and survival rafes. These
populations, when they decline, are the victims of stchasticity.

In Chapler 1, we began constructing models to represent the dynamics
and ecology of populations. Population models that assume all parameters
to be constant are called deterministic mnodels; those that include variation in
parameters are called stochastic models. Stochastic models allow us to eval-
uate the models in terms of probabilities, accounting for the inherent
unpredxctablhly of biological systems. The probabilities gererated by
stochastic models allow us to pose different kinds of questions. We might
want to know the worst passible o oubcomc for the population: If things go as
badly as possible, whal will the poLlahon size be? We might like to know

which parameter is most important. When the problems _l._hat we face are
s Lbjecl to uncertainty (and they almost always are), then the quesnons we
ask should be phrased in a specific way. For example, | if our focus s the size

of the population, then we should ask:

Whatis the probability of |decline / increase}
to [population size, N} {at least once before / at} |time, t}?
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The components inside braces [...) are cholces and the components inside
square brackets [...} are quantities. Circumstances will ordain whether we are
most interested in (or concerned about) population increase or population
decline, or both. We must specify the critical population size or threshold

(N, } that represents an acceEtable {or unacceptable) butﬂcoi:lq,_ or a range of
such values, We must specify a time horizon (1), a penﬁd aver which we
wish to make pred.!chons Lastly, we must say whether it is sufficient that
ﬂ\ese conditions are met at Jeast once dunng the period or that the}r are met,
at the end of the period. _ y

The words risk and chance may be used in place of the word probability,
but they emphasize slightly different aspects of a problem. Risk is the poten-
tial, or probability, of an adverse event. When apphed to natural populations
of plants and animals, risk assessment usually is concerned with the
calculation of the chance that threatened populations will fall below some
specified size, or that pests will exceed some upper population size. Declines
in population size may be seen as desirable when dealing with a pest, in
which case we talk of reduction. They may be undesirable when dealing
with rare species, in which case we may 1efer to the risk of decline or risk of
extinction. Similarly, increases may be either desirable (recovery of rare or
threatened species) or undesirable (explosion of pest species). If we wish to
estimate the chance of decline or increase of a population to some specified

size ize (a threshold) at least once in n the specxﬁed period, we talk of the "in-

terva Jgrobalﬂty_r Ifour interest 13 in the cham:e of bemg above or beiow a

probability.

The critical pogulanon size, or threshold, specified in the deﬁnmon of
risk often reflects an abtindance that is considered to be too Jow {for rare or
threatened species) or too high (for pest species). It may be determined onan
economic basis for harvested species, for example, when a fishery manager
wants to maintain a certain populatian of Brook Trout in a stream.

Over a given time period, there is a chance that any population will
become extinct. This chance we term the background risk. 1f the conse-
quences of different types of human impact are measured in terms of
probabilities, it is possible o compare them against the backgro ound risks
that a populahon faces in the absence of f any impact. Added risk is the
increase in risk of decline that results from some impact on a natural pop-
uiatlcm Stnular])f,_1Lthe consequences of different types of conservahon
measures are measured in terms of probabilities, we can compare them
against the backgmund risks in the absence of conservation efforts. The dif-
ference (which we hope is a decrease in the risk of decline) is a measure of

the effect effectweness of the conservation effort
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The probability of extinction or explosion of a population in 2 given time
period is ane way we can describe the chances faced by natural populations.
Anather way is to use the expecled time to extinction or explosion. These
statistics are the average time it takes for a population to fall below or to
exceed specified population thresholds. We will discuss this further under
the heading, Additional topics (Section 2.5.1).

2.1.2 Variation and Uncertainty

We saw in Chapter 1 that the change in size of a population is governed by
births, deaths, immigrants, and emigrants. Births and deaths may be gov-
emed by environmental parameters. Variation in the environment leads to
varigtion in survival and fecundity rates, and results in variation  in
population size that is independent of the average growth rate of the pop-
ulation. "Gaod" years are those in which the population produces more
offspring and experiences fewer deaths. Species responid to envitonmental
variation in different ways. The time scales of impact and response are
related to the ecology of populations. Some species will resist environmental
change and others will respond to it, depending on its severity and duration.
The picture is further complicated by the fact that estimates of popula-
tion size will vary f fmm one time to the next, even in the absence of any rea
changg, because of measurement errors. Further, some populations will
fluctuale in a regular l’asl'uor@ , fgllgyvmg diurnal, seasonal, or longer term
weather patterns, or beea_pse of their interactions with predators or competi-
tors. Natural variation in the envirotiment. anql measurement errat will
overlay any other natural or Ruman caused patiefns; trenids 15 or cycles in-
"population sjze. The _gongequences of t tlus 'uamlw Tare tha!,ﬁ'e cannot be 5
. certain what the population size will be in the future In addisien, thare are.
other factors that may cause populahon sizes to vary unpredictably, and
there are other reasons wm/ our predictions may be uncertain. However, | lf
we can characterize this uncertainty, we may be able to provide an m@lcq;
tion of the reliability of any estimate that we make. We will explore these
concepts below and introduce ways of dealing with them in circumstances
where predictions are necessary for resource and wildlife management and
species conservation.

2.1.3 Kinds of Uncertainty

Uncertainty may be considered to be the absence of information, which may
ot may not be obtainable. Uncertainty encompasses a multiplicity of con-
cepts induding:

incomplete information (what will the population size be in 50 years?)
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disagreement between information sources (what was the population size
last year?)

linguistic imprecision (what is meant by the statement “the population is
threatened"?}

natural variation (what will be the depth of snowfall this winter?)

relationships between variables (does resistance to cold in winter depend
on the amount of focd available in the preceding summer?)

the structure of a model (should emigzation be represented as a number
or a rate?)

Models are simplifications of reality. Uncertainty may be about the
degree of simplification that is necessary to make the model workable and
understandable. 1t may be about the decision we_should take, even if all
ather ¢ cumponents of the problem are known or understood. Different types
and sources of uncertainty need to be treated in diflerent ways. Probability
may be a useful means of describing some kinds of uncertainty. Others are
more appropriately handled with decision theory, or even with palitical
E ess. There are numerous classifications of the kinds of uncerfainty and
vanab:lj Decomgosmg uncertainty into its different forms allows us to use

available information together with appropriate tools to make predictions.
These ' predictions may ¢ then be qualified by a degree of uncertainly.

2.2 Natural variation

-t

2.2.1 Individual Variation - .

[ LS
Individual variatign is the variation between individuals within the same ~
population. Jt is the term used to describe the variation within a population
due to genetic and developmental differences among individuals that results
in differences in phenotype. Individual variation also includes genetic vari-
ability. Each individual has a different genetic makeup that results from the
combinations of genes in its parents, and the random selection of those genes
during meiosis. The rate of change in the genetic makeup of a population is
inversely proportional ko the number of adults that contribute to reproduc-
tion. In small populations, the genetic composition of the population may
change significantly because of these random changes, a process known as
genetic drift.
Inbreeding is mating between close relatives. In small populations,
mating between relatives becomes more frequent. if the parents are related
to one another 1are recessive genes are more likely to be expressed and

e
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fecundity of individuals, and reduce the average values of these rates in the
population a3 a whale. The loss of variation may also reduce the ability of
the population to adapt to novel or extreme environmental conditions.

Other differences among individuals contribute to this kind of uncer-
tainty. For example, in species with separale sexes, uneven sex ratios may
arise by chance and have an enhancing or a detrimental effect on further
population increase. While these processes are relatively well understoed, it
is niot possible to say if, and to what extent, these effects will be felt in any
given instance. The process is inherently unpredictable.

2.2.2 Demographic Stochasticity

Demographic stochasticity is the variation in the average chances of survi-
vorship and reproduction that occurs because a population i3 made upofa
finite, integer number of individuals, each with different characteristics.
Consider the following example. The Muskox population on Nunivak Island
began in 1936 with 31 individuals and had an average growth rate of 1.148.
On the basis of this average, we might expect the population in 1937 to be
35.8, but there is no such thing as 0.6 of a Muskox. The growth rate we spe-
cified is an average based on observations. What this result says is that, 4 to 5
maote births than deaths are expected in the Muskox population between the
1936 census and the 1937 census. Exactly how many, we cannot be sure.

- The peopte who conducted the-censuses of the Muskdx popilation an
Nunivak Istand recerded the number of talyes produced each year. Over the

.. years the average number of calves per inthidust?y) was0.227. Glven that

R=f+s
the average survival rate was

s=1.148 - 0.227=0921

The parameters in the models we developed in Chapter 1 do not vary, so
they are tenmed deterministic models. They provide a single estimate of
populalion size at some time in the fulure. We could add an element of
realism Vo these models by fellowing the fate of each individuat, For
example, ather than multiplying the whole population by a survival value
of 0.921 1o calculate the number of survivors, we could decide, at each time
step, whether each individual survives or dies. We do this in such 3 way
that, in the long term, 92.1% of the individuals survive. One way to do this is
to choose a uniform random number between § and 1 for each individual.
("Uniform” means that each number in that range has an equal chance of
being sampled; see the exercises section for ways of choosing random num-
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bers.) If the random number is greater than the survival rate of 0.921, then
the individual dies. Otherwise, the individual lives. We ask the question for
each individual in the population, using a different random number for each.
Thus, if there are 31 individuals in the population, there is no guarantee that
29 will survive, although it is the most likely outcome (31 x 0821 = 28.6),
There is some smaller chance that 28 ot 30 will survive and some still smalleg
chance that 27 or 31 wilt survive. This kind of uncertainty represents the
chance events in the births and deaths of a real population, and is what we
mean when we talk of demographic uncertainty, .

We could add a further element of reality by treating the births in the
population in an anzlogous fashion. Like deaths, births come in integers (no
Muskox will produce §.227 offspring;: rather, most will produce none, some
1). We can represent this in our mode! by following the fate of individuals in
the same way as we did for survival. That is, choose a random number for
each individual. If the value is less than 0.227, the animal has an offspring.
Otherwise, it does not.

A time step of a year seems appropriate because reproduction in this
species Is seasonal and the envirorunent is highly seasonal. We treat the
population as composed of an integer number of individuals and we sample
the survival and reproduction of members of the population, using the
observed population size and the population average fecundity and survival
rates. The result is that our predictions will no longer be exact. As in a real
population, our model refiects how a run of bad'luck could iead to the
extinction of any populatic;i,_ no matter how large fie population size offiow
large the potential growth rate, . ’ -

Each time we tally the population and we ask "Does this animal die?”
and "Does this animal produce offspring?”, the answer may be different. To
gain some idea of the expected outcome, and the reliability of that outcome,
we need to run a series of trials. We need to repeat the experiment a number
of times and calculate the average and the variability of the outcome. Vari-
ability of a set of numbers is often expressed as their variance or standard
deviation (variance is equat to the standard deviarion squared). Histograms
showing the frequencies of different possible population sizes one year after
the introduction of Muskox to Nunivak Island are shown in Figure 2.1, The
larger the number of trials, the more reliable will be our knowledge of the
average and the variance. This approach is most effectively implemented on
a comgpruter.

Formulating demographic stochasticity in this way makes a number of
assumptions about the ecology of the population. It assumes that a female
can have no more than one offspring per year. More efficient and mere gen-
eral methods are available (hat involve sampling the binomial and Poisson
distributions, but learning how to use them is beyond the scope of this book
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{the computer program that comes with this book implements these more
advanced methods). Qur approach here assumes further that births and
dezths are independent events. We choose different random numbers to
represent the survival and reproductive success of cach individual. If an
animal dies in 1937, it may also have offspring belore it dies that year. We
could, if we wanted, preclude reproduction if an animal dies, or make it less
likely for an animal to survive if it reproduces.

1t is clear that demographic stochasticity can have an important effect on
estimates of population size. From a starting population of 31, the popula-
tion quite reasonably could increase to 46 animals, or decrease to 27 animals
after one year, just because of the random chances associated with giving
birth and surviving from one year to the next. This kind of varability is
present in every population. The deterministic expectation of 35.6 is just one
of many possible outcomes. The mean predicted by the model induding
demographic stochasticity (Figure 2.1) is similar to the number predicted by
the deterministic model (35.6). By carrying out a great many trials, we can be
reasonably certain that we know the mean and the variation in expected
population sizes. The uncertainty arises because real populations are struc-
tured, composed of discrete individual, and because the individual
occurrences of births and deaths are unpredictable.

By developing forecasls in this way, we can ask different kinds of ques-
tions. For example, we could ask "How likely is it that there would be less
than 31 animals in 19377" or "What is the chance that the population will
increase by 30% or more, rather than the average 14.8%?" To anSwer these
questions let’s count the number of trials that met the stated cfiteria and
divide by the total number of trials. For-€xample, to answer the first ques-
tion, we tally the namber of trials that reached 30 animals, 29 ahimals, etc.,
down to the smallest recorded number (which was 24}, The result is given in
the second column of Table 2.1. The third column shows the cumnulative fre-
quencies, i.e, the number of Irials predicting a given number or fewer
individuals. Each row of this column is calculated by adding up the numbers
in the second column up to and including the current row. Adding up the
first 7 numbers gives 548, which is the number of trials in which the pre-
dicted number of animals was 30 or less. The last column gives the same
{cumulative number), divided by the total number of trials (10,000 in this
example). Note that this table contains only part of the data represented by
the last histogram in Figure 2.3; the dots ("."} at the end of table are to
remind you that the maximum population size was 49, and the table could
have ancther 18 rows,
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Table 2.1. Number of trials {out of the total of 10,000 trials) that predicted 24
to 31 animals in 1937.

Population Numberoftialsthal  Cumulative numberoltrials  Probability of
level (M.} reachedalevel <N, (thal reached a level < A ) declingto N,

24 3 3 0.0003
25 2 5 0.0005
28 11 16 0.0016
27 29 45 0.0045
28 67 112 00112
29 142 24 0.0254
30 294 548 0.0548

31 449 997 0.0997

According to the table, 545 trials out of 10,000 predicted a population size
of 3¢ or less, so the chance js 548/10000 or 0.0548. Thus, even though the
deterministic model tells us the population will increase, and the stochastic
model tells us the population will probably increase, there is a better than 5%
chance that the population will actuatly decline from 1936 to 1937,

Wg,can answer the second question,posad above in a,similar way. The
question was "What is the chance that the population will increase by 30% or
more?” An increase of 30% is'equal to a popylatiopsize 35,50 3. The number
Bf trials that predicted a population size greater than 40 was 6&5. The chance
of exceeding 40 is therefore 0.0669, or about 6.7%. Note that You cannot find
this answer in the table above. The above table shows the probability of
reaching a levet Jess than or equal o N, whereas this question was expressed
in terms of reaching a tevel greuter than or equal lo N..

The task of wildlife managers is to implement plans to manage both the
expected population size and the probabilities of extreme cutcomes. Wildlife
management questions that may be answered by population forecasts come
basicatly in two forms. The first is: "What 15 the chance that the population
will exceed some threshold?" (for control probtems) and the second is "What
is the chance that the population will fall below some threshold?" {for con-
servation problems). The management of natural populations may require
ensuring that the populations remain within prespecified levels, so that both
the upper and the lower bounds are important. For example, large herbi-
vores in patks or reserves frequently must be mainmined within upper and
lower limits so that they persist indefinitely within the confines of the
reserves without becoming so numerous that they displace other herbivores,
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Alternatively, it may be important to manage various ecological processes
and human impacts to maintain a population, to keep it from becoming
extinct.

To address these questions, we may redraw the histograms in Figure 2.1
as cumnulative frequencies. As we demonstrated above, if the cumulative fre-
quencies are divided by the number of trials, they may be interpreted as
probabilities. Thus, the curve in Figure 2.2 represents the chances that the
population which began as 31 individuals in 1936, will be equal to or less
than various threshold population sizes in 1937. The x-axis of this curve is
the threshold population size (first column of Table 2.3), and the y-axis is the
probahility that the population size will be less than or equal to the threshold
(last colurnm of Table 2.1).
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Figure 22.  Cumulative frequencies from Figure 2.1, divided by
10,000 (lhe number of trials), and plotted against population size.

Ta interpret the figure above, let’s use the two sets of arrows on the
figure to answer a couple of questions: What is the chance that the popula-
tion will be equal to or less than 31 individuals in 1937 {in other words, what
is the chance of no increase)? Locking at the figure, we see that the curve
predicts a probability of about 0.1, or 10% for a threshold population size of
31 (see also the last column of Table 2.1, which shows a probability of 0.0997,
or about 10%, of declining to 31 or below). What is the chance that the pop-
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ulation will be less than or equal to 40 individuals in 19377 The answer is
about 0.93. The curve represented in Figure 2.2 is called a risk curve. More
spedfically, 1t is a quasi-extinction risk curve. It provides answers to ques-
tions phrased as foliows: "What is the chance that a population with current
size N will fall below some critical threshold population size, N,, within the
next period, ¢ 7" Thus, il is useful for questions concerning the lower bound
of population size.

Demographic stochasticity, as well as phenotypic variation of all kinds,
has most important consequences in small populations, This is because the
effects are inversely relaled to population size. We can see the qualitative
effect of population size by considering the survival probability for the
Muskox, 0921, Assume some catastrophe affects the population and only
two animals remain. What is the chance thal both will die before the fol-
lowing year? The chance due to demographic uncertainly is {1 - 0.921) =
0.0062. When there are 31 animals, the chance is (1 ~ 0.921)*, which is a very
small number. In general, the chance of loss of the entire population {p) in a
single time slep is

p={1-sy

where N is he population size. As N increases, p decreases. Neverlheless,
even for medium-sized populations, there remains some chance of impor-
tant deviation {rom the determinislic model and some small chance of loss of
the population through nothing more than bad luck.. -

Questions such as these posed abgve arepa:t:cular]y relevaqt-to w:ldl:.fe
managers and environmental, scientists who have ta_m%e papplationg-
within Jimits. They are phgased and answered quite naturally in terms of the
probabilities of different outcomes. Common sense tells us that we can never
predict exaclly the size of the pepulation next year. Models that include ele-
menls of randomness may be designed to cope with the uncertainty thal is
part of all environmental prediction and decision making. Such models will
allow us to target both the expected size and the risk of decline or expansion
of a population. We will see below that, to some extent, these properties are
independent. The management strategies to maximize the expected popula-
tion size may be different than those that are required to minimize the risk of
decline.

It is important to remember that, even though the madels we developed
in this section allowed varizbility in the number of survivors or the number
of offspring, they did not allow the survival rates and fecundities to vary. We
demonstrated that even when these rales remain the same, demographic sto-
chasticity introduces randomness and unpredictability in lhe eslimated
population size. In the next saction, we will add more realism o our models
by allowing their parameters (survival rates and fecundities) to vary.
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2.2.3 Environmental Variation

2.2.3.1 Temporal variation

Environmental variation is unpredictable change in the environment in time
and space. It is most often thought of as temporal variation at a single loca-
tion. An obvious example is rainfall. Even in circumstances in which we
know precisely the average annual rainfall of a location based on records
going back centuries, it is difficult to say if next year will be relatively wet or
dry, and even if next week will be rainy or not.

In circumstances in which the vital rates of a populanon depend on
environmental variables, the rates will likewise be unpredictable. The con-
cept of a niche implies that a set of biotic and abiotic variables limits the
distribution of a species. It is usually assumed that a set of environmental
parameters will affect the rate of growth of a population within the niche
that a species occupies. Environmental variation that results in variations in
population size is seen as a mechanism that is extrinsic to the population.
Environmental variation is not the sole determinant of fluctuations in pop-
ulation size. We will explore intrinsic causes of population change in
subsequent chapters.

Environmenlal variation results in fluctuations in population size when
environmental variables affect the number of survivors and the number of
offspring in a population. There are many examples of relationships between
environmental variables, and the survival and fecundity of individuals
within populations. For example, population numbers of the California
Quail are influenced by climate. High winter<rd spring rainfathis associated
with high repraduction in semi-arid regions (Figure 2.3)..The mechanisms
for this dependence may be based on the quality and quantity of plant
growth or lhe availability of free drinking water. {f water is scarce in the
region inhabited by the California Quail, fewer juveniles survive than if
water 15 plentiful.

The causes of inleractions between population dynamics and environ-
mental variables such as rainfall may be less direct than in the example
above. The fecundily of Flarida Scrub Jays, expressed as nest success, is
likewise dependent on rainfall (Figure 2.4). However, the researchers specu-
late that the direct cause of varjation in nest success is variation in nest
predation rates. Rainfall could influence nest predation by affecting the
density or activity of predators, the availabilitly of alternative food items, the
nest vigilance of the Jays, or the protective vegetation cover surrounding
nests.
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Figure 2.3. The relationship baiwaan raintall (December to April pre-
cipitation) and fecundly In the California Quail (Callipepla californica)
for a population in the*Panoche Management Area, Calfomia (afler
Botslford at al. 1888). The correlation coefficient for these (log trans-
formed) data was 068 Fecundity was axpressad as the number of
juvenile birds per adult

There are many causes of death in the Muskox population on Nunivak
Island, some of which are directly related to environmental variables. Over
the 20-year period that observations were made, animals fell from cliffs,
became lost on sea ice, were mired in a bog, drowned, were otherwise
injured, were shot by humans, or died during winter snow falls. There were
almost certainly deaths due ko starvation in years of heavy snowfall, during
which it was harder te find food. A relatively cormmnon event in this popula-
tion was for small groups of animals to wander onto pack ice around the
island during winter. The ice floes broke up or melted, blocking the animals’
return to tand, These animals either starved or were drowned at sea. It
would be impossible to predict the number of animals that might suffer such
a fate in any year, because it depends on the propensity of groups to wander
over the ice, and the chance environmental events that lead to the break up
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Figure 2.4. Nes! success in Florida Scrub Jays (Aphelocoma c. coer-
tifascans) as a function of total rainfalt in the praceding 10 maonths
{June o March) (aiter Woolfenden and Fitzpatrick 1984). Nest success
is the proportion of nesis Ihat survive to Hedgling. The comelafion
batween raipfal! and nest success is 0.78.

of the pack ice. Weather conditions are thought to be the single most impor-
tant factor determining year to year variation in population growth of
Muskox on other islands (see Gunn et al. 1991},

If we wanted fo predict the poputation size nexf year, and in making this
prediction ke into account the variation due to some environmental factor,
we would need to know three things: {1) which environmental factor is
important, {2) how it affects the paputation dynamics, and (3) what the value
of that environmental factor will be in the future. In other words, even if the
dynamics of a population are directly related to an environmental variable
{and we knew exactly what this relattonship is), we still cannot make precise
predictions because it is impossible to say what the value of the environ-
menta! variable will be next year.

We noted in Chapter 1 that the growth rate of the Muskox population
was not fixed through the period of observation. 1t varied fram a maximum
of 1.27 toa minimum of 0.94. Having taken note of the fact, we estimated the
mean growth rate and then made some predictions for population sizes that
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ignored the fact that growth rates are variable. The results of our predictions
were made without any estimate of how reliable thay were. For example, we
predicted that the population size in 1968 should have been 778 animals. It
turned out to be 714 {or 752 if you include remaved animals). Was the pre-
diction within the bounds of probability, given the variable nature of the
population’s growth rate?

We may rewrite the equation for exponential population growth as fol-
lows:

N+ = N(i) - R

where R{t) is the growth rate for time step . Writing R{f} instead of R
indicates that the growth rate varies from one time step to the next. When we
use this equation, we sample the growth rate from some distribution for each
time step, rather than use a fixed value. We may, for exampie, use observed
distribution of growth rates for the popuiation (Figure 2.5). This distribution
shows that between 1947 and 1964, there was one year when the growth rate
was between 0.90 and 0.95 (indicated at the mid-value of this range, 0.925),
one year when it was between 1.00 and 1.05, etc.
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Figure 2.5. Frequency distribution of growth rates observed in the
Muskox population on Nunivak Island between 1347 and 1964 (see

Figure 1.4 in Chapter 1}.
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By sampling randomly from this distribution, we assume that the prop-
erties of the random variation that we have observed in the past will persist
in the future. By properties, we mean characteristics such as the mean,
variation, and shape of the distribution. Why do we sample randomly,
instead of using the correct sequence of growth rates between 1947 and 19647
We cannot use the exact sequence of growth rates because there is no guar-
antee that the environmental factors between 1947 and 1964 will repeat
themselves in exactly the same order in the future. It would be a very strong
assumption (meaning very likely to be wrong) fo assume that they would.
Instead we make a generalization based on this observed distgibution: We
assume that the distribution of growth rates in the future (their mean, varia-
ton, etc} will remain the same as the observed distribution, even if the
growth rates do not repeat themselves in the same order as in the period
from 1947 to 1964.

Of course, even if we sampled randomly, the set of growth rates we
chose will probably be different frum what actually will happen in the
future. To account for the inherent uncertainty of the future growth rates, we
do this many Hmes. We randomly select a set of growth rates for, say, 20
years, and estimate the population’s future with these 20 growth rates. This
gives one possible future for the population. Then we select another 20
random numbers, and repeat the process. By undertaking repeated trials we
may predict the population size into the future, accounting for the effects of
the environment on the papulation. In order ko get a representative sample
of possible futures of the population, we have to repeat this hundreds of
times. This procedure is most easily implemented on a computer (actually, it
is next to impossible to do without a computer). _

The procedure may be further generalized by sampling the growth rates,
from a statistical distribution that has the sarne properties as the variations
that have been observed in the past. For example, we may sample the distri-
bution known as the normal distribution, with the same mean and standard
deviation as the observed distribution. This approach has the advantage of
recognizing that values of R more extreme than those ohserved in the past
are possible in the future. For instance, if we abserved the population for 100
years instead of 17, perhaps there would be a year with a growth rate of 0.8
orld

Before we proceed, we need to define some terms we will use frequently
in describing stochastic models. A time series of population abundances is
called a population trajectory. When we estimated the population’s future
with 20 randomly selected growth rates, we produced a population trajec-
tory. Each trial or iteration that produces a population trajectory is called a
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replication. Finally, running the model with many replications is called a
stochastic simulation. A deterministic simulation produces a single popula-
tion trajectory without any variation in mode| parameters.

The Muskox population in 1936 was begun with 31 animals. Applying
our current knowledge of the population, we can make predictions for the
population over the period before regular sampling, between 1936 and 1948.
The resutts of 1,000 trials for the Muskox population are shown in Figure 2.6,
This figure shows, for each year, the average expected size (dashed curve),
plus and minus one standard deviation (vertical lines), and the maximum
and minimum values recorded for that year (wiangles). These statistics
(mean, standard deviation, minimum and maximum) are calculated over the
1000 replications (trials) of simulabed population growth. The five observexd
values for the Muskox population size made between 1936 and 1948 are also
shown (black circles). The model includes both demographic and temporal
environmental variation. The growth rate, R , is 1.148, the survival rate, s, is
0.921, and the standard deviation in the growth rate is 0.075 (based on the
observed variation in Figure 2.5).
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Figura2.6. Tha size of the Nunivak Island Muskex population, based
on 1,000 replications.
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The population grew much as could have been expected between 1926
and 1942. However, between 1942 and 1947, the true population was mark-
edly reduced, compared to growth in periods before and after that interval,
In 1947, the population numbered just 49 animals. The observers suggested
that the losses were due o groups of animals wandering onto sea ice during
winter and being lost, other accidental deaths, and shooting, The observed
population size in 1947 was within the limits of what could have been
expected, once the random variations due to demographic and environ-
mental uncertainty were included in the prediction. .

The variation in the predicted abundance increases as hme goes on
(Figure 2.6). Our predictions become less and less certain, the further into the
future we make predictions. This characteristic is a general result common to
all predictions that include uncertainty. It makes good intuitive sense, One
can be more certain of predictions that are made in the short term. Long-term
judgements are subject to many more uncertain events, and the bounds on
our expectations must incresse, the further into the future that we make
projections.

It is possible to construct a quast-extinction risk curve based on the pro-
jections that are summarized in Figure 2.6. One simply records the smallest
size to which the population falls during each trial. There will be 1,000 such
records from 1,000 trials. These numbers are then used to create a cumulative
frequency histogram. The frequencies, rescaled between O and 1, and plotted
agairst population size, become the risk curve (Figure 2.7a).

If one collects the smallest value recorded at any time during each trial,
the risk curve has a specific meaning, it tells us the chance that the popula-
tion will fall below the specified threshold at Jeast once during the period
over which predictions are made.

Of equal interest is the creation of explosion risk curves, [t is pessible to
construct a curve representing the chances that the population will be
greater than or equal to a specified threshold population size. The procedure
is much the same. One records the Jargest size to which the population riges
during each trial. These numbers are used to create a cumulative frequency
histogram. The frequencies, rescaled between 0 and 1, and plotted against
population size become the explosion risk curve (Figure 2.7b). Extinction risk
curves are usaful for questions related to the likely lower bound of a pop-
ulation. Explosion risk curves are useful for questions related to the likely
upper bound of a population.
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2.2.3.2 Spatial variation

The environment varies in space a5 well as in time. Changes in environ-
mental conditions are related to distance. Two butterflies living in an oak
forest in New York are more likely to experience the same kind of weather
from day to day than are butterflies that live on opposite sides of the conti-
nent. Anyone who has dived in the ocean will have noticed a smooth
transition from light 10 darkness with increasing depth. If survival or
fecundity depend on environmertal conditions, then they too will vary in
space in response to the variation in environmental conditions,

One way of looking at spatial variation in the environment is to think of
it as your ability to predict the conditions in some other place, knowing the
conditions where you are. It is not possible to predict exactly the rainfall at
one location, knowing the current rainfall at another location. The degree of
teliability in the prediction from one place to another will depend, at least in
part, on how far the two poinits are apart. The association between the
recorded values of an environmental variable at different places is termed
spatial correlation.

Spatia] variation may also be thought of as the variation in environ-
mental conditions between spatially separate patches of habitat, the different
conditions experienced by each of several populations. Many species consist
of an assemblage of populations that occur in more or less discrete patches of
habitat. We can ignore the differences in the environment experienced by
these populations only if these patches are identical in composition and close
enough that they experience the same environmental conditions. In most
real populations, at least one of these conditions will be viclated. All of the
populations will experience some environmental changes in comumon (such
as the average summer temperature) and some will experience Jocal envi-
ronmental changes uniquely in a given patch (such as the local water hole
drying out). The pattern of change in Jocal population size in response to
unique environmental conditions can have profound effects on our expecta-
tions of future population sizes. The interactions between these processes
and the role of migration of individuals between patches will be explored
more fully in Chapter 6.

2.2.3.3 Catastrophes

(atastrophes are extremes of environmental variation, including natural
events such as floods, fires, and droughts. Any environmental change that
has a relatively Jarge effect on the survival or fecundity of individuals in a
population compared to the normal year to year fluctuations may be consid-
ered a catastrophe. Thus, it is somewhat arbitrary to single out and label
such environmental conditions as extreme. The category is useful omly
insofar as some ecological processes are driven by relatively infrequent, cat-
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astrophicevents. In many ecosystems, disturbances such as fire, windstorms,
or snowstorms are an important or even the dominant ecological process
determining the structure and compaosition of populations and communities,
Often, we may know quite a lol about the characteristics of these events such
as their average frequency and the distribution of intensity of the events.
With field data it is possible to specify the effects of calastrophes on Lhe
parameters of a pepulation. If so, then there will be better understanding of
the relationship between the population and the environment incorporated
in the expressions that we write.

Explicit modeling of unique catastrophic events may even be essential
for circumstances in which species are specially adapted to the effects of the
catastrophe. For example, seeds of many plant species in the genus Acacia
require a fire to germinate. In the absence of fire, adults produce seeds that
mostly fall to the forest floor and remain dormant. Fires stimulate the germi-
nation of dormant seeds and kill adults, which have life spans of 10 to 100
years in the absence of fires. Thus, recruitment of new individuals into the
population occurs in pulses following the fires that stimulate germination
and eliminate adulls. Fecundity is a binary condition: either there is none (in
years without fire} or most seeds in the soil-stored seed bank germinate (in
years with fire). Such dynamics could only be modeled by writing expres-
sions that include the chance of a fire,

2.3 Parameter and model uncertaint-y

2.3.1 Parameter Uncertainty

In all of the above discussion, we have assumed that the quantities obtained
from field observation including mean survivai, fecundity, growth rate, and
the variation in these parameters, are known exactly. Effectively, we have
assumed that the observed variation in population parameters comes from
sources including demographic and environmental variation. Anyone who
has attempted to measure the simplest parameter more than once under field
conditions knows that this is a false assumption. All measurements involve
error.

Parameter uncertainty is the variation in our estimate of a parameter that
is due to the precision and accuracy of the measurement protocol. The
assumption that sampling error is absent is particularly suspect when data
are limited. Smaller samples are subject to relatively large sampling errors, If
sampling variation is included in a model, projected variability will be much
larger than in the true population. The Muskox of Nunivak Isiand provide
anexample. Aerial census techniques were used to estimate population size
between 1943 and 1968. These data were used to catculate all of the parame-
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ters in the examples used up to the present. However, between 1964 and
1968, independent estimates were made based on ground samples
(Table 2.2).

Table 2.2. Counts (from ground samples) and estimates (from
aerial samples) of the total population size of Muskox on
Nunivak fsland.

Year Count Estimate Bias
(Count/Estimate) -

1965 532 514 1.035

1966 610 569 1072

1967 700 651 1.075

1968 750 714 1.050

After Spencer and Lensink (1570).

The aerial “estimates” of population size were consistently lower than the
ground-based counts. If we asswme that the counts are correct (and there is
na absolute guarantee of that), then the estimates were consistently biased,
but the magnitude of the bias varied from year to year, from 3.5% to 7.5%
(Table 2.2). Bias may be defined as systematic error, the difference between
the true value and the value to which the mean of the measurements con-
verges as more measurements are taken. Precision is the repeatability of a
measurement made under the same conditions. Unfortunately, we do not
have any estimates of Muskox population size made in the same year using
the same method. Such data would allow us to quantify the precision of the
population estimates,

Often, subjective judgment is invalved in the choice of a method for
measuring a parameter. Similarly, judgment may be made in assuming a
correspondence between one variable and another. For example, we may
observe that rainfall varies by 10% each year, and assume that population
growth varies by the same amount. Even more subte is the assumption that
the levels of variation that we have observed in the past will persist in the
future. There is nothing wrong with such judgments; often they are
unavoidable. However, it is wrong to ignore the uncertainty inherent in such
judgments.

2.3.2 Model Uncertainty

The structure of 2 model relates the parameters to the dependent variable, in
this case fubture population size. If our jdeas concerning the population’s
dynamics and ecology are wrong, or if we have not been careful in trans-
lating our ideas into equations, ow predictions may be astray. Uncertainty
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concerning the form and structure of the expressions we use to describe the
population is known as model uncertainty. Thus, even if the parameters that
describe the dynamics of a population were known exactly, and lThe variation
associated with each parameter was decomposed into demographic uncer-
tainty, environmental uncertainty and measurement error, we could still
make mistakes in predicting future population size.

Model structure is a simplification of the real world. It represents a com-
promise between available data and understanding, and the kinds of
questions that we need to answer. It s difficult to know the degree of
simplification that is both tractable and adequate to the task at hand, but that
is not so simple that it misses some important ecological processes. Com-
peting model structures may provide as good, or almost as good,
explanations of past observations as one another, but generate quite different
expectations. The only way to deal with model uncertainty is to compare
predictions of models with different structures and (if they make different
predictions} to analyze the models in detail to understand which assump-
tions led to the differences. Such an analysis may guide further field
cbservations or experiments to decide which model structure is more
realistic.

2.3.3 Sensitivity Analysis

Both parameter uncertainty and model uncertainty may be explored using a
process known as sensitivity analysis. Sensitivily analysis measures the
change in a model's predictions in response to changes in the values of
parameters, or to changes in the model structure. To illusirate sensitivity
analysis, consider the model in which a population’s growth rate is related to
several environmental variables. For example, varjation in the growth rate of
a population of Shrews {Crocidura russula) that inhabit suburban gardens in
Switzerland js related to weather variables by

AR = 073-P-078-5+050-7, - 0.83-7,

where P is mean monthly precipitation in spring (m), § is winter snow fall
{m}), and T is average monthly mean temperature ("C) in summer (T, and
winter (7,.). We know that summer rain averages about one meter and that
winter snow fall averages aboui the same value, The coefficients for the twa
parameters are similar. Thus, the growth rate will be equally sensitive to
variations in snow fall and rainfall. The coefficients for emperature are
about the same magnitude. However, the values for temperature vary mere
(they are around 10°C in summer and around 5°C in winter), so that R is
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eftectively more sensitive to variations in temperature. A 10% increase in
summer temperature will increase R by 0.5, whereas a 10% increase in snow
depth will decrease R by only 6.08.

The object of sensitivity analysis is to tell us which parameters are
important and which are not. If a 10% change in a parameter results in a
small change in the dependent variable (say, less than 1%), the modet is
insensitive 1o the parameter, If the change in the dependent variable is large
(more than 10%), then the model is highly sensitive to the parameter. Such
information is useful because it may guide the direction of research effort. It
is more important to eliminate measurement errors from-parameters to
which our predictions are sensitive than to eliminate it from parameters that
contribute little to our predictions.

Sensitivity analysis may also be used to explore alternative model struc-
tures. For example, our modet for the growth rate of a population above may
have the best explanatory power in a statistical sense. However, our
biological intuition may tell us that the following model js likely to be a
better predicter of huture population growth:

AR = 015.P-T, -07.S

In this version, P and T, are multiplied because we treat the effect of
rainfall and summer temperature as an interaction. We may fix the param-
eter values and explore the consequences for predictions of one model
versus the other. In some cases, the model structure will make little
difference to expected outcomes. In other cases, it will make an important
difference. If the latter is true, it would be advisable to perform experiments
or acquire more data to discriminate between the competing models. If the
acquisition of data or experimental results are impossible, then predictions
may be made with both models, and the most extreme upper and lower
bounds may be used to place limits on the predictions. In this way, predic-
tions can incorporate model uncertainty that is not reducible without further
field work.

The above example was based on a stalistical relationship between pop-
ulation growth rate and environmental variables. Sensitivity analysis may be
based on other variables as well. it is important to evaluate both the
deterministic and the probabilistic components of a prediction. Thus, the
dependent variable against which we judge model sensitivity may be the
risk of population extinction within a specified period of time, or the risk of
the population increasing above some specified upper bound. The indepen-
dent variables would be model parameters and their variation. If an increase
in a parameter {say, average growth rate or the standard deviation of growth
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rate) results in more than a 10% increase in risk, then the model may be con-
sidered to be sensitive lo that parameter. We will further explore this type of
sensitivity analysis in the exercises of this section.

Sensitivity analysis is perhaps one of the most important tools in quanti-
tative population ecology. It allows us to explore the consequences of what
we believe to be true (in terms of the model parameters and their ranges). It
provides a measure of the importance of parameters and model assump-
tions. It may be used to place bounds on predictions that subsume both
model and parameter uncertainty, providing a relatively complete picture of
the reliability of a prediction.

2.4 Ambiguity and ignorance

In natural resource management, rare and unexpected events may be termed
“surprises” (see Hilbarn 1987). Ignorance leads to surprise. It may result from
unawareness of unexpected events, or from false knowledge or false judg-
ments. That does not mean that surprise itself is rare, only that each event is
essentiaily unexpected. It includes anything we do not expect, anything that
is unaccounted for by our model or by our intuition.

Sowme surprises are avoidable because the ignorance they spring fom
may be reducible. That is, it may be amenable to study or learning. One may
be ignorant of a process or a predictable outcome, but could overcome that
ignarance by learning or research if the information or the methods of sfudy
were available. There are direct and irdirect costs of such ignorance. For
example, ignorance of past experiments or observations may lead to the tacit
acceptance of hypothetical results, without empirical testing. It may cause
disciplines such as wildlife management to loose credibility with people
with a vested interest in wildlife.

Other surprises may be unavoidable. We may be unaware that we are
unable to make predictions accurately, if the structure of the system were to
change. That is, we would be faced with novel circumstances. For example,
the demographers studying the human population as recently as 60 years
ago predicted that the population size would be 3 billion by the end of the
century. It will probably be over 6 billion. They were wrong by a factor of
fwo, in part because of unavoidable surprises. They could not have foreseen
the dectease in mortality caused by the invention of antibiotics, or the
increase (albeit terporaty) in food production as a result of widespread use
of pesticides.

Uncertainty may arise from disagreement, even amongst scientists inter-
preting the same information. Interpretations are colored by a person’s
technical background, expertise, and understanding of the problem. Things



Additiona! topics 59

are further complicated by the fact that people, decision makers and scien-
tists included, frequently hold direct or indirect stakes in the outcome of a
question. Judgments are influenced by motivational bias.

Linguistic imprecision may be responsible for important components of
uncertainty. The statement "the population is not threatened by what we
plan to do" is ill-specified. To interpret it, we need maore information. Wouid
the statement be true if the probability of decline of the population to half its
current size was 10% in the presence of the Impact, and 2% in the absence of
the impac? Even so, many more specifics are needed. :

A quantity is called well specified when there is a single true value that is
measurable, at least in theory. The test for clarity of specification of a
problem is whether it can be unambiguously defined, ‘given a description.
For example, the phrase "Provide a management plan that results in an
acceptable risk of decline of a population” is an ambiguous request. Risks
inchude both a probability and a time frame, so one must first ask, What is
the time horizon over which one wishes to esfimate the risk? Secondly, the
term "acceptable” is undefined. The concept of an acceptable risk will vary
depending on the magnitude of the decline, whom you ask, and what it is
they have 1o gain or lose by various management sirategies. Thus, ambiguity
in the specification of a problem may create kinds of uncertainty that are
beyord any kind of quantitative or qualitative analysis, and # may be
resolved only by political or social processes. We will explore these concepts
further in the final chapter of the book.

2.5 Additional topics

2.5.1 Time to Extinction

The quasi-extinction risk curves we examined focus on probability of falling
below certain levels anytime during a fixed interval of time {thus we call
them “interval" risk curves). For example, we used a 12-year period or
interval in the Muskox example (Figure 2.7a). A different way to express the
results of the simulation is to keep a record of the time it takes each replica-
tion of the simulation to become extinct (or fall below a critical threshold
abundance). If we ran the simulation for a long time and recorded the year of
extinction for each of the 1000 replications, we could use these data to con-
struct a time-to-extinction curve, the same way we used minimum
abundances to construct risk curves. A time-to-extinction curve {Figure 2.8)
gives the probability that the population will have gone extinct by the time a
given number of years (x-axis) have passed.
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Figure 2.8. Time-to-extinciion curve {the number of years that will
pass befare a hypathelical population falls below a fixed threshold).

Note that the curve looks similar to the quasi-extinction risk curve, but it
has a very different meaning. In this case (Figure 2.8), the x-axis gives the
number of years, and the threshold of extinction is fixed. In the case of the
risk curve above (Figure 2.7a), the x-axis gives the threshold, and the time
interval is fixed. [n this book we will mostly use the risk curves, but briefly
come back to the ime-to-extinction curve in a laler chapter.

2.5.2 Estimating Variation

Very often, estimates of population size through lime are used te calculate
parameters for population growth models. In Figure 2.6, the standard devi-
ation representing variation around the mean population size was predicted
by a simple population model that included both demographic stochasticity
(see Section2.2.2) and environmental variation {see Section2.2.3}. In this
model, the environmental variability was modeled by a population growth
rate that varied randomly from one year to the next. The amount of variation
in the growth rate is measured by its standard deviation. In this case, the
standard deviation was 0.075. This estimate was based on the observed,
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year-to-year variation in growth displayed in Figure 2.5. In other words, the
number 0.075 is the standard deviation of the 17 yeasly growth rates from
1947 to 1964

There are some problems with this approach. The observed variation in
growth rate {Figure2.5) has several sources, including environmental
change between years, demographic stochasticity, and sampling (measure-
ment) error. Even if the environment was constant, demographic variation
and sampling error would ensure that the rate of change in the size of the
population changes (or appears to change). When estimating the standard
deviation of the growth rate (which we used in the model that produced
Figure 2.6), we assumed all of the variation is due to environmental change.

This assumption may be reasonable if the population is large (so that
demographic variation is negligible} and the size of the population is known
with a high degree of reliability (so that sampling error is negligible}. In
other circumstances, to assume that all observed variation in growth rates in
due to the environment alone will overestimate the true variation in the
population.

We should subtract the sampling variance and the demographic variance
from the total variance estimate. The difference would be vatiance due to the
environment. In general, this is difficult to do correctly and it is a topic of
ongoing, active research. In the meantime, assuming that all variation is due
to the environment generally will tend to result in estimates of extinction
and explosion probabilities that are too high. It is important to remember
this fact when inlerpreting the results of a study, and to explore the conse-
quences for the results of relatively small values for environmental variation.

2.6 Exercises

Before you begin this set of exercises, you need to install the program
RAMAS EcoLab, if you have not yet done it. Read the Appendix at the end of
the book Lo install RAMAS EcoLab on your computer.

Exercise 2.1: Accounting For Demographic Stochasticity

In this exercise, you will predict the change in population size of the Muskox
population between 1936 and 1937, accounting for demographic stochas-
ticity. For this exercise you will need to choose uniform random numbers.
Some calculators give a uniform random number every time you press a key.
If you have one of these, you can use it {skip "Step 0" and go to "Step 17; you
will need two such numbers for each repetition of this step). If you don’l
have such a calculator, you can use RAMAS Ecolab (see "Step ().
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Step 0. Start RAMAS EcoLab, and select "Random numbers," which is a
program that produces random numbers. The program will display two
uniform random numbers (between 0 and 1) on the screen. To get another
pair of random numbers, click the "Random” button. (To quit, select "Exit”
under the File menu, or press {Alt¥).)

Step 1. The Muskox population consisted of 31 individuals in 1936. Write
down this number {V = 31} on a piece of paper. Repeat the following steps 31
times, once for each Muskox on Nunivak island in 1936. For each repetition,
use a new pair of random numbers,

Step 1.1. Use the first random number to decide if the animal pro-
duces an offspring or not If the first random number is less than the
fecundity value {f = 0.227}, then increase N by 1, otherwise leave it as it
was.,

Step 1.2. Use the second number to decide if the animal survives or
dies. If the second random number is grester than the survival rate
{5 =0.921), then decrease N by 1, otherwise leave it as it was.

Step 2. Alter repeating the above steps 31 times, record the final N. This
is your estimate of the Muskox population size for 1937.

Step 3. Repeat Steps 1 and 2 four times, for a total of five trials. You will
have § estimates for the Muskox population size for 1937. Comment on the
amount of variatior among the results of the five trials.

Exercise 2.2: Building a Model of Muskox

In this exercise, you will use RAMAS Ecolab to build and analyze a sto-
chastic model of Muskox on Nunivak island.

Step 1. Start RAMAS EcoLab, and select the program "Population
Growth (single population medels)” by clicking on its icon See the
Appendix at the end of the book for an overview of RAMAS EcoLab. For
on-line help, press Fll, double click on "Getting started,” and then on "Using
RAMAS EcoLab.” You can also press [FU) anytime to get help about the par-
ticular window {or, dialog box) you are in at that time. To erase ail
parameters and start a new model, select "New" under the Model menu {or,
press {QuN),

Step 2. From the Model menu, select General information and type in
approprate title and comments (which should include your name if you are
going to submit your results for assessment).

Enter the following parameters of the model.

Replications: o
Duration; 12




Exercises 63

Setting replications to 0is a convenient way of making the program run a
deterministic simulation, even if the standard deviation of the growth rate is
greater than zero. Note that the last parameter of this window, whether to
use demographic stochasticity, is ignored (it is dimmed and is not available
for editing). This is because when the number of replications is specified as 0,
the program assumnes a deterministic simulation. This parameler is ignored
because it is relevant only for stochastic models.

After editing the screen, click the "OK" button. (Note: Don't click
"Cancel” or press (Ex] to close an input window, unless you want to undo the
changes you have made in this window.) Next, select Population (under the
Model menu). Recall that the Muskox population on Nunivak Island began
in 1936 with 31 individuals and had an average growth rate of 1.148. Based
on these, enter the following parameters in this screen,

Initial abundance: 3
Growth rate (H): 1.148

The parameter “Standard deviation of R" is not available for editing
because we will first run a deterministic sinulation, in which standard devi-
ation will not be used. Similarly, "Survival rate (s)" is used only o model
demographic stochasticity, so it is alse ignored by the program when the
stmulation is deterministic.

For this exercise, you can ignore the last two parameters in this window
(density dependence and carrying capacity); we will discuss density depen-
dence in a later chapter. The default selection for “"Density dependence type”
is "Exponential,” which refers to exponential growth with no density
dependence. The last parameter is ignored because it is relaled to other types
of density dependence. When finished, click “OK" and press to save
the model in a file.

Step 3. Select Run from the Simulation menu lo start a simulation. The
simulation will run for 12 time steps: you will see "Simulation comnplete” at
the bottom of the screen when it’s Hnished. For a deterministic simulation,
this will be quite quick. Close the simulation window.

Step 4. Select "Trajectory summary"” from the Results menu. Describe the
trajectory you see. What is the final population size?

Step 5. Close the trajectory summary window. Select General informa-
tlon and change "Replications” to 100 by lyping the nuaber. Next, click the
little box next to "Usedemographic stochasticity”  This will add
demographic stochasticity to the model. The parameters should now be as
follows:
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Replications: 100
Duration: 12
¥1Use demographic stachasticity {checked)

Click the "OK” button and select Population {again, under the Model
menu). Recall that the survival rate of the Muskox population was 0.521 and
that the observed standard deviation in the growth rate was 0.075. Based on
these, enter the following parameters in this screen.

Initial abundance: a1

Growth rate (R): 1.148
Survival rate {g): 0921
Standard devialion of R: 0.975

Click "OK," and select Run to start a simulation. While this stochastic
simulation is running, after the first five replications, the program will <lis-
play each population trajectory it produces (the program cannot display the
population trajectories produced by the first five 1eplications, because it uses
them to scale the graph). Describe the trajectories in comparison with the
deterministic trajectory. Do any of these trajeclories look similar to the
deterministic trajeclory? Whal is the cause of the difference?

Step 6. After the simulation is completed, close the simulation window
and save lhe model by pressing (CriS). Then, select "Trajectory summary.”
You will see an exponentially increasing population Irajectory. Describe the
trajectory summary. What is the range of final population sizes? You can try
to read the range from the graph, or if you want to be more precise, you can
see the resuits as a table of numbers. To do this, click an second button from
left ("show numbers”) on top of the window. The first column shows the
time step, the others show five numbers that summarize the abundance for
each time step: (1) minimum, {2} mean - standard deviation, (3) mean, (4)
mean + standard deviation, and (5} maximum.

Step 7. Select “Extinction/Decline” from the Results menu. What is the
risk of dedline to 31 individuals based on this curve?

It might be difficult to read the precise value of the risk from the screen
plot. Do the following to record this number precisely:

Click the "Show numbers” button, and scroll down the window to where
you see 31" in the frst column. Record the probability that corresponds to
this threshold level.

Exercise 2.3: Constructing Risk Curves

In this exercise you will construct an interval decline risk curve based on the
Muskox model, If you have exited the program after the previous exercise,
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first open the file you saved at Step 6 in Exercise 2.2 (press (Cm-0) and choose
the file you saved). If you did not save the previous madel, then enter the
parameters as described in Step 5 of the previous exercise.

Step 1. In the next step we will generate single trajectories. To prepare
for this, select General Information, and change "Replications” to 1. Also,
change "Duration” to 5. Make sure that "Use demographic stochasticity” is
checked. Click OK. (Note: If you want to save the model in this exercise, use
"Save as” and give the file a different name, so you keep the original file.)

Step 2. Generate a single random trajectory based on the model in Exer-
cise 2.2, To do this, run the model and display the trajectory summary as a
table of numbers (see Step 6 in the previous exercise), Record the smallest
value that the population trajectory ever reached during time steps 1
through 5 of this single replication. (Note: lgnore time step 0, for which the
abundance is always 31.)

Step 3. Repeat Step 2 a total af 20 times.

Step 4. You now have 20 minimum population sizes from 20 runs. Sort
these in increasing order, and use the table layout below to generate fre-
quencies from the records of minimum population sizes. In the first column
of the table, write the population sizes you have in increasing order. You are
likely to get some population sizes more than once. Write these down only
once. You will most likely use only some of the rows in this table. In the
second columnn, write how many of your numbers is the population size in
column one. In the third column, cumulate the numbers of the second
column (see Table2.1). In the fourth column, calculate probabilities by
dividing the cumulative frequencies (third column) by the number of trials
{20). Note that this table is similar to Table 2.1, but your numbers will be dif-
ferent because you have only 20 trials or replications, whereas Table 2.1 was
canstructed based on 10,000 trials.

Step 5. Plot the probabilities against population size in Figure 2.9,
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Exercise 2.4: Sensitivity Analysis

In this exercise, we will use the Muskox model from Exercise 2.2 to analyze
the sensitivity of quasi-explosion probability to medel parameters, Our alm
is to decide what parameter is more important in this particular model in
determining the probability that the Muskox population will increase to 150
individuals. You might consider this probability a measure of the success of
the reintroduction project: Assume that the project is regarded as successful
if the Muskox population reaches 150 individuals within 12 years.

Step 1. Load the stochastic Muskox model you saved in Step 6 of
Exarcise 2.2. In this exercise, we will call this model the “standard model.”
View the "Explosion/Increase” curve. Record the threshold and the proba-
bility of increasing to 150 individuals.

It might be difficult to read the precise value of the probability from the
screen plot. Do the following to record this number precisely. (This proce-
dure can also be used for "Extinction/Decling"; it is similar to, but mors
detailed than the one in Exercise 2.2)

Click the "Show numbers” button, and scroll down the window to where
you see "150" in the first column. Record the probability that corresponds to
this threshold ievel. If 150" is not in this table, then click the third button on
top of the window ('scale”). You will see a window with various plotting
parameters (the exact numbers may be different in your simulation).



68 Chapier 2 Variation

Title: Explosionfincrease
7 Autoscala (checked)
X-Axis Labal; Threshold
Minimum: 46
Maximum: 458
Y-Axis Labsl: Probability
Minimum: 0.00
Maximum: 1.00

First, uncheck the box next to "Autascale” by dicking on it. {This makes
the program use the values entered in this screen instead of automatically
rescaling the axes.) Secand, change the maximum value of the r-axis to the
threshold {in this case, 150). Third, click OK.

Scroll down the table. The last line of the table will give the threshold
(150}, and the probability of reaching or exceeding that threshold, Record
this probability below.

Probability of increasing to 150 =

Step 2. Create eight new models based on the standard model. For each
model, inctease or decrease one of the four parameters of the model (see
below) by 10%, and keep all the other parameters the same as the standard
model. Note that there are some restrictions. For example, the survival rate
{s) cannot be less than 0 or greater than 1. And the initial abundance must be
an integer. Make necessary adjustments or approximations for these param-
eters. Save each medel in a separate file. Record the low and high value of
parameters, and filenames that contain them.

Initial abundanca: a

Growth rate {(R): 1.148
Survival rate (s): 0.921
Standard deviation of R; 0,075

Parameter: low value and filename | high value and filename
Initial abundance
Growth rate (R)

Survival rate {s)

Stand. deviation of R
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Step 3. Run stochastic simulations with the eight models you created in
the previous step. After each simulation, view the quasi-explosion results,
and record the probability that the Muskox population will increase to 150
individuals within the next 12 years. Record the results in the table below.

Probability of increasing to 130
Parameler: with high value | with low walue difference
Initial abunidance
Growth rate {R)
Survival rate {s}
Stand. deviation of R

Step 4. For each parameter, subtract the probability with low value from
the probability with high value of the parameter. Discuss the results.

(a) In which direction did each parameter affect the result? (In other words,
daes higher value of the parameter mean higher or lower probability?)

{b) Which parameter affected the outcome most, when the change was 10%?
What should this resuit tell about field studies which attempt to estimate
these parameters, or about future projects similar to this one?

Note that sensitivity of the result to 210% of survival rate, or growth rate, or
its standard deviation can be interpreted in terms of accuracy in the estima-
tion of these parameters, or in terms of the value of these parameters in other
places where a similar project will be implemented. However, sensitivity of
the result to £10% of initial abundance cannot be interpreted in termns of
accuracy: It is probably not very difficult fo count 31 animals. However, it
might be interpreted in terms of the effect of the initial number of individ-
uals on the success of the project.

2.7 Further reading

McCoy, E. D. 1995. The costs of ignorance. Conservation Bivlogy 9:473-474.

Morgan, M. G. and M. Henrion. 1990. tIrcertainty: A guide to dealing with
uncertainty i quantitative risk and policy analysis. Cambridge University
Press, Cambridge.

Shaffer, M. L. 1987. Minimum viable populations: coping with uncertainty.
In M. E. Soulé {(Rd.). Viable populations for conservation {pp. 69-86). Cam-
bridge University Press, Cambridge.






Chapter 3
Population Regulation

3.1 Introduction

The Muskox population we studied in Chapters 1 and 2 was growing at a
rate of about 14 8% per year; this growth contirued for about 30 years. What
would happen if this population actually continued to grow for another 30
years? f you repeat the exercise, starting from the final abundance of 700
Muskox and ran the model for another 30 years, you would see that the final
abundance would be about 44,000 muskox. Another 30 years, and it would
be 2.7 miilion! Obviously, this is not what happens in nature; this species has
been around for millions of years. How does exponential growth come to an
end?

71
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As we discussed in Chapter 1, exponential growth happens under favar-
able environmental conditions. Sooner or later, the environment will not be
favorable; for example, a series of severe winters will occur during which
there will be few calves born. This will set back the population abundarnce.
For other species, the reascn may be too much water (floods), oo little water
{drought), or any of the factors we discussed in Chapter 2 that cause fluctua-
tions in the environment.

It is possible that extrinsic factors (such as climate)} will remain favorable
for a long time, even as they fluctuate, When that happens, the population
will continue growing and become crowded. The resources that are available
to the population will have to be shared among an ever-increasing number
of individuals. These resources include water, food {for animals), nutrients
and sunlight {for plants), and space. As we discussed in the beginning of
Chapter 1, individuals of the same species share the same niche, i.e., they
have similar requirements for such resources, which is why crowding forces
each individual to get 2 smaller share of the available resources. In addition
to depleting its food resources, a growing population may poison the envi-
ronment with its own wastes, and attract predators and diseases.

3.2 Effects of crowding

The reactions of species to overcrowding vary greatly. In some species,
crowding causes increased dispersal; many individuals leave the population
and look for less crowded places. For example, in cyclic populations of voles,
dispersal rate increases as the population approaches its peak densities for
the cycle. We will discuss dispersal in more detail in the chapter about meta-
population dynamics.

3.2.1 Increased Mortality

In same species, increased dispersal cannot compensalte for increased densi-
tics. In other words, dispersal alone cannot reduce the densities to levels
where there are no crowding effects. This is especially true for species that
disperse only passively. For example, dispersal in many plants occurs as the
dispersal of seeds by wind, animals, etc. In such cases, increased density may
mean that the mortality rate will increase. As more seedlings share limited
space, water, or other resources, more of them will die. In an experiment,
seeds of Cakile edentula (which is an annual plant that lives on sand-dunes)
wete sown at densities of 1 to 200 per 400 cm®. The survival mte of these
seedlings was inversely related o the inital sowing density (Figure 3.1). In
this experiment, seed survival was defined as the proportion that produced
mature fruits, so it actually included both survival and reproduction.



Effects of crewding 73

0.4
o
0.3
B 1 ¢
2z
4
7 021
h -
e
5 .
0.1+
L] ]
0.0+ T T T T ? T
1 3 10 30 100 300
Seed density

Figure 3.1. Effect of density on seed survival in Cakila adenhya, an
annual plard. Data from Keddy (1981).

3.2.2 Decreased Reproduction

When individuals get fewer resources, they may reproduce less, or even
cease to reproduce altogether. For example, the clutch size in many bird spe-
cies depends on the available resources. An example of the effect of
crowding on fecundity is the change in the fledging rate in a Great Tit Parus
major population in Oxford, England, shown in Figure 3.2. The number of
fledglings (i.e, the number of young birds leaving the nest) per breeding
bird is used as a measure of facundity. The figure shows that as the size of
breeding population increases from about 40 to about 90 birds, the fecundity
decreases from about 4.5 fledglings per bird to about 2.5. Despite the large
amount of variation (originating perhaps from fluctuations caused by envi-
ronmental factors), the effect of crowding on fecundity is quile evident. (We
will retumn to this graph later in this chapter, when we caution about using
such graphs to quantify the density dependence relationships.)
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Figure 3.2. Effect of densily on fecundily: Graat Tit Parys major. Dala
fromn Lack {1366).

3.2.3 Self-thinning

When density-dependent mortality takes its toll and the density of the pop-
ulation declines, the remaining individuals are better off. This is especially
evident in plants; the decline in population size due to density-dependent
mortality is usually more than compensated by the increased size of sur-
viving plants, and as a result, the total biomass actually increases. In several
cases, this compensation of mortality with growth in the size of individuals
follows a very specific and regular pattern, called a self-thitning curve. This is
often plotted on log-log scales, with the density of plants in the horizontal
axis and mean weight of plants in the vertical axis (see Figure 3.3).

There is considerable (although not unequivocal) evidence that self-
thinning curves, when plotted on log-log scales, show a slope of -1.5 If a
stand of plants are sown at sufficiently high density, the change in mean
weight and density through time follows a slope of -1.5.
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Flgura 3.3.  Self-thinning curve for White Birch Betifa pubescens
(after Verwijst 1989), Density is number of plants per unil area and
biomass is measured as the mean weight of a plant. Each point corre-
sponds to a stand of trees.

3.2.4 Territories

A territory is an area of the habitat defended by an individual or pair, and
from which other individuals are excluded. Examples of territoriat species
include many bird species. Spotted owls, for example, hold lerritories that
may be 10 to 40 km® and that are defended by a pair of breeding owts against
other spotted owls. When density increases in a poputation of a territorial
species, one (or more) of several things may happen: territories may become
packed more tightly, territories may get smaller, some animals may be
pushed to less than optimal habitat, and, last but not least, a targer number
of individuals may be exctuded from atl territories. Adult birds without ter-
ritories are often called "floaters.” Floaters do not breed; thus as population
density increases, the average fecundity of all individuats dectines, even
though the average fecundity of breeding individuals may remain the same.
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3.3 Types of density dependence

The negative effects of crowding discussed above will build up as popula-
tion size increases. At low densities, these effects will be negligible; for
example, there will be enough food for everyone. As densifies increase, the
negative effects will become more pronounced. Unless stopped by unfavor-
able environment, the population will soon reach a density at which the
negative effects build up to such an extent that the population cannot grow
anymore. Thus a balance would be reached between growth and the
capacity of the environment to provide food, space, and other resources.
These limitaticns, be they food, space, self-poisoning, or predators, are called
density-dependent factors because their intensity depends on the density of the
affected population. The phenomenon of population growth rate depending
on the current population size is called density dependence.

How exactly the population growth comes to a stop as a result of these
density dependent factors depends on the ecology of the species and the
limiting resource. Let us first consider food shortage and ignere other factors
such as emigration, tmmigration, and environmental variation. As popula-
tion size increases, the amount of food resources for each individual
decreases. If the available resources are shared more or less equally among
the individuals, there will not be enough resources for anybody at very high
densities. Such a process of sharing leads to a type of intraspecific (within the
species) competition called scramble competition. In conirast, contest compe-
tiion accurs when resources are shared unequally, and there are always
some individuals who get enough resources to survive and reproduce.

There are other ways in which competition occurs differently in different
species or for different resources. For example, competition may be indirect,
through the sharing of food, but without actual physical contact or confron-
tation between the competitors. Or it may be direct, with actual fighting over
the limited resources. We will nol concentrate on such differences; what
matters from the modeling point of view is whether resources are shared
equaily or unequally.

An example of scramble competition might be competition for food
among fish larvae {newly hatched fish). If there are very few individuals,
almost all of them may survive. If the density of larvae is very high, none of
them will get enough te survive. This is an extreme example of scramble
competition, in which the total number of survivors is less when there are
more individuals to start with, This process is also called womening returns
because as density increases, conditions for the whele population, not just
the average individual, get worse.
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An example of contest competition is competition for territories, in
which the winner gets all of the territory (and can not only survive but also
reproduce} while the loser gets none. In this case, no matter how many com-
pete for the limited number of territories, there are always some breeding
individuals. The process of confest competition is also called diminishing
returns. As the number of competitors increase, the proportion that can find
a territory diminishes, and the total reproduction (eg,, total number of off-
spring from all territorles) increases more and more slowly, but it does not
decline,

3.3.1 Scramble Competition

The two types of competition we discussed are important because they have
quite different effects on the dynamics of the population and its risk of
extinction. To add effects of density in our models, we need to decide what
causes density dependence, and add appropriate equations to our model.
Thete are many ways to write equations to add density dependence to the
models we have been using in earlier chapters. We will discuss some of these
equations Jater in this chapter. For now, we don’t need to worry about the
specifics of the equations; we will instead concentrate on their general char-
acteristics. We will compare various types of density dependence with two
types of graphical representation.

One graphs abundance at the next time step (next year, tor instance) as a
function of abundance now. Such a function is shown in Figure 3.4. The type
of representation in this figure is called a recruitment curve, or a replacement
curve. It shows what the population size will be next year (the y-axis), given
the population size this year {the x-axis). In scramble competition, this fune-
tion is humped and the right end of the curve is declining: in other words,
for large population sizes, the population size at the next time step, N{t+1}, is
a derlining function of the population size at this tme step, N(t). The curve
always starts from the origin, because if the population size is zero, then it
will also be zere next year {assuming no imwnigration). See Section 3.8.1 for
the equation that we used for scramble competition.

The dotted (45°) line shows exact replacerment, where N{i) equals N(t+1}.
The level of abundance at which this line and the replacement curve {contin-
uous curve} intersact is labeled as K on the graph. The replacement curve
(continuous line} 15 above the exact replacement line at the left part of the
graph, to the Ieft of the point of intersection of the two. When the current
population size is in this region (¥ less than K), N(t+1} is greater than N(t),
which means the population will grow. When the current population size is
greater than K (N>K), then N(f+1) is less than N(), which means the popula-
tion will decline. When the current population size is equal to K, then N(t+1)
is equal to N(f), which means the population size will remain the same. So,
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N{t+1)

N

Figure 3.4. Replacemenl curve for scramble competition.

the population tends to grow when it's small, and it tends to decline when
it's large. This property makes this type of density dependence stabilizing.
Since it pushes the population up from lower abundances and down from
higher abundances, it stabilizes the population size around a certain level. In
mathematical terms, this level is called an equilibrizm point because of this
stabilizing effect, and is represented by the parameter K. In a density-
dependent model, the equilibrium point can be described in biological terms
as the cerrying capacity of the environment for the population, ie., the
population size above which the population tends to decline. Another
related term we introduce is regulation. A population is said to be regulated
when its density is kept around an equilibrium point by density-dependent
factors.

We can use a replacement curve to make a deterministic prediction of the
population’s future. All we need is the initial population size. The top graph
(A) in Figure 35 is a replacement curve, and the bottom one (B) is the pop-
ulation trajectary based on this curve.
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Figurs 3.6. Predicling the population trajectory (B), based on the
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Fitst, find the initial population size, indicated by N(0) in graph (A).
Second, find N{0) in graph (B). In the second graph the x-axis is time and
y-axis is the population size. For x = N{0), the curve in graph (A) gives N(1),
the population. size in the next time step—in other wards, the y-value that
corresponds to x = N(0). We read this from the graph as about 300, and plot it
in graph (B) for t =1, To predict N(2) from N(1), we find the y-value pre-
dicted by the replacement curve for x = N{1). An easy way to do this is lo
extend a horizontal line from the curve at x = N{0}, y = N(1) to the exact
replacement line (the dashed, 45° line), and a vertical line from the 45° line
back to the curve. Now the y-value is N(2), which we plot in graph (B). For
the remaining time steps, we repeat the same process: drawing a horizontal
line from the curve to the 45° line, and a vertical line from the 45° line back to
the curve, and plotting the y-value in graph (B).

The reason the replacement curve is also called the recruitment curve has
to do with its historic association with fisheries biology. Recruitment in
fisheries refers to the natural increase in the harvestable portion of the pop-
ulation {fish above a certain size) by growth of smaller (e.g., newly hatched)
fish. Typically, only a small fraction of eggs become recruits. The larger the
number of eggs, the more intense the competition between the newly
hatched individuals, and the smaller their chances of survival. The points in
Figure 1.6 show the recruitment data for Bluegill Sunfish Lepomis macro-
chirus, a popular freshwater sport fish widely introduced throughout the
temperate world.

The bluegill data were used to generate the replacement curve {dotted),
using one of the equations for modeling scramble type density dependence:
the Ricker equation, developed by the fisheries biologist W.E. Ricker. The
point at origin was added to assist the model fitting (Figure 3.6). This is jus-
tified because zero eggs wowld give zero recruits. The fit of the data to the
model is remarkably good for this type of study, which perhaps has
something to do with the fact that Ricker (1975) developed his equation
while studying bluegill population dynamics.

Another type of graph by which we can visualize a density dependence
function is shown in Figure 3.7, which gives the growth rate of the popula-
ticn as a function of abundance. The growth rate in this case is calculated as
the ratio of the population size in the next time step to the population size
now, N(+1)/N(f}. The exact replacement line (which was a 45 line in the
previous figure} in this figure is a horizontal line at growth rate equal to 1.0.
The population grows when growth rate is greater than 1.0 (i.e., when the
curve is above the line), and dedines when the growth rate is less than 1.0
{when the curve is below the ling).
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Figure 3.6. Densily dependence in Bluegili Sunfish. After Ferson et al.
(1991).
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Figure 3.7. Densily dependence in growth rate for scramble competi-
tion.
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The two types of graphs that we used to represent density dependence
are quite similar, they give the same information. There is one important
piece of information that we can get more casily from the second type of
graph. The y-intercept of the curve (the point at which the curve intercepts
the vertical axis) marks the maximum rate of growth (R,,,,), which happens
as the population size approaches zero, where the effects of crowding do not
affect the population. This is the rate of exponential growth we discussed in
Chapter 1; in ather words, it tells how fast this population will start to grow,
if it grows free of density-dependent effects. Bacause the densities will be
small at the beginning, the change in population size through time will ini-
Hally look like exponential growth. This initial phase of density-dependent
population growth is seen in the first few days of an experiment by the
Russian biclagist G.F. Gause in the 1930s (Figure 3.3). Gause started the
experiment with 2 Paramecium aurelia (a protozoan species). After the first
few days, the growth rate of the Paramecitim population started to decline,
and after day 12 or so, the population size fluctuated around 550.
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Figure 3.8. Growth ol a Paramecium aurefia population starting from
2 individuals. Data Irom Gause (1934).

In Chapter 1, we used a logarithmic scale for abundance in order to
demonstrate the exponential nature of the growth of the population of
Muskox. If the abundance graph through time is linear in the logarithmic
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scale, this means that the population is growing exponentially. When the
population growth starts exponentially, and then slows down, as it did in the
case of the Porameciitm population in Gause's experiments, then the loga-
rithmic graph will be Jinear at the beginning, and curve down to a horizontat
line. In Figure 3.9, we show the same data as in the previous figure, but with
the population size (y-axis} in logarithmic scale.

Nate also that the fluctuations of the population after it reaches the equi-
librium do not seem to be as large in Figure 3.9 as in the original figure, due
to the logarithmic scale. Cne must be careful in interpreting graphs in
logarithmic scale, which tend to play down the importance of variation and
error. In Exercises 3.1 and 3.2, we will model the growth of this Paramecium
airelia population using RAMAS Ecolab.
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Figure 3.9. Growth of a Paramecium aurelia population starting trom 2
Individuals. Data from Gause {1934). Mote the logarithmic scale for the
numbe: of individuals.

3.3.2 Contest Competition

If the available resources are shared unequally so that some individuals
always receive enough resources for survival and reproduction at the
expense of other individuals, there will always be reproducing individuals
in the population. As we mentioned abpve, this will be the case in popula-
tions of strongly territorial species, in which the mumber of territories does
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not change much even though the number of individuals seeking territories
may change a lot. This process of diminishing returns leads to contest com-
petition, which is represented by the replacement curve in Figure 3.10. I you
compare this figure with the replacement curve for scramble competition
(Figure 3.4), you will see that the major difference is in the right side of the
curve, at high popuiation densities. Whereas the curve for scramble compe-
tition is humped, and declines at high densities, the curve for contest
competition reaches a certain level and remains there. The similarity is that,
in both cases, if the population size is above the carrying capacity, it will
decline in the next time step. However, under contest competition, no matter
how high the population density is, the population in the next time step will
not be below the carrying capacity, assuming a constant environment. If
there is environmental variability, the population may decline below the
carrying capacity under any type of density dependence.

N(t+1)

N(t)

Figure 3.10. Replacement curve for contest competition.

The curve shown in Figure 3.10 is a specific type of density dependence
function know as the Beverton-Holt function (see Section 3.8.1 for the equa-
tion we used for this function), based on Beverton and Holt (1957).
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3.33 Ceiling Model

There are several other density dependence models that will give the general
characteristics of contest competition. Cne of the simplest of these is the
ceiling model. The replacement curve for ceiling density dependence is
shown in Figure 3.11. Note that this is similar to Figure 3.10 in that the right-
hand side of the curve is flat rather than declining,

N(t+1)

X
N(t)

Figure 3.11.  Replacement curve for the ceiling model ol density
dependence.

In the ceiling model, the population grows exponentially until it reaches
the carrying capacity (for example until all territories are occupied), and then
remains at that level until a population decline takes it below this level. If the
population grows above the carrying capacity (by immigration, for
example), it declines to the carrying capacity by the next time step. In this
case the carrying capacity acts as a population ceiling, above which the pop-
ulation cannot increase. This is somewhat different from the types of density
dependence function we studied earlier, in which the population density
equihibrated arourd the carrying capacity. In contrast, the average population
size in a ceiling model may be well below the cartying capacity, because the
population may be pushed below this level by environmental variation, but
cannot increase above it. Because of the difference between ceiling type of
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density dependence and the contest type based on the Beverton-Holt func-
tion, our program includes "Ceiling" as an additional choice of density
dependence type, even though it may result from contest competition. We
will explore these differences in Exercise 3.3.

3.3.4 Allee Effects

The three types of density dependence we explored so far share a common
characteristic: the population growth rate declines with increasing density.
However, the reverse of this would also be density-dependent: If population
growth rate declines with decreasing density, the population growth is stil
density-dependent, but in a very different way (because of this, it is called
inverse density dependence), In this section we will discuss natural factors
that cause inverse density dependence, and their consequences. In a later
section, we'll discuss types of harvesting that can also lead to inverse density
dependence.

Factors that cause the growth rate of a small population to decline, as the
population gets smaller, are collectively called Allee effects (named for
Warder C. Allee who studied biological sociality and cooperation; Allee
1931; Allee et al. 1949). Allee effects do not result from a single cause; rather
several mechanisms that draw a small population away from the carrying
capacily and toward extinction are called Aller effects. When the density of
whales becomes very low in the ocean, males and females have a more diffi-
cult time just finding each other to mate. When the density of vegetationon a
mountain slope becomes too sparse, erosion begins to take away the soil so
even fewer plants can take hold there. When a population becomes very
small, inbreeding can create a variety of genetic problems (see Chapter 2}.
Whenever a lower sbundance means a lower chance of survival or repro-
duction for those individuals that remain, Allee effects may occur. Similar
Allee effects are also observed in plant populations. The number of seeds per
plant in small populations of Banksia goodii (a shrub) were less than the
number of seeds per plant in larger populations. This species is pollinated by
mammals and birds, and the reason for lower fertility in smaller populations
was thought to be decreased number of pollinator visits (Lamont et al. [993).

We mentioned earlier that a crowded population may attract predators,
leading to density-dependent predation mortality. However, if the density of
the predator in the area is constant, then predation may cause inverse den-
sity dependence. As the number of individuals of the prey species in the
same area increases, the damage the predators do will be distributed among
a larger number of prey, and the proportion of the population lost to preda-
tion will be lower. A decline in predation rate as a result of increased
concentration of prey is also called predator sahuration. This is one of the
reasons that some species of birds form flocks to roost, or breed in colonies.
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Breeding in colonies may have other social benefits, too. For example, Birk-
head (1977) found that when the colonies of the Common Guillemot (a
marine bird species) were dense, the hatching of eggs were more
synchronized. This made sure that there were more adulls around the colony
when most of the chicks were still at nest, and decressed mortality from
predatars such as gulls. The result was that, as shown in Figure 3.12, the
breeding success {measured as the proportion of nests with at least one
fledgling) was higher in denser colonies. Allee effects will occur when a
decline in the population of such colonially nesting species causes declinesin
breeding rates, which cause further declines in the population size.

_.
=3 8
: X

Bresding success (% rearing)
z

) Medium Derse
Danaity of nests at the colony

Figure 3.12. Percentage of nests reering at least one chick to fledg-
ling in colonies of the Common Guilllammot {Uria aalge). Data from
Birkhaad (1977).

In a density dependence graph, Allee effects are represented by a curve
that declines as aburdance gets smaller. The density dependence curve
(growth rate as a functon of abundance) for scramble competition that we
studied earlier is repeated as curve (a) of Figure 3.13. Other curves show
how this density dependence relationship changzes with the addition of
increasingly stronger Allee effects. Note that these are rot replacement {re-
cruitment) curves; they show the relation between growih rate and
abundance (not abundance next year as a function of abundance this year).
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N{t+1) / N{Y)

N{t)

Figure 3.13. Density dependence in growth rate for scramble compe-
titon {curve @) and scramble competition with three levels of
{increasingly strong) Allee effacts {curves b, ¢, d).

An important characteristic of these density dependence curves is that
the growth rate is below 1.0 at the left end of the curve, which means the
population will decline if its abundance is low. This means that if a popula-
tion declines to a low level by chance, then Allee effects can pull it down
even further. Clearly, such phenomena can dramatically influence the risks
of extinction. It also means that when Allee effects are present, the sigmoidal
growth from low abundances to the carrying capacity (that we saw in Figure
3.8, for example) is not always possible. If the population starts at a low
abundance, it may go extinct even before it starts growing.

The models that can be implemented in RAMAS Ecolab cannot explic-
itly tncorporate Allee effects {although other, research-oriented RAMAS
programs can}). One way o incorporate Allee effects in a model is to adjust
the extinction threshold. Suppose you know that Allee effects must be
important for a particular species you are modeling, once its popuiation falls
below, say, 100 individuals. After running a stochastic simulation, you can
view the quasi-extinction risk curve and record the risk of faliing below 100
individuals. Remember, the quasi-extinction curves in RAMAS Ecolab are
"interval” extincion curves, which refer (o falling below a threshold af least
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once during the simulated time intereal. I you assume that the relevant risk is
the risk of falling below 100 individuals, this means that you don't need to
worry about how realistic the model is below this abundance. In a way, you
can assume the population to be extinct once it falls below this level.

3.3.5 The Concept of Carrying Capacity

In our models, we used the term carrying capacdity as equivalent to the
parameter K of the models, which is the level of abundance above which the
population tends to decline. Defined this way, carrying capacity is obviously
a characteristic specific to a population. Different populations of the same
species may have very differunt carrying capacities, 45 a result of the dif-
ferent amounts of resources (food) or space (territories) available to them, as
well as the abundances of competitor and predator species. In summary, we
do not make a distinction among carrying capacities set by different types of
factors. The carrying capacity is simply an abstraction that crudely summa-
rizes the interactions of a particular population with its environment and
describes the capacity of the environment to support a population, in units of
the number of individuals supported.

As any abstraction, the concept of carrying capacity has its limitations.
One of these i3 that carrying capacity, if deterrnined by such factors as food
and predators, must fluctuate as these factors change over time. The models
we use in this chapter assume that carrying capacity remains constant, and
whatever fluctuations there are in the environment affect the growth rate of
the population. There are models in which carrying capacity 15 also allowed
to vary, but the distinction between how environmental variation is added to
carrying capacity versus to growth rates is beyond the scope of this book (see
"Adding environmental variation” below).

Another limitation of our definition of carrying capacity is that to some it
may imply (wrongly) that all populations are expected to end up at this
abundance. There are at least four reasons why this may not be true. We
already discussed two of these and we'll discuss two others later in this
chapter: {1) The major reason is that environmental fluctuations will push
the size of the population up and down, and therefore even populations
under the effect of strong density dependence may never reach this level.
Later in this chapter, we will discuss methods of adding this importani factor
to our density dependence models and demonstrate it with computer exer-
cises. (2) When the density dependence model is ceiling type (see above), the
dynamics of the population above and below the carrying capacity are
different, and thus the population size may not stabilize at K. Moreover,
even the average abundance predicted by the models may be quite different
from K. (3) As we discussed in the previous secticn, if the density depen-
dence model includes Allee effects, and the population size starts from a low
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initial abundance, the population may become extinct before it reaches K. (4)
Finally, strong density dependence of the scramble kind may lead to oscilla-
tions even without any environmental fluctuation. We will discuss this later,
in Secticn 3.5.

3.3.6 Carrying Capacity for the Human Population

As we mentioned above, the models we use in this chapter assume that the
carTying capacity remains constant. The human population is one example of
a population that does not fit a static concept of carrying capacity. In addi-
tion to changes in environmental conditions (for example, droughts) that
may change the carrying capacity, the actions of humans themselves have
greatly affected the carrying capacity of the earth for the human population.
In an earlier chapter, we mentioned the unexpected effects of antibotics and
pesticides in increasing the limits to the human population. Technology and
innovation have increased the carrying capacity of the earth for the human
population, and many economists still believe that human ingenuity will
always find answers to increased demand. From an ecological point of view,
the damage to natural ecosystems in all parts of the world is an indication
that the nature of the interaction of the human population with its environ-
ment is changing.

As the human population approaches its carrying capacity, ts interac-
tions with the natural environment will determine the ultimate size of the
population, as well as the conditions in which humans will live.
Characlerizing this interaction is one of the important challenges facing
applied ecologists. As we discussed in Chapter 1, the impact of humans on
the envizoriment is 2 function of the number of people, consumption rate per
person, and environmental damage per unit of consumption. Changes in
these variables through time and among different regions of earth make it
impossible o caleulate the carrying capacity of earth for the human popula-
tion. MNevertheless, there have been several attempts to calculate it (sce
Cohen 1995), mostly based on consumption of renewable natural resources
such as food and fresh water. Another factor that might play a role is the
spread of infectious diseases, made easier by increased human densities and
increased long-distacwe travel

Limitation of population growth by either shortage of food or by dis-
eases is an unpleasant prospect. A more oplimistic scenario i3 a decrease in
fertility rates or consumption rates as a result of social and economic factors.
Increased national wealth or economic activity {measured by gross national
product, GNP) has been assoclated with decreased fertitity in many indus-
trial counties. Of course, population size is only one factor that determines
the human impact on the environment; increased wealth is also associated
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with increased consumption. Among social factors, Pulliam and Haddad
(1994; found that ferfility was negatively correlated with contraceptive use
and with education level.

3.4 Assumptions of density-dependent models

The assumptions of a density-dependent model are similar to those we dis-
cussed in Chapter I, with one exceptior.. Instead of assuming that density
will remain low enough to have no effect on population dynamtics
(assumption 3 in Chapter 1}, we assume that increased densitywill cause a
decline in the population growth rate in such a way that the growth rate will
reach 1.0 when population density (N) is K (the carrying capacity), and will
cause even further decrease in growth rate if N>K.

Regarding variability (assumptions! and 2 in Chapter 1), we asswme
that there is no variability in carrying capacity from year to year (se¢
Section 3.3.5). In Exercise 3.2, we will demonstrate the effect of incorporating
demographic stochasticity in a deterministic density dependence model, and
in Section 3.7, we will discuss adding environmental variation.

All the other assumptions are the same: We assume a single, panmictic
prpulation {assumption 5), in which the composition of individuals with
respect to age, size, sex, genetic properties, and others remains constant
{assumption 4), and in which processes of birth and death can be approxi-
mated by pulses of reproduction and martality (assumption 6}.

3.5 Cycles and chaos

Strong density dependence functions of the scramble type can induce wild
population fluctuations even in models without any environmental varia-
Hon. This phenomenon is called deterministic chaos and has been the subject
of much interest in biology and physics as well as other fields during the last
several years. In its simplest form, cycles caused by density dependence
proceed as follows. An initizl high density {much above carrying capacity)
causes a population crash. This happens when the density dependence curve
declines very fast at high densities {to the right of the hump in Figure 3.4), so
that a very high initial density causes the density in the next time step to be
much below the carrying capacity. In the next lime step, the population
starts with this very low density and, as a result, grows quickly. Such cycling
is illustrated in Figure 3.14, which shows the average densities of seedling of
crucifer Erophifa vernau (an annual plant) in two types of plots: plots with
high initial density of seedlings, and those with low initial density.
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Figure 3.14. Mean density of seedlings of an annual piant in piots with
inltial high and low dansities. Dala from Symonides et al. {19886).

Symonides et al. (1986) found that most plots with intermediate densities
stayed at intermediate density in the following year, whereas most of the
plots with high or low densities alternated from one year to the next, as
shown in the figure. This type of dynamics arises with scramble type density
dependence and high growth rates. If the growth rate is really high, the
cycles tum intc chaos. Chaotic dynamics are characterized by the fact that
small changes in the initial conditions (i.e., N{0}, the initia! abundance) result
in much larger changes in the rest of the population’s trajectory. We will
demonstrate these kinds of dynamics in Exercise 3.4.

3.6 Harvesting and density dependence

Earlier in this chapter, we discussed Allee effects that cause inverse density
dependence. A second, human-caused way a population may experience
inverse density dependence is through harvesting,
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In Chapters 1 and 2, we discussed the effects of harvest or removals on
the populations of Blue Whales and Muskox. Harvesting a natural popula-
tion can be done with various strategies. Here we will consider two simple
ones; constant harvest, where a fixed number of individuals are taken out of
the population at each time step, and constant rate, where a fixed proportion
of individuals are harvested.

Assuming that the natural (unharvested) population itself has no density
dependence (it is growing exponentially as in the examples of Chapter 1 and
2), then it will also have no density dependence when it is harvested at a
constant rate. This is because the constant rate imposes a fixed mortality,
which is the same as reducing the survival by a fixed amount. Because the
decrease in survival is fixed, and it does not depend on density, the popula-
tion growth (or decline, as the case may be with overharvesting) will be
density-independent.

However, the constant harvest is a different story. Suppose you decided
on a constant harvest strategy of 10 Muskox per year. If the population size is
1000, this will mean that harvesting imposes an additional 1% mortality. If
the population size is 100, the additiona! mortality would be 10%. The lower
the population size, the higher the additional mortality due to harvest, and
the lower the population growth rate. This obviously introduced an inverse
density dependence, because growth rate declines with declining population
density.

Cne of the effects of this inverse density dependence is that it tends 1o
destabilize the population’s dynamics. Cifectively, whenever the population
is reduced by some random change in the environment or by a series of
unducky events, the propottion of the population that is removed is greater.
The reduction in population size due to chance events is amplified by the
removal strategy. Thus, the removal strategy will increase the magnitude of
natural fuctuatiens and increase the risks of crossing lower population
thresholds that may be unacceptable for economic, social, or ecological rea-
sons.

The effect of constant harvest is similar to Allee effects, but it applies to
the whole range of population sizes, not just to small populations. Like Allee
effects, constant harvest may easily push a population to extinction, because
a lower population size may result in a decline in growth rate, which causes
further declines in the population size.

The reason this form of density dependence (declining growth rate at
low densities) is called inverse is perhaps historical; it does not necessarily
mean that the other type (declining growth rate at high densities) is more
commen. A related (and somewhat confusing) terminology is positive and
negative feedback. The aowding effects are said to be a form of nepative
feedback, whereas inverse density dependence (e.g., Allee effects) is a form
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of positive feedback. "Positive” in this case does not refer to the rate of
growth, but to the fact that plus makes more plus and minus makes more
minus (low abundance leads to even lower abundance).

We will demonstrate the inverse density dependence imposed by con-
stant harvest in Exercise 3.5, and we will model the effects of different types
of harvesting in a later chapter.

3.7 Adding environmental variation

So far in this chapter, we assumed that the density dependence relationships
are constant. In other words, the growth rate of a population may change
from year to year as a rasult of changes in population density, but the nature
of the function that determines these changes remains the same.

How would we add environmental variaton to a density-dependent
model? The density dependence function is determined by its parameters,
which, for scramble or contest types discussed above, are the maximum
growth rate, R;,., and the carrying capacity, K. Both of these parameters may
be affected by environmental fluctuations. We studied in Chapter2 an
example of how growth rate of the Muskox population varied from year to
year.

We can also model environmental variation in carrying capacity. This is
a more complicated concept, since carrying capacity is often measured ay the
Jong-term average abundance of a population regulated by density depen-
dence. For a lerritorial species, there is usually some variation among
territories in terms of the quality of habitat. In years with unfavorable
environmental conditions these territories may become unsuitable, and as a
result the number of territories may fluctuate from year to year. This process
can be modeled by a randomly varying carrying capadity, with methods
similar to those we used in Chapter 2 for randomly varying growth rates.

In this book, we will model all environmental variation as if it affects the
growth rate and assume that carrying capacity is not subfect to environ-
mental variability. We will, however, study a different type of change in
carrying capacities. This is not a random change, but a deterministic change
or a trend in carrying capacity of a population through time. By this, we
mean a change that results in consecutive increases {or decreases) in the car-
rying capacity. An example of such a decrease {(a negative trend) is habilat
loss. An example of an increasing carrying capacity might be increase in
habilat quality for a forest-dwelling species as the forest grows (assuming it
is not logged). Many spectes, including the Northern Spotted Owl, depend
on older forests. For such species, a forested habitat will become more suit-
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able, and the carrying capacity will increase, if the forest is left undisturbed
for a long time. We will study how to model effects of such changes in
Chapter 6.

Having decided to model environmental variation in growth rate, we
still need to decide how exactly to do this. We cannot use the same methed
we did in Chapter 2, since now the growth rate depends on density as well
as on random environmental fluctuations. In Chapter 2, we simply sampled
a growth rate from a predetermined random distribution. The distribution
can either be that of growth rates observed in the past, ar some more general
statistical distribution. In this chapter, we modify this procedure a little.
Instead of selecting the growth rate from the same distribution every time
step of a simulation {for example, every year), we select it from similar but
different distributions each year. These distributions are similar because they
have the same shape and the same standard deviation. They are different
because they have different means. The means are different because they are
determined by the abundarce or density of the population. In other words,
at a given time step, the population has a certain abundance (density), and
the density dependence relationship determines the auerage growth rate as a
function of this abundance. The actual growth rate for that time step is then
sampled from 2 random distribution with this average that was determined
by density dependence (see Figure 3.15).

3.8 Additional topics

3.8.1 Equations

There are several different ways of writing equations for the types of density
dependence we discussed in this chapter. One of the earliest equations used
was the logistic equation, which was originally developed for continucus
time (differential equation) models. Another is the Ricker equation (ex-
pressed in discrete time) that we mentioned earlier with respect to the data
on bluegill. For modeling scramble type density dependence in
RAMAS Ecol.ab, we use a discrete form of the logistic equation that is math-
ematically equivalent to the Ricker equation. The growth rate at time ¢ is
calculated as a function of the density at ime £, N{#), using the following
equation.

RG) = R -%)

mex
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Nit+1) / N{t)

N

Figure 3.15. Conceptual model for adding environmental variation to
a density dependence relationship. The density dependence function
determines the average growih rale (as a function of the current abun-
dance). The growth rate is then sampled from a random distribution
with this average.

where R, i5 the maximum growth rate and K is the carrying capacity. In
this chapter we use R,,, instead of R because the growih rate depends on
density, and its average does not make much sense. R, is the average
growth rate at Jow population densities, where the effects of density depen-
dence are 50 weak that they can be ignored.

When the population size N{t) s small, the exponent ( 1- %’3) is close to

1.0, and the growth rate R(F) is close lo R, When N(§) is equal to the car-
rying capacity, then the exponent is zero and R{t) is equal to 1.0. When the
population size is above the carrying capacity, then the exponent is negative
and R(t) is iess than 1.0, i.e., the population declines. Combining this formula
with the population growth formula we used at the beginning of Chapter 1,
the equation for the abundance at the next time step is

Neth
N@E+1) = N() - RME*'T)
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For contest-type density dependence, we use an equation equivalent to
the Beverton-Holt equation used in fisheries management. With this equa-
tion, the growth function becomes

max K
Rpne - N(@O)-N@)+K

N@+1) = N(o) -

This formula looks a bit more complicated, but you can easily verify. for
yourself that when N(t) is small, the papulation grows exponentially; when
N(1)=K, the growth rate is 1.0 [ie,, N(t+1)=N{)}; and when N(t)>K, the pop-
ulation declines [i.e., N(i+1)<N(f)].

For ceiling lype, we use a much simpler formula:
N{t+1) = min (R,,,, - N(8), K},

which says that the population size next time step s the minimum of the two
numbers, [R,-N{#)] and K.

3.8.2 Estimating Density Dependence Parameters

Developing a density-dependent population model involves three steps:
determining the presence of density-dependent population regulation,
determining the type of density dependence, and estimating model parame-
ters.

Merely observing a growth rate above 1.0 at low population densities
does not justify using scramble- or contest-type density dependence. You
need other evidence that shows that the population is regulated by these
types of density dependence. This is because the observed growth rates are
affected by factors other than density, such as stochasticity. Populations that
are not regulated by scramble- or contest-type density dependence (for
example, those that are only subject ta ceiling-type density dependence) will
also frequently experience periads of positive growth, some of which will
coincide with low population sizes. If you model such a population with a
scramble- or contest-type density dependence, you may underestimate
extinction risks because aof the stabilizing effect af these functions. For a dis-
cussion of complexities inherent in detecting density dependence, refer to
Hassell (1986), Hassell et al. (1989), Dempster (1983}, Solow (1990), and
Walters {1985).
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Estimating the parameters of a density dependence model may be a
complicated problem. Simply using the maximum growth rate ever
observed may overestimate the strength of density dependence, since this
observed value might have been the result of factors other than the low den-
sity of [he population cr the lack of competiion. One method is to use
time-series data to fit one of the density dependence functions. Suppose that
you have a time series of population estimates, Ny, N, Ny, etc.; and for each
time step !, you calculate the growth rate as R,=N,, / N,. The density
dependence curve discussed above suggests that, to estimate R, you need
to make a regression of R, on N,, and use the y-intercept as the estimate of
R, (assuming it is a declining function). However, note that N, appears
both in the dependent and in the independent variable of the regression!
This implies that if N, are measured with error {as they are in most cases}, or
are subject to other (stochastic) factors, then the estimate of the slope of the
regression and, hence the estimate of R,,,, will be biased. In particular, you
may detect density dependence even though it does not exist. Figure 3.2 in
Section 322 is another example in which the two variables (fledglings per
breeder and number of breeders) are not statistically independent.

There are no simple solutions to this problem. In some cases, averaging
the two growth rates around the time step ¢ (N, /N, and NJN,_)), and

regressing this variable on N, might be heipful. If you use a geometric
average,the dependent variable becomes R, = .N,, / N,_, . Note that

this does not. contain the independent variable N, , thus no statistical bias
would be introduced 16 the estimation.

3.9 Exercises

Exercise 3.1: Gause’s Experiment with Paramecium

In this exercise, we will iry to model the growth of the Paramecium popula-
tion in Gause’s experiment, using RAMAS EcolLab.

Step 1. Start RAMASEcolab, and select the program for single-
population models. We will start with a deterministic model, which means
we will set the number of replications to zero (this is how we tell the
program to run a deterministic simulation). The duration should be 25 days.
The program doesn’t need to know that we are measuring time steps in
days, but we need to keep that in mind when salecting the parameters of the
mode], We enter the parameters of the density dependence function in the
Population window (under the Model menuj, which 15 also wheze we enter
the initial population size, 2. In addition ta the initial population size, there
are three other parameters you need to specify here. Let's begin with the
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type of density dependence. If you go 1o the box for "Density dependence
type” and click on the little arrow to the right of the box, you will see 2 Jist
from which you can select by clicking. For this mode! select “Scramble.”
Another parameter is the growth rate, which shows the rate of growth atlow
population sizes. This parameter should be greater than 1. We will estimate
this parameter with trial and error. Enler an initial guess, say 1.5. Note that
this is the growth rate per day, since our ime step is one day. A third param-
eter is the carrying capacity, K, which is equivalent to the equilibrium
population size. Estimate this number from the average number of
individuals after day 12 in Figure 3.8, and enter it {as an integer) in the line
for carrying capacity. After entering the parameters, click "Apply."

You can see the two types of density dependence graphs we discussed
above for your model by clicking the "Display” button in the Papulation
window. A menu will give you two choices. "Density dependence in R” gives
growth rate, N(t+1)/N(t), as a function of density, N{f). "Replacement curve"
(recruitment curve) gives N{t+1) as a function of N(f). Select by clicking,
When finished, close the window, and click "Cancel” to close the menu.

Step 2. Select Run to start a simulation. When the simulation is over,
select Trajectory summary from the Results menu.

How well does the predicted trajectory fit the abserved one in Figure 3.87
Does it reach the carrying capacity around day 12 as the experimental pop-
nlaon did? 1f it reached K earlier, this means the estimated growth rate is
too fast, If it reached K later than 12 days, it means the estimated growth rate
is too low.

Step 3. Repeat Step 2, by changing the growth rate according to the
results, until you find the R that fits the observation it terms of how fast the
population grows.

Compare the dynamics of the population as predicted by your model
and the real observations in Figure 3 B, especially for the second half of the
graph after day 12.

Save your model by pressing (C5), and typing a name for it (such as
Gausel). The program will add the appropriate file extension, and will also
save the results if they are available.

Step 4. Change the initial abundance to 800, and run another simulation.
Describe the population krajectory.

Exercise 3.2: Adding Stochasticity to Density Dependence

In the previous exercise we have ignored variation. Adding stochasticity to a
density dependent maodel can be done in several different ways. In this exer-
cise, we will demonstrate one of these, derographix stochasticity.
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In his experiments, Gause tried to keep the conditions in his laboratory
setup stabie and was probabiy successful in maintaining constant tempera-
ture, light, humidity, food, etc. Despite this, we see that there is considerable
variation in the size of the Paramecium population. This variation may be due
to demographic stochasticity, as we discussed in Chapter2. To test this
assertion, we can add demographic stochaslicity to the model you developed
in the previous exercise,

Step 1. To add demographic stochasticity to a medel, you first need to
change two parameters in General Information. The number of replications
must be greater than zero (say, 100), and the box for "Use demographic sto-
chasticity” must be checked. This is the easy part. The difficult part is in
specifying survival and fecundity in the Population window. As we
discussed in Chapter 1, growth rate, R is equal to the sum of survival and
fecundity, since the number of individuals in the next ime step is the sum of
the number of individuals that survive from this ime step, plus the number
of offspring they produce that survive to the next time step. When we run a
deterministic simulation, as we did in the previous exercise, we don’t need
to know what these two rates are, as long as we know what their sum is (i.e,
what the overall growth rate is). However, if we want to add demographic
stochasticity, then we must also specify the survival rate and the fecundity.

In the case of Paramecium this is not very difficult if we assume that all
reproduction was asexual (with binary fission). In this case, survival can be
assumed to be zero, and growth rate will be equal te fecundity. The growth
rate you found in the previous exercise by trial-and-error was probably close
to 2. Since binary fission produces 2 “offspring” from one "parent,” this
means that the time step of one day is quite close to the generation time of
Paramecium in this experiment. To enter this information into the model, go
to the Population window and make sure that survival rate and the stan-
dard deviation of R are zero. Click "OK."

Step 2. Run a simulation. How do the trajectories with demographic sto-
chasticity compare with the observed experimental result?

Before you quit the program, save the model in a new file, such as
Gause?,

Exercise 3.3: Exploring Differences Between
Density Dependence Types
In this exercise we demonstrate the differences in population growth when

the growth rate and carrying capacity are the same, but the type of density
dependence is different.
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Step 1. Load the deterministic model of Paramecium we deveioped in
Exercise 3.1. Make sure that demographic stochasticity is not used (i.e., the
box for "Use demographic stochasticity” is clear in General Information).
Click OK. In Population, make sure the density dependence type is
"Scrambie,” and change the growih rate te 10. Click OK, and run a simu-
lation. Look at the trajectory summary. What do you observe?

Step 2. Repeat Step 1 several times by gradually increasing the growth
rate from 1040 20.

Step 3. Now change the density dependence type to "Contest,” and
repeat the simulation with the same growth rate that you last used. What is
the difference between the trajectories?

Step 4. Change the density dependence type to "Ceiling" and repeat the
simulation with the same growth rate that you last used. What is the differ-
ence between the trajectories?

Exercise 3.4 Demonstrating Chaos

Step 1. Use the following density dependence curve (Figure 3.16) to trace the
trajectory of the population for 10 time steps. The first two time steps are
already simulaled.

Step 2. Plot & frajectory of the population (i.e., a graph of N{t) versus ).
What do you observe?

Step 3. Use RAMAS EcoLab to mode] this population. Here are some
hints:

* Make a deterministic model.

* The densily dependence type is determined by the shape of the curve.

* The carrying capacity is represented by an intersection on the graph.

* Initial abundance is indicated on the x-axis of the graph.

* R,... is represented by ihe slope of the curve close to the origin, and is
pretty high. Use trial-and-error, and check by comparing the figure with the
replacernent curve (from "Display” in Population).

Step 4. Run a simulation, and look at the trajectory sumunary. Is the tra-
jectory simiiar to whai you have plotted in Step 22

Step 5. Change the iniHal abundance, and run another simulation. Is the
trajectory similar to what you have plotted in Step 27
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Exercise 3.5: Density Dependence and Harvesting

In this exercise, you will explore the effects of two types of harvesting in
terms of their density-dependent effects. Suppose you are harvesting a fish
species that has an average natural survival of 0.5 and a population that
fluctuates between 2,000 and 14,000, Al the end of each year, you harvest
1,000 individuals from whatever number is present in the population.

Step 1. Calculate the overall survival rale of this species (i.e., the propor-
tion that survives both the natural causes of death and harvesting), as a
Runction of its population size, using Table 3.1 below. For each year, firal
calculate the number ol fish that survive the natural causes of death. Then,
subtract 1,000 to simulate harvest, divide the remaining number with the
number at the beginning ol the year. In the tble, the calculation for
N=10,000 is provided as an example.
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Step 2. Plot the overall survival rate as a function of population size in
Figure 3.17.

Table 3.1.

Population

Natural  Number

Number  Mumber

Number

Qvarall

sizeatthe x suvival = that - o = that + atthe = sunival
beginning malg survive harvest  remain  beginning rate
of the year
2000 x 05 = - 1000 = + 2000
400 x 05 = - 1000 = + 4000 =
6000 x .05 .= - 1000 = + 6000 =
8,000 x 05 = - L0 = + 8000 =
1003 = 05 = 5000 ~ 1000 = 4000 « 10000 = 040
12000 x 05 = - 1000 = + 12000 =
14000 x 05 = - 1000 = + 14000 =
0.6 - rerone ey ‘;ﬂ -4
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Figure 3.17,
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Step 3. Now assume that the harvest strategy is to remaove 40% of the fish
that survive the natural causes of death (or, 20% of the total number at the
beginning of the year), instead of a fixed number. Plot the overall survival
rate as a function of population size (use the same Hgure, but a different pat-
tern or ¢olor of curve). Compare the two curves.

Step 4. Discuss what the lonp-term effects of these two harvesting strate-
gies might be on the persistence of the population.

Exercise 3.6: Density Independence Graphs

In this exercise, you will find out what the two types of density dependence
graphs we studied in this chapter look like, if there is me density depen-
dence.

Step 1. Draw and label the axis of the two types of graphs for repre-
senti ﬁﬁ density dependence.

ep Z To each of these two graphs add the lines representing exact

replacement.

Step 3. On each graph, draw two curves that represent (i} a population
increasing expanentially at a rate of 10% per year, and (i} 2 populaton
decreasing exponentially at a rate of 10% per year.

3.10 Further reading
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Chapter 4
Age Structure

4.1 Introeduction

In developing the exponential model of Chapter 1, we used two basic demo-
graphic parameters, survival and fecundity, to describe the growth of 3
population, We defined these parameters as average rates of all individuals
in the population and made the assumption that individuals in a population
can be considered to be identical. In particular, this assumption implies that
births and deaths are independent of the ages of the individuals. This might
be a reasonable assumption for some species, such as annual plants, or in
cases where the differences among individuals of different ages cancel each
other out, such that changes in the number of individuals of different ages
de not affect the growth rate at the population level. But for many species,
the age of an individual is one of ity most important characteristics having

105
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strong effects on' the individual’s chances of survival and reproduction. For
example, in most plant species, the survival chances of established individ-
uals are much higher than those of seeds or seedlings. Newly hatched young
of many marine animals such as marine turtles and most fishes also have
much lower chances of survival than adults, Chances of successful breeding
are also dependent on age in many species.

Differences among individuals in terms of their survival and fecundity
can have important consequences for our predictions about what the pop-
ulation will do in the future. These differences are also important factors in
terms of management opbons. When deciding which individuals to
translocate, reintroduce, or harvest, managers need to keep in mind the sur-
vival chances and reproductive potentials of individuals. To account for
these differences, we need more delailed models than those we have

developed so fa: Orfe way to add more detail into models is to partition the
population into age classes. Such a model is calied an‘egé-structured model.

Consider the case in which you have gone into the field and counted the
number of birds in a population. Your results say that there are 26 birds that
fledged last year (i.e., 26 birds are less than 1 year old), 16 are between T and
2 years old, 12 are between 2 and 3 years old, and so on. Instead of repre-
senting the population with its abundance, N, as we have done in previous
chapters, we represent it by the abundances of different age classes. We can

, display these numbers in a vector, as follows (vector ig @ mathematical

term{macolumnorrorw of nygnbers): Sl et —
.
. : ’—a M ) ‘vw
!”'#' '_ - , 6] R - L ',No(f) . ;-'n:-:-
o '~‘£‘: 16 ! - N e
o
N(this year) = 2 , or more generally as: N(7) = N
L+ | Nofit) |

Here, N () denwotes the number of individuals of age class x at tme . Thus
age classes are denoted in subscripts; the maxithum age class has the sub-
script w {lowercase Greek letler omega).

In an age-structured model, the characteristics of the age classes are
described by schedules of age-specific demogzaphic parameters, instead of
by the overall population growth rate {or birth and death rates). These
parameters (survival, fecandity, dispersal) are conceptually similar to those
in previous chapters, with one important difference; here we assign different
values for different age classes.
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Striclly speaking, “"age" and "age class” are different concepts. Age is a
continuous variable; for example, you can be 19 vears, 11 months, and 29
days old. Age class is discrete; until you are 20 years old, you are in the age
class of 19-year olds. Because we emphasize discrete models in this book, we
will not worry much about this distinction. However, there are a few places
where you need to be aware of whether a particular number or variable
refers ta the beginning or the end of the age class.

Ags before, the Sme step of a model can have any units, such as years or
days. The same is true for age, which can be measured in any unit. It our
discussion below, we will sometimes use the word "year” to make an
example specific. Of course there is nothing special about this particular time
step. Age structure can be defined in years, months, days, decades, or any
other units that may be convenient far the particular species being modeled.
An age-structured model for Paramecium may define age classes in terms of
days, whereas one for elephants may define age classes in terms of decades.
However, there are two important restrictions. First, the time step of the
model and the interval of an age class must be the same. For example if a
model for an elephant population defines age classes in units of one decade,
it must have a2 decade time step. In other words, such a model will predict
the population’s abundance once per decade. The second restriction is that
all age classes must have the same width or interval. For example, if zero-
year olds comprise the first age class (i.e., the one-yéar interval from birth to
the first kirthday), then the second age class must also have an intesval-of
one year, and consist of one-year olds {those between their first anﬂ‘}‘econd
birthdays]."The one exception to this restriction is the r:omg_s:te nge cIass,
which is described later in the cltapter.

-

4.2 Assumptions of age-structured models

From a practical point of view, using an age-structured model implies that
one can determine the age of all individuals in the population with certainty.
The basic assumption of age-structured models is that the demographic
characteristics of individuals are related to their age, and among individuals
of the same age, there is litHe variation with respect to their demographic
characteristics such as chance of surviving, chance of reproducing, and
number of offspring they produce,

Initially, we will also assume that the population is closed, i.e., thereis no
immijgration or emigration.

Simple age-structured populations also make additional assumptions
that there is no demographic or environmental stochasticity, and that there is
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no density dependence. In the rest of this chapter, we will develop an age-
structured model, to which we will add stochasticity {in Section 4.5) and
density dependence (in the next chapter).

For simplicity, we will assume that all reproduction takes place at the
same time. Such a model is called a "nirth-pulse” population model, because
the births take place in pulses, such as during spring breeding seasons. It is
possible to construct age-structured models with the alterative assumption
that births eccur continuously (for example, as in humans). Such madels are
called "birth-flow" models; they are more complicated, but the principles
behind them are the same as those behind the simpler models we will con-
sidet.

43 An age-structured model for the Helmeted
Honeyeater

-

We will llustrate the basic principles and concepts involved in building an
age-structured model with a hypothetical data set, based on the ecological
characteristics of the Helmeted Honeyeater {Licheriostomus melanops cassidix),
an endangered spedes endemic to Victoria, Australia. The Helmeted
Honeyeater is a territorial bird that lives in the Excalyphus swamplands. More
detailed models for the Helmeted Honeyeater have been developed by
McCarthy et al. (1994), Pearce et al. {1994), and Akgcakaya et al. (1995).

This hypothetical data set consists of four annual ccnsuseg,_cgnducted at

the saime tifi& B¥¢ year, in which all individials i the popufatiof are

,mugtad and their ages are determined. We assume that these cénsun; are
made nghtua‘fh;r the breeding season, which we assume is shm;t relative to
the time interyal between the breeding seasons.- - -

In addition to the basit assumptions outlined above, we will make an
additional assumption to make the calculations easier. We assume that this
species starts breeding at age 1 and the fertility rate does not vary with age
among breeding individuals.

We also adopt the convention that individuals within their first year of
life are called zero-year olds. Thus the first age class consists of zero-year-old
individuals.

Suppose we collected the data in Table 4.1 by censusing this population
as described above. Each row of this table cotresponds to one age class, and
each column corresponds to one annual census, in which all individuals in
each age class were counted.
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Table 41, Number of individuals of each
age counted between 1991 and 1994 in a
hypothetical population of the Helmeted

Honeyeater.
Census year
Age 1991 1992 1993 1994
0 25 28 7 28
1 15 17 20 20
2 12 11 13 14
3 9 8 9 10
4 7 6 6 B
S 5 4 5 5
6 4 3 3 4
7 3 3 2 3
8 2z 2 2 2
9 1 1 1 2
Total 85 8 88 97

4.3.1 Survival Rates

According to the table, in 1991, we censused a total of 85 individuals, which
included 26 zero-year olds, 16 one-year olds, etc, Of the 26 zero-year olds we
counted in 1991, 17 became one-year olds in year 1992, -and the others died.
The number that survived to be one-year olds (N,) is the number we counted
as zero-year olds {N,) limes the survival rate of zero-year alds (5g): -

.

N,(1992) = N,(1991) - 5,

We can represent this with Figure 4.1, in which the arrows represent the sur-
vival of each age class from 1991 to 1992. We did not count any 10-year olds,
which may mean that all 9-year olds died between 1991 and 1992

Another way of expressing the equation

N,(1992) = N(1991) - S,

is that the age-specific survival rate, §,, is defined as the proportion of
z-year-cld individuals that survive to be x+1 years old one year later:

S, = N,(1992) / N,(1991)
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1991 1992
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Figure 4.1. Survival of age classes from 1991 to 1882,

Using our data set, we calculate that from 1991 to 1992, the survival of zero-
year olds was 17/26 = 0.654. If we make the same calculation for zero-year
woltfs from 1992 to 1993;,mnma1 riteis found to be 20/28 = §.714. Finally;
from 1993 to 1994, tI'E survivalgate is 20/27 =-0.741.; Thg_gs rwval rate
changes from year to jea: either because of denmgraﬁ; sux sticity or
environmental -vanaﬁ#l To summarize the survival rate, we can use the
mean and standard déviation of these three numbers. Although” the porreet
way Io caleulate the mean is to use an average weighted by sample size (see
Section 4.7.1), for our purposes a simple arithmetic mean is a good approxi-
mation. Averaging these three numbers, we calculate that 5, = 0.703. Later,
we will also use the variation in this set of numbers to add stochasticity to
our model.
For the other age classes, the calculations are similar. We can write the
above equation in a more general form:

S0 =N (DN

Using this equation for x = 1,2,...9, we calculated the average survival rates
for all classes as given in Table 4.2. Note that we did not count any 10-year
olds, so we cannot estimate S,, which is survival rate from age 9 to age 10.
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4.3.2 Fecundities

The fecundity, F,, is the average number of offspring (per individual of age x
alive at a given time step) censused at the next time step. Note that this defi-
niticn incorporates a time delay between the census of the parents and the
census of the offspring. For example, the fecundity in year 1991 is the
number of offspring produced in 1991 that are still alive in 1992, divided by
the number of parents in 1991:

Offspring alive in 1992
Parents in 1991

F(1991) =

Table4.2. Age-spectfic survival -
rates based on the data in Table 4.1

Age (x) Survival rate {5,)

0.703
0717
0.751
0.769
0.746
0717
0806 . -
. 0778 _
-0 0,567 -

-~ - -

[

& MO LY R

We can represent this with Pigure 4.2, in which the solid arrows represent
the fecundity of age classes and dotted arrows represent their survival from
1991 1o 1992,

As stated above, we assume that this species starts breeding at age 1 and
the fertility rate does not vary with age among breeding individuals. In other
words, we assumed that F;=0, and F =F,=F,=..=F;. To calculate
fecundity for the reproductive age classes, we divide the number of zero-
year olds in the next year's census with the total number of individuals aged
1 and older (potential parents) in this year's census. Far example,

28 77 29
F(I99t)=5=04746  F(1992)=0=04909  F(1993)===04754
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1991 1992

R
dies?

Figure 4.2. Fecundity (F, salid arrows) of age classes. Survivais
from 1981 to 1092 are reprasented by dotted arrows.

The average of these three numbers is about 0.48, which we wili use as
the mean fecundity. See Section 47.1 for more information on estimating
fecundities. We might also have additional information about the contribu-
tion of each age class to the production of zego-year olds. Such information
allows the ealcuMtich™of a difféfent fecundity for eacht age’ dﬁ We. mll
demonstrate how to use such information ifsme of this chapler’

Given a setof age-specific fécundities, the number, of; z;m osEt olds is
calculated by t the formula - Etalde - v

B -
L

Nt +1) = Fr) NSO + FAON,(#) + F( Ny(2) + ... + F )N (1)

which is equivalent to
Nt +1) = 3 FONL)
=1

@
The symbol }, means we add for all values of x fram 0 to the maximum age.
sl
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4.3.3 Sex Ratio

If you are modeling both sexes, the fecundities should be in terms of "off-
spring (of both sexes) per individual," and the initial abundances should be
the number of all individuals {male and female} in each age class. [n the
Helmeted Honeyeater example, we have censused and are medeling both
sexes, so the fecundity is in terms of offspting per individual. In other words,
wiren dividing this year's zero-year olds with last year’s parents, we used
the total numbers of offspring and parents, not daughters or adult females.

Sex ratio is the ratio of females to males in a population or in An age class.
Sex ratio at birth is the ratio of daughters to sons among the offspring. In a
matrix model, the sex ratio must be incorporated into the estimation of
fecundities. If you are modeling only the female population, the fecundities
should be in terms of "number of daughters per female,” and the initial
abundances should be the number of females in each age class.

Another important point js that an age-specific fecundity should be esti-
mated as the average over alf the individuals {or all females) in that ape class.
For example, assume that you are modeling the females in a bird population,
and you want io estimate the fecundity of the one-year-cld age class based
on the following information.

1. An average of 2.5 chicks fledged and survived to next year per nest (in
which the breeding female was one year old),

2. sex ratio at birth is 1:1 (Le., ratig.qf females is 0.3), and

3. only 40% of one- year-old fernales breed,
In this case, a sex ratic-of 1:1 among 2.5 chicks/nest meags 0. 5 25=125
daughters per nesfing-one-year-old female. But fecundity must be expressed

. as the average over all females in this age class. Because only 40% of one-

year-old females breed, the average fecundity for this age class is
1.25- 0.40 = 0.5 daughters per female.

4.4 The Leslie matrix

Using the equations we studied in Seclion 4.3, we can predict the abundance
in each age class from time step ¢ to t+1. Below, we consider the specific case
of predicting abundances for four age classes.

Nt +1) = Fie) - Nolr) + Fi(n)- N + FA{1) - Nofe) + Fr) - Ny(0)
Mu+1) = NS,
Nr+1) = N(1)- 5,
Nt +1) = Nyr)- §,



114  Chapter 4 Age Structure

An operation that is equivalent to this set of equations is matrix multiplica-
tion. A matrix is a table of nwmbers arranged in rows and columnns. The
matrices we will consider in this book are square tables, i.e., the number of
rows equals the number of columns. If the parameters (survivat rates and
fecundities) are arranged in the form of a matrix as shown below, mult-
plying this matrix with the vector of age distribution at time ¢ gives the age
distribution at time i+1:

Nfe+1) F F, £ F Nile)
N+ ) S, 0 6 0 N
NG+l T fo 5 0 0 NA1)
Nyt +1) 0 0 § 0 N1}

If you know matrix multiplication, you can confirm for yourself that this
multiplication is equivalent to the four equations lYisted above (and you can
skip this paragraph and the next one}. If you don’t know matrix multiplica-
tion, it is easy to leamn for this specific case (a square matrix multiptied by a
vector). Let's call the vector on the Jeft the result vector (since it is the result
of the multiplication). The result vector gives the abundance in all age classes
in the next time step (1+1). To calculate the first element of the result vector
[which is; rr thiscase, Ni(t+1), the abundance of zero-vear olds in the next
time step), you do vg thingS*ifst yotf do an element-by-element multipli-
cation BF the JS row *of “he ‘mattix by the -vhctor  on the right.

_Elemerit-by-elemenf m“yiﬁgﬁc'ﬁﬁofl.mea'ns that the Firs number of the row,
Fy is multiplied fi'the first number of theavector, #¥f); the second nugmber
of the row with the'second number of the véctor, and so on. Second, you add
up all these products:

F(t) - Ne(e) + Fie} M) + £50) - NGy + Fy(n)- N

This operation is the first equation for the population projection we listed
above, and gives the first element of the result vector. Next you repeat the
same process for other rows. For example, to calculate the second element of
the result vector, you do an element-by-element multiplication and summa-
tion of the second row of the matrix and the vector on the right. However,
since there are three zeros in the second row, there is only one nonzero term
in the summation {namely Nt} -5, ). The same goes for the rest of the rows.

As mentioned above, this matrix multiplication is equivalent to the four
equations listed at the beginning of this section. You mught think that the
reason we do this operation with matrices and vectors instead of the set of
equations is to make it more difficult. Actually, the reason is that the matrix
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form muakes it easier to expand this model inte different types of structures
that we will discuss in the next chapter. The matrix that we used in this
operation is called a Leslie matrix (named after P.H. Leslie, a population
biclogist who studied age-structured models in the 1940s) and is represented
by

Fs, FF 1/, K

S5 0 6 0

0 S a6 0

0 0 §5 0

L=

where F, and §, are, respectively, the fecundity and the survival rate of the

x-year olds, as we discussed in the previous section. The Leslie matrix has a
very specific structure. The elemertis of the top row are fecundities. The sur-
vival rates are in the subdiagonal of the matrix. All other elements of the
matrix are zeros. Subdiagonal means below the diagonal. The diagonal is the
set of four numbers {F; and three zeros) that go from the upper-left to the
lower-right comer. Qften F,=0, as in the Helmeted Honeyeater example.
The operation of matrix multiplication can be expressed in matrix notation
as

Nit+1) =L - N(1}

where L is the Leslifnatriix Note that when you do this multiplication, the
_ matrix must be on the left agd the vector on the right, L - N(#). {The multipli-
- cation N(t}- L would be incorrect) - .-

-—
-

44.1 Ueslie Matrix for Heimeted Honeyeaters

We already did the hard parti of developing a mairix model for the Helmeted
Honeyealers, by estimating the age-specific parameters. The rest is simply a
matter of arranging the survival rates and fecundities in the correct order,
which is

C 0 D48 048 048 043 048 048 048 048 048]
72 ¢ o0 © 0 0 0 6 0 0
6 07 ¢ 0 © ¢ 0 0 o o
© 0 07 o o6 0 o0 0 0 0
¢ 0 o oW 0 06 0 0 ¢ O
6 0 0 0 0M 0 O 0 0 0
6 0 0 0 @& oenr o ¢ 0 ¢
9 0 ¢ 0 0 0 0% 0 0 0
@ 0 O © o6 0o 0 oM 0 @
o o © © 0 @ O © 067 0]
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Note that this matrix model includes 10 age classes, for ages 0 through 9.
In fact, Helmeted Honeyeaters are known to live longer than 10 years. The
fact that we did not encounter a 10-year-old bird in our census may be
because of the small size of the population. Even if a species lives for many
decades, there will be fewer individuals in the older age clesses, since some
will die every year. As a result, we may not be able to observe very old indi-
viduals in a small population. We can correct this by adding a new element
to the matrix. The lower-right corner element of the above matrix is zero. If
instead it were, say, 0.667 (the same number as 5), this would mean that
66.7% of the individuals in the tenth age class {"%-year olds") would remain
in the tenth age class in the next year. Of course, they wouldn’t be nine years
old anymore; the tenth age class would consist of individuals aged nine
years or older. When individuals of a certain age or older are lumped into
one age class, that age class is called a composite age class. This is an efficient
way to model populations of organisms with indeterminate lifespans. It may
be useful for modeling species in which the vital rates do not change much
after a certain age, or when ihe available data do not allow estimation of
survival and fecundity rates separately for each age class afler a certain age.
Before we rewrite our matrix model of the Helmeted Honeyeaters using
a composite age class, there is another improvement we might consider. 1f
you look back at the counts of older age clesses in Table 4.1, you will notice
that there are few individuals aged 3 and older. This presents a problem in
estimating survival rates. Since individuals come only in discrete units, few
 individuals mean that there may be a lot of sampling error in our.estimations
- of survi®l rates. Orie way to get around Hiispplenis te lump.all these age
classes into one. lf #ve define the composiagh Clas as ages 3 and older (in-
-stead of ages9 and older), we will Have a more reliablé estibate of the
survivalTates. From the data we have, we don tTigg convincing evidence
that the survivals are different for older birds, so it is probably P reasonable to
combine them into a single age class.
Survival rates for composite classes may be calculated by pooling the
counts for the appropriate age classes. If we want to pool age class 3 and
older, the data in Table 4.1 may be simplified as follows.

Age 1991 1992 1993 19%4
0 2 28 27 2%
1 1 17 20 X
2 12 11 13 u
3 9 & 9 10
& 22 19 1% A
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Note that, even though we wanti to pool all individuals age 3 and olderinto a
single age class, we still need the age 3 abundance separately. This is because
the number of animals aged 3 and older in 1991 determine the number that
are 4 and older in 1992, the number that are 3 and older in 1992 determine
the number that are 4 and older in 1993, and so on.

The survival rates of the 3+ age class from 1951 to 1992 is given by

N, (1992} 19

590 = & oo+ N,.(991) ~ 22+9)

= 0.613

This represents the proportion of individuals 3 years old and older in 1991
that survived until the nextcensus in 1992 Similar calculations give survival
rate of this compaosite age class from 1952 to 1993, and from 1993 to 19%4:

19 24
(19+8) 0.704 51993 = (19+9)

= 0.857

5,.(1992) =

The average of lhese three numbers is 0.725. (You may also calculate a
weighted average; see Section 4.7.1.1 under Additional Tepics.} Qur new
model, then, has only four age classes: 0, 1, 2, and 3+. Our new matrix is:

Age0 Agel Age2 Aged+

Agel | 0 048 048 o048
Agel |oms 0 o o
Age2 |0 omrioe o
Agedr | 0 -<0 0751 078 . -

The element in the lower-right corner &f the matrix is S,,, the avegage sur-
vival rate of three-year-old and older individuals that we just calculated.

4.4.2 Projection with the Leslie Matrix

We will now use the matrix we found to predict the age structure of the
population (ie., the abundances in each age class) After combining the
counts for ages 3 and above into a single age class, the vector of age distri-
bution for 1994 {from Table 4.1) becomes 29, 20, 14, 34. To project this
population, we multiply this vector with the above matrix:

0 048 048 048 29 33
0703 ¢ 0 ] 201 |20
0 0717 0 0 4] |14

0 ¢ 0751 0725 34 35
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Note that at every step of this matrix multiplication, we round the result to
the nearest integer. For example, the calculation for the zero-year olds is

9.60+672+16.32
1047+ 16
=33

048x20+0.48 x 14 +0.48 x 34

The total number of individuals predicted to be in the population in the next
timne step is 102. Since the previous total was 97, this gives a growth rate of
102/97 = 1052, or 5.2% growth in one year.

An interesting and important characteristic of age-structured dynamics
is that the growth of the population depends on the initial age distribution
(i.e., the distribution of individuals among age classes at the initial time
step}. We will demonsirate this with two examples, in which we predict the
age structure of the bopulation starting with the same total number of mndi-
viduals (97), but with twe different initial age distributions. The first age
distribution has about an equal number of individuais (24 to 25) in each age
class. The projection,

0 048 048 048 24 36
0703 0 0 0 4l |17
- 0 .0717. 0 0 4] T 17 .
e, 42 0 -07,51 0.725 25 36 ~ -

mwa mla{%dmdmls (36 + 17 +17 + 36) in the next year, ng;l'u;h,
gives a oneyedy, pjpittii fite of 106/97 = 1093, or a 9.3% incrése The
‘second exampléhas & much miofé unequal initial distribution of individuals
among age classes, with only 10 individuals in each of the three older classes,
and the rest (67 individuals) in zero-year-old age class. This projection,

0 048 048 048 67 15
0703 0 0 0 o] |47
0 0mM7 o0 0 wl 7|7
0 0 0751 0.725 10 15

predicts a lotal of 84 individuals in the next year. This gives a one-year
growth rate of 84/97 = 0.866, which is a 13.4% decline in one year. The same
matrix (i.e, the same set of survival rates and fecundities) in equal-sized
populations predicted both a substantial growth and a subatantial decline in
the population size, depending on how individuals were distributed among
age classes in the population. The next section explains the cause of this
apparent anomaly.
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4.4.3 Stable Age Distribution

If we continued the last profection above (with the unequal initial distribu-
tion of individuals among age classes), we would multply the same matrix
with the next year's age distribution vector (15, 47, 7, 15). This would give
the age distribution for a third time step, which we would multiply again
with the same matrix, and so on. We can plot the resuit as a trajectory for
each age class, as in Figure 43.

This projection was made with the same Leslie matrix we used above, in
which we ignored al! forms of stochasticity. The fluctuationis in the abun-
dance of various age classes do not result from variatfon in matrix elements
(survivals and fecundilies) but from the particular distribudon of
individuals among age classes. Note that the Buctuations subside after the
fitth year, and all age classes start to grow more-or-less in parallel. We can

* look at this in another way, by plotting the proportion of individuals in each
age class (Figure 4.4). In this figure the total is always 1.0, and the arcas show
the relative abundances of individuals in different age classes. The projection
started with about 10% (10 out of 97) in each of the three older classes (one-
year, two-year, and three-plus-year alds). After the fifth year, the proportion
in each age class becomes stabilized (notice that year 7 and year 50 have the
same distribution), even though the population is growing and the abun-
dance in cach age class keeps changing, as we observed in the previous
figure. N —r

" Repeatedly multiplying an age distribution by a Leslie matrix with con-
stani elements tends to draw it to a special configuration known as the stable

~agedistribution. Before it reaches the stable age distribution, the population
may show considerable fluctuations. These are especially pronounced if
reproduction is concentrated in one or two older age classes. Note that these
fluctuations are not caused by changes in the environment, but result from
the distribution of individuals within the population. Of course, the reason
that the population is not at the stable distribution may have something to
do with the environment. For example, if there is a sudden influx of individ-
uals, the age steucture may be changed. It may also be changed if the
fecundities suddenly increase, as happened in the human population in the
United States and elsewhere around the world after World War I, gener-
ating the population fluctuation known as the "baby boumn."

The age structure may also change gradually, in response to trends in
vita] rates. For example, as people live longer {i.e., the survival rates of older
age classes increase), the proporkion of the population in older age classes
increases. Such changes have important consequences, e.g.. for social welfare
programs for older people.
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Age-class abundance
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Figure 4.3. The predicted abundance of zero-year-cld (solid curva),
one-year old (long dashes), two-years-old {dashes), and three-years-
old and older (dots) Helmeted Honsyeaters.
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Figure 4.4, The proportion of zero-year-o'd, one-year-okl, two-years-
old, and three-years-old and older Helmeted Honeyeatars.
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Once a population reaches the stable age distribution, the proportion of
individuals in each of the age classes remains the same. If the population is
growing or declining, all age classes (as well as the total population size)
grow or decline at the same rate. At this point, multiplying the age distribu-
tion by the Leslie matrix is the same as multiplying it by a scalar number.
Mathematically, this is

N +1) = L-N(@) = A-N(t)

where A (lambda) is a special number called the dominant eigenvalue of the
matrix. Once at its stable age distribution, the population grows exponen-
tially with rate A. The stable age distribution is stable because, if the
population is perturbed from this configuration, it will spontaneously retam
to it over lime, if the matrix elements remain constant. However, if a pop-
ulation is cycling because of density dependence, or if the matrix elements
are fluctuating because of environmental factors, the age distribution may
not tend toward a stable configuration over time.

The dominant eigenvalue A measures the asymptotic or deterministic
growth rate of the population, which tells how the population wouild be
changing if the parameters in the model were constant for an indefinite
length of time, A is often called the finite rate of increase; it is equivalent to
the constant growth rate R for deterministic exponential population growth
we used in Chapter 1. As we demonstrated with the above examples, pop-=
ulation growth at any particular time step is not always given by .the
dominaht eigerivaiue, even if the matrix elements stay the same. In fact, itis
only whenthe population is at its stable distribution that the populghons
overall growth.is measured by A When the initial distribution is different
from the stable form, the abundances at the next ime step must be computed
by working out the matrix multiplication of the Leslie matrix by the current
age distribution.

4.44 Reproductive Value

Both the dominant eigenvalue & and the stable age distribution are proper-
ties of a Leslie matrix; in other words, they are determined by the matrix
itself and do not depend on the abundances, or any other parameter.
Another variable that we can calculate based on a Leslie matrix is reproduc-
tive value (Fisher 19300, which is an age-specific measure of the relative
contribution of each age class to future generations. It is the number of
offspring an individual in a given age class will produce, including ail its
descendants. The reproductive value is expressed as relative to the repro-
ductive value of an individual in the first age class. Thus reproeductive value
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for the first age class is always 1.0. The calculation of reproductive value is
quite tedious, so we will nol cover its formula. The program RAMAS Ecolab
allows the caleulation of reproductive value {in addition to stable age dis|ri-
bution, and the finite rale of increase, &} of a matrix model; we will
demenstrate lhese in the exercises.

Reproductive values depend on both susvival rates and fecundities. You
might think that younger classes should have a higher reproductive value
since they have a longer life {and a longer reproductive life) han clder indi-
viduals, But very young individuals often do not reproduce, and may die
before they begin repraducing. Or, you might think thal the age dass with
the highest fecundity should have the highest repcoductive value. Often
older age classes have the highest fecundities, but they may not-have as long
a reproductive life left as younger individuals.

_ Knowing the relative reproductive values of different age classes may be
importanl in several' practical cases, such as harvesting. Often harvesting
may have a smaller long-term effect on the population when enly the age
classes with lowest reproductive values are harvested.

Another case where reproductive values may be useful is the reintro-
duction of individuals to a location where the species has become extinct. It
may be more efficient to reintroduce individuals from age classes with high
reproductive value, instead of younger individuals who may die before they
veach_reproductive age, or older individuals who may not have a long
reproductive life"l&chwever,.reproducﬁn value cannol be the only con--
sideralion in such‘a decision. Also important are-spatial considerations (the ,

spegififlocations where such inlroduction takesplace) and the effects of age=-

" distTbution oh poilation fluctuations. Ve W discuss the spatial consid-
erations in a laler chapler. In Section4.4.3, we demonstrated how
abundances can fluctuate (even in the absence of any environmental effects)
when the distribution of individuals among age classes differs from the
stable age distribution. If a population is started with all individuals in the
same age class {for example the age class with the maximum reproductive
value), it will be far away from the stable age distribution, and may fluctuate
quite a bil before settling inlo the stable age distribution. Such fluctuations
may carry the population close to dangerously low levels, or may cause
uneven and rapid depletion of its resources.

Another consideration might involve the cost of the reintroduction to the
source population. f individuals with the highest reproductive value are
taken ont of a source population for reintroduction elsewhere, the risk of
decline of the source population might increase. Of course, reintroduction
helps the target population. Whether this balances the cost to the source
population can only be analyzed with a mode! that includes both popula-
tons.
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Practical questions such as these rarely have formulaic answers that
apply to all cases. Rather, they often require case-specific analyses. Modeling
the effects of each management option (for example, different age distrib-
utions of intreduced individuals), and comparing the model results in terms
of the polential for increase or persistence, provides case-specific answers to
these questions.

4.5 Adding Stochasticity

So far our matrix models de not incorporate a‘ny of the various types of
uncertainties we discussed in Chapler 2. In this section, we will explore ways
to incorporate some of these uncertainties into Leslie makrix models.

4.5.1 Demographic Stochasticity -
When the number of individuals gets to be very small, there is a source of
variatior. that becomes important even if the vital rates remain constant. This
is exactly the same sort of variation we discussed in Chapter 2 when we
added demographic stochasticity to the Muskox model. Here, we will apply
the same methods to age-structured madels. Suppose that the survival rate
of 3-year olds in a particular population is 0.4. }f there are one hundred
3-year olds, then the number of 4-year olds next year will be about 4¢. How-
ever, if there are only three individuals in the age class, the numbez of 4-year
olds next year will not be 1.2, because you cannot have a fraction of an
individual. We took care of this fact to some extent in our Helmeted Honey-
eater model above, by rounding the Aumber of individuals at, Gach skp of the~
“talculation. However, just rounding fo the nearest integer {s not enough, as
we will see.

One way of interpreting a survival rate of (.4 is to say that each indi-
vidual has a 46% chance of surviving. But each individual can either live or
die. We can guess the number that will survive by following the fate of each
individual, as we did in Chapter 2 for the Muskox populatian. In the above
example, if there are three individuals, each with a 40% chance of surviving,
we can decide on the fate of each individual by selecting a uniform random
number between O and 1 and checking tosee if it is greater or less than 0.4, as
we did in Chapter 2. If we repeated this experiment several times, we could
end up with 1 survivor out of the three individuals at one time, 2 survivors at
other times, and even 0 or 3 survivors once in a while. The distribution of the
number of survivors after many such repeated trials is shown in Figure 4.5.
The mean of this distribution is 1.2, which is what you would expect if you
ignored demographic stochasticity. However, each value of this distribution
is either 0, 1, 2, or 3. Such statistical distributions that give only integer
values aze called discrete distributions.
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Figure 4.5, Binomial distribution showing the probability 610, 1, 2 and
3 survivors with an initlal population of 3 individuals and a survival rata
of 0.4,
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This type of distrjpution, the bipémiat disfribution-applies to cases
wisbte there Sfe-wwio possible autcomes (survival or deafl, forg<ample). You
carf™catculdte the probability that all will survive by mdWMiplying
04-04-04=04", and you can alsy casily calculate the probability that all of
them will die: (1 - 0.4)°. We can make these multiplications when wz assume
that the faies of these individuals are independend, given that the environ-
ment stays constant. When three events (individual 1 survives, individuat 2
survives, individuat 3 survives) are independent of each other, their joint
probability {the probabitity that all three will survive) is the product of their
individual probabilities. We couldn’t make this assumption of independence
if, for example, we knew that two of the individuals were dependent off-
spring of the third one.

We could calcutate the probability of the other two outcomes (1 out of 3
and 2 out of 3 surviving) in a simitar, but slightly more complicated way.
But, we wilt leave this tedious computations for the computer to do.
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Notice that if the number of individuals is high (for example 100),
extreme events (all survive, or all die) will be very unlikely, because their
probability weuld be equal 1o 0.4 (for all surviving) or 0.6 (for all dying)
multiplied by itself 100 times. Either of these is a very small number. In gen-
eral, demographic stochasticity is less timpottant (compared to other forms of
stochasticity) when the population is large.

Demographic stochasticity also applies to fecundities. Mothers cannot
have a Fraction of an offspring; they can only have a whole number of off-
spring. This can be modeled in the same way we did before, if each mother
had either one offspring or none at all (i.e., if there are only-two possible
outcomes, we could use the binomial distribution). 1f the largest possible
numbet is nol 1, we cannot use the binomial distribution. Instead, we use
another discrete distribution, called the Poisson distribution (which we do in
RAMAS FeoLab). Learning how to use Poisson distribution without the help
of a computer is beyond the scope of Lhis beek.

We will demonstrate the effect of including or exclhuding demographic
stochasticity in the exercises at the end of the chapter. In generat, demo-
graphic stochasticily shoutd be included in all models unless the model
describes densities (such as number of animals per km?) instead of absolute
numbers of individuals.

4.5.2 Environmental Stochasticity

Natural environments often change in an unpredictable-fashion, causing
chdnges in a population’s demographic characteristics, such as survivals and
fecundities. tf we knew which environmental factors affected which popula-
tion parameters, and we knew H6w much they affected these parametersr,i'nd
we knew how these environmental factors “would change in the future, then
we could explicitly incorporate these factors into our prediction of the pop-

ulalion's future. Such detaited knowledge of biology, meteorology, and their
interaction is clearly impossible ar the present time, and even in the
foreseeable future.

The crude approximation to modeling the effects of environmental fluc-
tuations in computer-implemented models involves replacing the constant
parameters, such as survival rates and fecundities, with random variables.
We cannot knaw what the exact parameters will be from year to year, but we
can estimate from past ohsarvations what their average values wili be and
the ranges aver which they might vary. We can use the mean and variance of
the parameters to help us predict population abundance in the future,

This is the same approach that we used in Chapter 2 But in the case of an
age-structured model we have several parameters, inctuding several age-
specific survivals and fecundities. Bach of them can vary over time in
Iesponse to the environment. In the Helmeted Honeyeater example, we had
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three estimates for each survival rate. We used these three numbers to esti-
mate an average of the survival rate. We can also use the same set of
numbers to estimate their standard deviation. The standard deviation of
survival rates and fecundities are given in Table 4.3; these numbers are
based on data in Table 4.1 and on the assumption that the fecundities of all
breeding age classes (cne and above) are the same. Remember from Chapter
2 that estimates of variation in a model often assume that all abserved varia-
tion is due to the environment. We have made that assumption here. While
the Helmeted Honeyeater population may be sufficiently large and well
known that sampling error and demographic stochasticity are negligible,
these sources of variation usually are present-and ideally should be removed
from the estimates of environmental variation.

Table 4.3. Standard deviation of age specific vital rates in

the Helmeted Honeyeater model.
Age Standard deviation Standard deviation

{x} of survival rate of fecundity

0 0.0364 0.0

1 0.0338 0.0075

2 0.0631 0.0075

3+ , 0.1233 0.0075

g , e

How do we use these standard deviations in a tnatrixmodel? At every .
tirne step, beforemaiing the matrix mutiplication we discussed above, we
-sample the elements’ W the matrix (survival rates and fecundities) from
random distributichs. We specify this random selection process such that in
the long run the sampled survival rate of, for example, zero-year olds will
have an average of 0.703 and a standard deviation of 0.03%4, Because the
sampled valies change at each time step, the population growth will show
some variation (as we demonstrated in Chapter 2). Of course, since the sur-
vival rates and fecundities are chasen at random, we would have little
confidence that any one simulated trajectory would actually occur. This is
because the trajectory would probably be different if we did the simulation
again. To get a prediction out of these simulations, we need to repeat them
many times. Then, even though we do not trust any particular trajectory to
represent the future closely, we could argue that the set of many trajectories
describe some slatistical features of the population’s future behavior. For
instance, we can eslimate a mean trend in abundance. And we can predict
the magnitude of year-to-year fluctuations that the population may exhibit
ever if we cannot say confidently which years will have highs and which
will have lows.
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An important point about how these random survival rates and fecundi-
ties are selected is whether they are correlated or not. A positive correlation
between survival rates means that if there is a low survival rate for zero-year
olds in a particular year, itis likely that there will also be a low swrvivat rate
for other age classes. We will tatk about correlations in a later chapter in
another context, but for now we will just make a simplifying assumption. In
RAMAS EcoLab, we assume that all vital rates (survivals and fecundities)
are perfectly correlated. In other words, a "bad” year means that all survivals
and fecundities are lower than their respective averages, and a "good” year
means they are all higher than average. It is possible to make ¢ther assump-
tions, or to specify how exactly they should be correlated, but this
complicates the models considerably.

4,6 Life Tables

Suppose we identified 1,000 newborn individuals, followed them through
their lifetimes, until all of them died, and at each time step (for example, each
year) recorded the number of these individuals that were still alive, and the
number of offspring they produced. This is passible to do if organisms can
be individually identified, if there is no emigration, if the parents of all off-
spring can be identified, and there is no immigration. An example would be
to sow 1,000 seeds of a perennial plant in a plot where we are reasonably
sure that there are no other seeds to start with. We would then tag each
seedling that comes up-the following year, and every year we would count
the number of plants, and the number of seeds they produce. We would
assume that all plants develop seeds at the same time, and Tiat we census the
population every year immediately after seed production. We also need to
be sure that all seeds germinate or die before the second census (i.e., there is
no "seed bank"). Such a data set would look like Table 4.4.

This is called a cohort life table. A cobort is a group of individuals born at
the same time {or within a short interval of time, for example in the same
breeding season). A cohort life table describes the demography of a single
cohort. Tt is also called a dynamic life table, since it follows individuals
through time. In the table, the first column shows the age (in years, denoted
by the symbol x), and the second column shows the number alive at the
beginning of that age {N,). The first age is age zero, and the number alive is
1,000, since this is the starting number of individuals. The third column
shows the number of offspring they produced at a given age (B,). These are
all the data; the rest of the table shows various variables calculated from
these data.
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Table 4.4. Life table for a plant species.
. @ @ G & O ® (9)

x Jv.r B}: Ix Sl m, z,t.m! 'I'lt'mr e—u'lx'mx
0 1000 0 1.000 018 0.00 OO0  0.000 0
1 186 0 0186 0312 000 OQO0DC 0000 0
2 58 690 0.058 03586 1150 0630 1330 04730
3 M 465 0034 0647 1368 0465 1395 0.2639
4 22 314 002 0545 1427 0314 1256 01475
3 12 200 0012 0417 1675 0201 1005 00782
6 5 87 0005 0400 1740 0087 (0522 0.0280
7 2 35 0.002 0000 1750 0033 0245 0.0093
8 0 ¢ 0000 0 0 0 4 0
Toml = R, = 1792 5803 1.0000

T = 3238

ra, = 0.180

r= 0.189

R= 1208

4.6.1 The Survivorship Schedule

The fourth column of the table {labeled ) gives the survivorship schedule,
which is the proportion 6f the"originabrumber. of indtviduals 4a.the cohort
that are still alive at the beginning of age x, Survivorship for agflLis'Bf defi-
nition equal 1o one. The survivorship to age x is calculated by.dividing the

number alive at age x«,; the second ccflumn) by the stirting numbex.af -

individuals ¥1000 in this case):
I = N
= NO

Be careful not to confuse survivorship {I,) with the survival rate (5,
column 5 in the table) that we used in the [eslie matrix, although both are
age-specific rates, and both can be expressed as probabilities. Survival rate is
the probability of surviving from g given age fo the next, whereas survivorship
is the probability of surviving from birth lo a given age. For example, survi-
vorship to age 2 is calculated as
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whereas the survival rate for age 2 (from age 2 to age 3) is calculated as

Ta calculate survival rate for age x from survivorship, divide the surviver-
ship for age x+1 with the survivorship for age x:

I.H-!
S = L

To caleulate survivorship {to age x) from survival rates, you need to multiply
all survival rates up to, but excluding, x:

L=5%% 5,
This js because the survivorship is the probability of surviving from birth to
the beginning of age x, for which the individual must have survived from
age 0 [birth) to age 1 {S,), then from age 1 to age 2 (S.), ete., and finally, from
agex-ltoagex (S, ).

The survivorship schedule is 2 monotonically decreasing function, which
means that as you increase x, /, either decreases or stays the same, but does
not increase. (Can you explain why?). The plot.of [, as a function of x is called
a survivorship curve; its shape characterizes the life-history of a species. For
example, consider the curves in Figure 4.6 (note that the survivorships are in
logarithgricacale}. £ oy

The shape of the survivorship curve is a function ‘of the distribution of
mortality among age classes. If mortality is quite low for most of a species’ -
life, and gets high only at the end, the result is a Type I survivorship curve,
which is typical of human populations. In some species, the morlatity is
much higher in younger age classes, and lower in older classes, giving a
Type LI curve. If mortality is constant throughout a spedes’ lifetime (i.e., all
age classes have approximately the same survival rate), the result is a Type Il
curve. All three of these curves are simplilications. In reality, most spedes
have survivership curves that are intermediate between, or a mixhure of, two
or three of these types. For example, the survivorship curve for Chrcheselln
cincta, a forest insect (the dotted curve; van Straalen 1985) indicates that this
species has a relatively high mortality in the youngest age class {the curve
starts with a steep decline, as in the Type I curve), relatively low mortality
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"'m middle ages (the curvé fevels off, as in the. Type | curve), and relatively
high but constant mortality in older ages (the curve ends as'in a Type Il
curve).

4.6.2 The Maternity (Fertility) Schedule

The third column in Table 4.4 gives the total number of seeds produced by
plants in each age class. To cakulate fertility, we divide these numbers with
the corresponding number of individual plants in each age class. The resuits
are in colurn 6, labeled m,, and gives the average number of seeds produced
by a plant of age x.

It is important to note the difference between fertility (m,) and fecundivy
{F.) thal we use in a Leslie matrix. Fertility gives the number of offspring
{e.g., seeds) preduced by an individual in a given breeding season. The
fecundity, F,, is the average number, per individual of age x alive at a given
time step, of offspring censused at the next time step. Fecundity values
incorporate two kinds of mortality over the time step. Some of the individ-
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uals (plants) that were alive during the last census die before reproducing,
and some of the offspring (seeds) that are produced die before they can be
counted in the next census. The difference will become clearer when we con-
sider how to construct a Leslie matrix from life table data, later in this
chapter.

4.6.3 Life History Parameters

There are a number of other life history parameters that can be calculated
based on the survivorship schedule /, and the fertility schedyle m, One of
these iz the replacement rate, or nel reproductive rate (Ry). Do not confuse
this with the replacement curve (see Chapter 3), or with the growth rate (R).
Net reproductive rate is a measure of the expected number of offspring pro-
duced by an individual over its lifetime (for a female-only model, it is a
measure of the expected number of daughters produced by a female over her
lifetime).

The net reproductive rate is calculated by summing up the product /- m,
{which is given in column 7 of Table 44) over all age classes:

Rﬂ = Elamx

In this and the following equations, the sigma symbol {I) indicates summa-
tion over all age classes. Another useful life history parameter is the
generation ime (Tg), which is a measuze of the average age of reproduction
To calenlate generation time, first caleulate the product x - [, - m, (which is
given In column 8 of the table) for‘each’age tlass, then add these productf™
over all age classes. Finally divide this number by the net reproductive rale.

_ Zxlm,  Txim,

T = Zim, R

Generation time and net feproductive rate aliow the computation of the
finite rate of increase that we introduced in Chapter 1, and discussed above
for the Leslie matrix. In life table calculations, it is usually another measure
of growth rate that is calculated. This is the "instantaneous rate of growth"
{r), which is approximately related to the finite rate of increase as

r=Io{R)

or
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The instantanevus rate of growth (r) is calculated by finding the value of
that satisfies the following equation (assuming the index for the youngest
age classis ):

Ee"im, = |

To find r, you start with an estimate r,,, and calculate the above equation. if
the result is greater than 1.0, you incretse r,; if it is less than 1.0, you decrease
ra- Then you evaluate the equation again, until the sum is 1.0 (this iterative
process may take a long while with a calculator, but it is quite easy to do if
you know how to use spreadsheet software). A good initial estimate for 7, is

_ In(Ry)
I o e—
esr TG

Chr table of the plant population shows the calculation of these life history
parameters under column 7 and in column 9.

4.6.4 Life Table Assumptions

A cohort life table such as the one we have been analyzing makes a very
important assumption. it assumes that as a cohort ages, the vital rates change
only as a function of age. I, pther words, the observed difference in survi-
vorship and fertility in different time SiEPs if kecause the individuals dre
aging. We know from Chapter 2 that th.e’y‘ may also be changing Because of
changes in the enviranment. For example}according to the table, the survival
rate was 0.586 in year 3 (when the plants were 2 y®ars-old) and 0.647 in year
4 (when the plants were 3 years old). We interpreted this difference as 2-year
olds having a lower survival rate than 3-year olds. Another possibility is that
year 3 was a worse year for survival of these plants than year 4. There is no
way of knowing which explanation is true, unless this was an experiment in
controlled laboratory conditions.

Compare this with the type of data we used for constructing a Leslie
matrix for the Helmeted Honeyeaters earlier in the chapter. Because all age
classes were present in all years, we were able to estimate the survival rates
for multiple years and get an idea of their fluctuations due to the changes in
the environment. In a cohort life table, one age class is present only in one
year, making it difficult (if not impossible) to separate the effects of age
versus environment on the vital rates, Because we do not know the effect of
the environment on survivorship and fertility schedules in a cohort life table,
we cannot trust the various life history statistics (net reproductive rate,
instantaneous rate of increase, etc.) calcelated from these schedules. They
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will give a summary of what happened during [he lifetime of a particular
cohort, but they may not be representative of the dynarmics of the populalion
in general.
If this is the case, you may wonder why we spent all this time discussing
life tables. Unfortunately, data are oflen in short supply in ecology. Often, a
cahort life table may be the only demographic data available for a particular
species. In such a case, it is important to be able to make as much use of such
data as possible, without forgetting the assumptions of models we construct
based on such data. In the next section, we will discuss hcvw .I.Lfe table data
can be used to construct a Leslie matrix. -
In the preceding sections, we concentrated on cohort (or, dynamic) life

tables. Another type of table is called a "static life table," and consists of
counts of individuals in different age classes al one time step (ie., like a
snap-shot of the population). To imagine this, replace the N, column of the
cohort life table with one of the colimns of Table 4.1 (a Helmeted Honeyeater
census at one particular year). If you calculated the life table statistics of such
a table several times, each time with another year's census, you would get
different results. There are two reasons for this. First, the survival rates are
changing every year (as we calculated) as a result of environmental fluctua-
tions. Second, even if the environment did not change, the proportion of
individuals in each age class change because the population is not at its
stable age distribution. 5o, two conditions are necessary for a static life table
to give results representative of the long term future of the population: the
vital rates (i.e., environment} must stay relatively constant from one year to
“the next. and the population must be at ils stable age distribution, These two
““conditions are rarely met in nature, 50 statis life tables are even less reliable
- than cohort life tables,

4.7 Additional topics

4.7.1 Estimating Survivals and Fecundities

In this chapter, we discussed simple methods of estimating survival rates
and fecundities. In this section, we mention a few more advanced methods
for estimating these vital rates from data.

4.7.1.1 Weighted Average for Survival Rates

In Section 4.3.1 we used a simple arithmetic average of the three consecutive
estimates of 5; {the survival rate of zero-year olds). The simple arithmetic
average is the sum of three ratios, divided by three:
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oL [ M0 massy M%)
0= 3| N98D) T N1992) T Ny1993)

This was justified because all three eslimates were based on similar numbers
of individuals (26 to 28). However, if the number of individuals in the
denominators are very different, it is better to use a weighted average. This is
because, in general we want averages to be influenced more by estimates
based on larger sample sizes. To calculate a weighted average, we simply
muitiply each number with a weight {W) and divide the sum with the sum of

weights:

I N(1992) N{1993) Ny{(19%4)
%= (W AW,+ W) [ Ve T masey YT Ny1993)
Naote that if all weights are equal to one (W, = W, = W, = 1), then this formula
is the same as the previous one.

What should the weights (W) be? The simplest option is to make them
equa) to the denominator, i.e., the number of individuals on which the sur-
vival rate is based. If you substitute the appropriate Ni{t) for each W in the
above formula, and simplify, you get:

, 'N,(1892) + N,(1993) + N,(1994) e
'5"- ml) + N(1992) + ND(1993)

-, - - - ~
In the Helmebed‘ﬁm,eyea ter g(am ple in Table 4.1, the average survival ‘of
zero-yearoldsE

S=(17+20+20) /(26 + 28 + 2T) = 0. 704

which is slightly different from the simple average of 0.703. If the differences
among the counts in different years were larger, the difference between the
simple and weighted averages would also be larger.

4.7.1.2 Mark-recapiure

Suppose you caught 100 birds from an isolated population, marked them
with bands and released them back to the same population. One year later,
you again catch 100 birds, and observe that 10 of them have bands from last
vear (Le, they are recaptured). This amount of information does not allow
you to estimate a survival rate, because obviously you might not have
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caught all the marked birds that are still alive. In fact, if you come back the
following year, and catch 100 birds, you might recapture some birds that you

have marked in year 1 but did not recapture in year 2.

However, if you continue this study for several years in a row, you can
use this information to eslimate survival rates. The statistical methods used
in mark-recapture analyses do this by estimating the probability of recap-
turing a marked animal, in addition to the probability Lhat it is still alive (i.e.,
the survival rate). A detailed discussion of mark-recapture analysis requires
considerable statislical background and is beyond the scope of this book.
However, such analyses are facilitated by specialized software such as CAP-
TURE, JOLLYAGE, and MARK. You can read about the program MARK al
http:/ /www cnr.colostate edu/~gwhite /mark/mark him.  Pollock et al
(1990) provide an extensive review of the topic; for a summary of more
recent developments, see Burnham and Anderson (1992), and Lebreton et al.

(1993).

4.7.1.3 Estimating Fecundities with Multiple Regression

If we suspected that different age classes might have differen] fecundities (in
other words, if we did not want to assume lhat F, = F; = F; = ... = Fy as we did
in the example in Seclion 4.3.2), then we would need a way 1o calculate these
different values. We might, for example, do a multiple regression analysis.
Regression i5 a slatistical methed for finding a relationship between a
~dependent variable (in this case, number of offspring surviving to the next
census), and an independenl variable (in this case, numbez of potential
‘breeders). Multiple regression is used when there are’ several Tndependent
variables {in this case, number of breeders in each age class). -
In the following hypothetical example, the species has just two adult

breeding ages, 1 and 2.

Year N, N,
0 80 21
1 85 11
2 45 18
3 73 28
4 104 15
5 90 23
6 88 19
7 55 17
8 52 27

Data from field censuses are rearranged as follows

Ny
14

5
11
18
14
14

9
12
10
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Year No(t) Ni{t-1) Ny{r-1)
1 21 14 -
2 45 1 3
3 73 18 11
4 104 28 8
5 90 15 14
6 38 23 15
7 55 19 9
8 52 17 12

The data for breeders (N, and N,) are shifted down one year in relation to the
data for recruits (Ny). This is because the number of recruits this year is
predicted by the number of breeders in the previous year. This relationship
is expressed more formally as a regression model:

Nit) = b+ b, N{(t--1) + b, N,(1-1) + error

A solution for the coefficients, b, is found that best explains the data. The
first regrecsion coefficient (by) is the constant lerm, and should be sel to zero,
unless there is evidence of zero-year-old immigrants from cutside the pop-
ulation studied. The coefficients b; and b, are the age-specific fecundities F,
and F,. In this example, the regression analysis gives the relationship:

Nolt) = 066N(I—l)+§0N(:—l}

This re]ahonshxp explams about 78% of the variation in the number of
recruits at each census. Any such analysis should be tempered by biological
knowledge. For example, thiis Tesult should coneur with direct and indirect
field observations that two-year olds are much more successful at reproduc-
tion than one-year olds.

Such results are very sensitive to errors in the data. Removing just the
last observation changes the estimate of the coefficients 1o 0.3 and 5.7,
respectively. That is, the fecundity estimate for one-year olds is halved. A
complete treatment of multiple regression is well outside the scope of this
book. For more information, see Sokal and Rohlf (1951).

4.7.2 Estimating a Leslie Matrix from a Life Table

Our focus in this section is using life table data to construct Leslie matrices.
As we discussed above, this may be necessary because in some cases you
may not have the type of census data we used for the Helmeted Honeyeater.
The methods we will discuss below can be useful even if you have such
census clata. In some cases, younger age classes may be difficult to census
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because of their size. In other cases, the census method may work only for
the breeding population {for example, only territorial owls respond to calls
by surveyors; juvenile saimon disperse to the ocean and cannot be censused
before they return to rivers to breed). In such cases, fecundities (F.) may need
to be estimated based on measures such as number of chicks fledged per
nest, average liter size, belly counts, or a2 comparable measure that tallies
newborns. If you have such measures {which we call fertilities or maternitics,
m,}, you must modify these values to use them in a Leslie matrix. How you
do this depends on the scheduling of censuses in relation to mortality and
reproduction, and on the definition of age of an individual. In other words,
when using life table data to construct a Leslie matrix, you need to be aware
of the timing of the census in relation to the breeding season. In Figure 4.7,
the large black dots represent breeding, Remember that we are assuming a
birth-pulse population, in which all breeding takes place in a short peried of
time. The dotted lines represent reproduction, and the olid lines represent
the survival of each cohort.
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Figure 4.7. The scheduling of census in an age-structured population.

Assume that we are studying an animal species that breeds once a year,
and lives for three years; in other words, individuals die after reaching their
third birthday but before reaching their fourth birthday. We will define "age”
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as follows. Individuals within the first year of life are "zero-year olds." These
individuals become "one-year olds" immediately after the next breeding
season. This is represented by the solid arrow that goes down from N, before
the census {on the left side of the vertical line} to N, after the census {on the
right gide of the vertical line).

It is important to be clear 2bout how age is defined: In some studies,
individuals that have survived their first winter are often called one year old,
even if it is before their actual first birthday. Thus newborns become one-
year olds just befors the next breeding season. Here we call such an
individual zero-year old until afier the breeding season. The two definitions
of age deo not make any difference to the numerical values of the elements of
the resulting Leslie matzix, as long as one definition is consistently followed.
Keep in mind that as a result of the definition we adopted, m, does not refer
to the fertility of newborns; it refers to the fertility of individunals that have
lived for almost a year.

The definitions of various parameters are the same as earlier in this
chapter: The age-specific parameter 5, is the survival rate from age x to age
x+1, so 5, is the proportion of newborns that survive to become one-year
olds. The age-specific parameter m, is the matemity (fertility) rate, which is
the number of offspring per individual of age x. If ondy females are modeled,
it is number of daughters per mother (see the section Sex rativ above). The
abundance of x-year olds is represented by N,, and f denotes the time step.

“We will now consider two separate cases. For the firsftase, assume tHat
we census the population just before the annual reproduction (a "pre-
breeding” census),and concentrate on the bwo x:olumns to the left of the two"-

~breeding pomts at fimes t-1 and t. We asswhe that there is no mortality
between the census and the subsequent breeding, Note that in this census the
youngest animals we'll census will be almost (but not quite) 12 months old.
According to our definition of age classes, this first age class is zero-year
olds, the second age class is one-year olds, etc. At time ¢, the number of one-
year olds will be the number of zero-year olds in the previous census, imes
the survival rate of oneyear olds during the past 12 months:
Ny(£) = Ny(1-1)-5,. So, the first survival we use in our Leslie matrix (second
row, first column) should be 5,.

Next, we need to compute fecundities for the Leslie matrix {this is the
tricky part). Remember the defmition of fecundity from Section 432: The
fecundity, F,, is the average number, per individual of age r alive at 2 given
time step, of offspring censused af the rext time step. So, fecundity of, say,
two-year olds is the number of zero-years olds at ime ¢ produced by indi-
viduals who were two years old at time #-1. Look at the two-year olds at
time t-1 in the figure. There are two "N,"s for time {-1. Look at the one on the
left, because we are now working on the pre-breeding census case. How
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many of their offspring become one-year olds at the next time step? Follow
the arrows between “N,” for time -1 and "N;" for time £ There are two
arrows, labeled "m," and "S,". This is because an average two-year-old pro-
duces m, newbomns (m is fertility), of which m, - 5, are censused as zero-year
olds at the next census. So, the fecundity of two-year olds is their fertility
multiplied by the survival rate of zero-year olds:

Fy=my- S
and similarly for other are classes:

Fy=my-§,
Fo=my- 5,

Combining these formulas, we get a Leslie matrix for pre-breeding census,
which is multiplted by the vector Nit-1) to give N(f):

No(t) meSy mSy mSy|| Nolr = 1)
Nil=l S, 0 0 ||Ne-1)
Vol | o s, o {{me-n

For the second case, assum@ that we census-the population justefter the..,
annwal reproduction {a "post-breeding” census). In Figure 4.7, concentrate on
the columns of N, to the right of the breeding points. A pest-breeding census
meadel assumes that there is no mortality between breeding and the subse-
quent census. Note that in this census, the youngest animals censused will be'
newboms, so the first age class {(zero-year olds) in this case refers to a
different set of individuals than in the previous case. The number of one-
year olds will be the number of zero-year olds in the previous census times
the survival rate of zero-year olds during the past 12 months:
N{t) = N(t-1)-5;. So, the first survival we use in our Leslie matrix (second
row, first column) should be 5, This is different from the previous (pre-
breeding census) case.

Next, we have to compute fecundities. The abundance of the first age
class is N The fecundity of, say, two-year-olds is the number of newborns at
time | produced by individuals who were two years old at time {-1. Look at
the two-year olds at time $-1 in the figure. There are two "N,"s for time ¢-1.
Look at the one on the nght, because we are now working on the post-
breeding census case. How many of newboms did these individuals produce
at the next time step? Follow the arrows between "N," for Eme 1-1 and "Ny’
for time £ There are two arrows, labeled *S5;" and “m,". This is hecause on
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average 5, of these individuals survive until the next breeding season, and
those who survive produce mr, newborns (m is fertility). So, the fecundity of
two-year olds is their survival rate from age 2 to age 3 (5,) multiplied by their

fertility (m):
Fa=5;my

and in general,
F.=5m

The Leslie matrix for post-breeding census, multiplied by N{t-1) gives:

No®)] [Somo Simy Symy O][ Ni(e-1)
Nol | ss o o0 of|ne-1
NolTl o s, o oflme-1
vl | o o s, of|lme-1

Note thal this malrix has one more row and column than the matrix for pre-
breeding census, since three-year olds are also observed. Note also that even
though the last column is all zeros, we still keep it to tally the three-year olds.
Far example, assume that we have estimated the following maternities
(say from observations of fledglings per nest) and survival rates (say from a
mark-recapture study), and that we are modeling only the'female popula-
ton. -y ET.. -
vty = 0.5 5,=03
m =15 5 =08 .
ny =30 5,=05

Now, if the initial abundances have been estimated in a pre-breeding census,
then the Leslie matrix will become

0.5x03 25x03 3.0x03] [015 075 09
08 0 a =08 0 O
0 0.5 0 0 05 O

This matrix wili predict, for each time step, the population size and structure
just before breeding. You should keep this in mind when interpreting
results, and also when deciding on a quasi-extinction threshold.
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If, on the other hand, the initial abundances are estimated in a post-
breeding census, the Leslie matrix becomes

0.3x05 08x25 05x30 0] [0.15 20 15 0O
0.3 0 0 ol |e3 0 0 0O
0 0.8 0 0| | 0 08 0 ©
0 0 05 0 0 0 05 0

This matrix will predict, for each time step, the population size and structure
right afier breeding. This matrix is reducible as a result of a zero fecundity in
the last element of the first row (see Caswell 1989). If you delete the last row
and column the matrix becomes

0.15 20 15
03 0 O
0 08 0O

which has the same finite rate of increase as the two other matrices above.
The difference is that, this will not allow the model to indude the last age
class (three-year olds) in the total population abundance. You may or may
not want this; in this example, the three-year olds do not breed after they are
counted in a post-breeding census, so it may be okay to exclude them from
the total abundance.

4.7.3 Estimating Variation -

Given a time series of estimates for a particular vital rate (say, zero-year-old
survival rate), we can estimate the standard deviation of this vital rate using
built-in functions in a calculator or spreadsheet software. However, this
seemingly simple procedure may have many complications. In this section,
we discuss two of these,

4.7.3.1 Variance Componenis

As we mentioned in Chaprer 2 and again here in Chapter 4, elements repre-
senting the uncertainty in a population model must be estimated from data.
In many instances, a single estimate of variaton is available for each
parameter. We know that this variation has several sources, but rarely are
corrections made to identify the sources of the various components of the
total variation. The total variance {var,,,) in each parameter may be decorn-
posed as:
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VAl = Valeqviumen: + YaTampie + Y&l gumogrupy + Yalypuen

where var,,,o.. represents variation from year to year {or census to
census) that is the result of the population’s response to environmental vari-
ation, Var,.,,, represents measurement eITor, Var ooy is variance due to
demographic stochasticity, and wvar,.. is the spatial variance among
estimates that is due to measuremnents taken at different places. To these
terms we could add covariances between each combination of sources.

}f measurements from one year to the next are always taken in the same
place, then var,,,, may be ignored. The act of sampling itself may alfect the
values thatare likely to be recorded next time (the development of trap shy-
ness in animals, for instance). For survival rates the term varg,,q g, is equal
to the binomial variance, p(1-p}/N, where p is the survival rate and N is the
number of individuals, so that if N is large (more than about 20), usually the
term may be ignered. Sometimes, estimates of numbers come with an esti-
mate of the associated measurement errar. Assuming no covariance between
sources, this would provide the means of reducing the total variance to its
individual compornents.

4.7.3.2 Variance of Sums and Products

Often data will involve the sum of independent components, each of which
has a variance assocna;ed with it. Such drcumstances occur when creating
composite classes, of when estimating abundance from spahallx separate
areas. Then, the variance (var,,,) of the sum of two numbers is the sum of
their respective vanaaces plus 2 times their covariance {covk

VEha = var, + var; + 2 cov;;

In some circumstances, it may be necessary to estimate the variance of the
product of two numbers, each of which has a variance associated with it. For
example, when the data come in the form of maternities and survivorships,
fecundity is given by

F=m.§
The variance of the product of two values {1 and 2) is given by

var,, = var;(mean,)® + var, (mean,f’ + 2 mean, mean, cov,,
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4.8 Exercises

Before you begin this set of exercises, you need to know a few things about
RAMAS Ecolab. For age- and stage-structured models, click on the icon for
"Age and stage structure” from the RAMAS Ecolab main program (shell).
This program works just like the previous program (Single population
models), except for the larger number of parameters. See the Appendix at the
end of the book for an overview of RAMAS Ecolab. For on-line help, press
(), double click on "Getting started” and then on "Using RAMAS EcoLab."
You can also press (F) anytime to get help about the particular window (or,
dialog box) you are in at that ime. To erase all parameters and start a new
model, select "New" under the Model menu, (ar, press [CeiN)).

Note that the same program is used for both age-structured models and
stage-structured maodlels. In RAMAS EcolLab, the Leslie matrix of an age-
structured model is entered in the Stage matrix (under the Model menu).
The matrix i5 called a "Stage matrix,” and the classes are called "stages” in
RAMAS Ecolab, even if the classificalion is actually based on the age of
organisms. This is because “slage™ is a more general concept, and age-
struchired models can be considered as a special case of stage-structured
models (we will discuss this in the next chapter). Therefore, many parts of
lhe program refer to "stages,” which you should assume to be "ages” for the
exercises of this chapter. For example, in various windows, lhe dasses are
labeled by default as “Stage 1,” “Stage 2,” etc.; however, the acfual meamng of
stages depends on the particular model. For example, if the model is age-
structured, "Stage 1" (i.e., the first age class) may refer to zero-year-gld or
one-year-otd individuals, depending on the way your e} is structured.
Therefare, you should change the default labels to fil your model. This is
done in the Slagas dialog box, which is selected from the Model menu
Belore you can enter the elements of the matrix, you must first decide on the
number of age classes and enter each age class in the Stages dialog box
{click the Help button for more information). There are two constraints that
apply to age-structured models: all matrix elements mus| be nonnegative,
and survival rates must be less than one. RAMAS Ecolab checks both of
these, as long as the box for Ignore constraints in General Information, also
under the Model menu, is clear {(not checked). This option should always be
cleared for age-structured models.

When entering data for an age-struclured model, make sure that the
matrix in the Stage matrix (under the Model menu) has the structure of 2
Leslie matrix; fecundities should be entered in the top row, survivai rales
should be in the subdiagonal, and all other numbers should be zero. Make
sure that survival rates are not on the diagonal by mistake.
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Exercise 4.1: Building the Helmeted Honeyeater Model

This exercise is designed to familiarize you with the program and to review
the various concepts introduced in this chapter. We will begin by entering
the basic parameters for the Helmeted Honeyeater matrix model we have
discussed above.

Step 1. Start RAMAS EcoLab and select the program "Age and stage
structure” by clicking on ifs icon.

Step 2. Start a new model. This will open the General Information
window. Type in appropriate title and comments (which should include
your name if you are gning to submit this work for assessment).

Enter the following parameters of the model. Remember that setting the
number of replications to 0is a convenient way of making the program run a
deterministic simulation.

Replications: a
Duration: 50
_1lgnore constrainls (clear)

Note that The parameter related to demographic stochasticity is ignored.
This is because when the number of replications is specified as 0, the pro-
gram assumes a deterministic simulation. This parameter is ignored because
it is relevant only for stochastic models. After editing the screen, click the
"OK" button. (Note: Don't click "Cancel” or press to close an inpul
window, unless you want to. undeo’ the changes you have made in this
window.} R

Next, select Stages (again, under the Model menu). Click the "Add"
bulton to increase the number of stiges to 4. Click on thé top cell under
"Name." Change the default name, "Stage 1," by typing "Age 0." For the other
tows, type "Age 1" "Age 2" and "Age 3+" The window should now look like
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Click OK. Select Stage matrix. Click on the matrix element in the first
column and second row, and type 0.703 {the survival rate of zero-year clds).
Type the other elements of the matrix (survivals and fecundities) as esti-
mated in Section 44, and displayed at the end of Section44.1. When
finished, the matrix should look like

Click OK.

Step 3. Next, select Initial sbundances and enter the zbundances in
1994. Don’t forget to combine the counts for ages 3 and above into a single
age class {the numbers should be 29, 20, 14, 34). When finished, click OK, and
save the mode! in a file,

Step 4. Select Run to run a simulation. The simulation will run for 50
time steps, and you will see "Simulation complete” at the bottom of the
window when it’s finished. For a deterministic simulation, this will be quite
quick. Close the Simulation window, and select “Trajectory summary” from
the Results menu. You will see an exponentially increasing poputation fra-
jectory. Click on the second button from left ("show numbers”} on top of the
window to see the results as a table of numbers. The first column shows the
time step, the others show five numbers that summarize the total abundance
{of all age classes) for each time step: {1} minimum, (2} mean - standard
deviaton, (3) mean, {4) mean + standard deviation, and (5) maximum. All
five numbers should be the same (because this is a deterministic simulation).
Make a note of the last bwo, i.e., N(49) and N(50). Calculate the growth rate
jrom year 49 to year 50:

NGO

R{(49) = NS =1
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This is an estimate of the finite rate of increase (1) because (1} the model
does not have any type of stochasticity or density dependence, and (2) the
simulated time (50 years} is long enough that we can assume that the pop-
ulation has reached its stable age distribution. Now, let’s check this last
assumplion,

Step 5. In RAMAS EcolLab, you can output the final age distribution after
a simulation. This is the abundance of individuals in each age class at theend
of the simulated time period. From the Results menu, select "Final age/stage
abundances” and click the "show numbers” button. This table gives the
abundance in each age class at the end of the simulation. Write down the
numbers in each class, and then compute the proportion of individuals in
each ape class:

Note that N {50} is the' number of ¥-year olds in yeaf 50, and N{(50} is the
number of all inditiduals in year 50. Tf the population has reached its stable
age distribution, thkse numbers should be the same as the stable age distri-
bution calculated based on the matrix. Let’s check if this is the case. Close the
result window and select Slage matrix from the Model menu. Click the
“Display” button, and select "Finite rate of increase” by clicking on it. The
program will display various statistics about this Leslie matrix in numerical
form. Scroll down the window to see the value of the finite rate of increase
{A). Below that, various variables are tabled numerically. In addition to the
stable age distribution and reproductive value distribution, here you can see
the initial age distribution (i.e., the proportion of individuals in different age
classes at the beginning of the simulation), and average residence times {(we
will discuss the average residence times in the next chapter). Notice that the
initial age distribution is different from the stable age distribution.

Step 6. Compare the stable age distribution with the final age distribu-
tion you calculated, and the finite rate of increase with the growth rate from
year 49 to year 50.
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Step 7. Repeat steps 3 thiough 6 with a different age structure. Enter the
initial abundances as 67, 10, 10, and 10 for the four age classes. Note that the
total initial abundance is the same as in the previous case, but with more
zero-year olds and fewer individuals in other age classes. Does the popula-
tion reach stable age distribution in 50 years? Is the growth rate from year 49
to 50 close to the finite rate of increase? Now compare the final population
size at yeer 50 for the two cases. Is the final abundance different when the
initia} distribution is skewed towards zero-year olds?

Step 8. Now we will add demographic stochasticity to the model, Load
the file you saved in Step 3 and select General information..Notice that the
number of replications is 0 {specifying a deterministic simulation). Change
the number of replications to 50, and check the demographic stochasticity
box. Run the model again. Note that each trajectory simulated by the pro-
gram is different. If the simulation takes a very long time, you can speed it
up by clicking on the first button on the toolbar of the simulation window.
This button displays simulation text, instead of each trajectory (you can also
stop a simulation by pressing [Esd or clicking the "Cancel” button). After the
simulation is over, select Trajectory summary from the Resulls menu
Although the only source of stochasticity is demographic, and the initial
population size is 100, the expected future trajectary of the population shows
considerable variation. Make a note of the variation in abundance. For
example, for year 50, record the (1) minimurm, (2} mean - standard devi-
ation, (3} mean, (4) mean + standard deviation, and (5) maximum
abundances.

Step 9. Now we will add envirorunental stochasticity to the model. Select
Standard deviation matrix from the Model menu, and enter the numbers
we calculated in Section 4.5.2. In this window, the standard deviation of each
matrix element (survival and fecundity) is entered at the same position a5 in
the Stage matrix screen. Thus, type in the standard deviation of zero-
vear-old survival (0.0264) in the second row, first column, type in the
standard deviation of one-year-old fecundity (0.0075; in the first row, second
column, efc. (Note that we arrange the standard deviations in the form of a
matrix only for visual convenience; we don't do operations such as matrix
multiplication with this matrix.)

When finished, click OK, and zave the model in another file. Now, run a
simulation. How does the variation compare with Step 8 (when we consid-
ered only demographic stochasticity)?

Step 10. The population abundarice increased from 97 te over 1000 in 50
years. Considering the discussions in Chapter 3, what are some of the factors
that might prevent such an increase? (Hint: See the beginning of Section 43.)
One way to model such factors is to add density dependence to the model.
Select Density dependence from the Model menu, and specify the type of

-
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density dependence as "Ceiling." This requires an additional parameter, the
carrying capacity (K). Assume that K is 150. Click OK, and run another sim-
ulation. What does the population trajectory look like now? What is the
long-term predicted abundance of the population? Does the finite rate of
increase (based on the Leslie matrix) say anything about the population’s
future in the presence of stachasticity and density dependence?

Exercise 4.2: Human Demography

In earlier chapters, we discussed the exponential nature of human popula-
tion growth, and the capacity of earth to support the human population. In
this exercise, we will demonstrate some of the difficulties in dealing with
human population growth.

Step 1. Load the file Human.5T, which is 2 model of the human popula-
tion in a typical developing country. (The abundances and rates in this
model are loosely based on the population of the Philippines in 1975.) The
time step in this model is a decade, and the age structure is based on 10-year
age classes. For example, the first class {"Stage 1) is ages 0-10, the second
class (“Stage 2°) is ages 10-20, etc. This is very important to remember
during this exercise. Select Stage matrlx, and click "Display” to investigate
the vital rates. What is the finite rate of increase of this population? (Note
that a finite rate of increase must be specified together with the time unit for
which it was estimated.) Compare the initial age distribution with the stable
age distribution. Are they the same? 7 .

Step 2, Simulate the grawth of this population for 100 yelrs. How: many
time steps does this take? What is the expected population size in yeaz 20757
How much did the population, increase (in absolute terms and as a per-
centage) in 100 years? Note that irr this step we assumed that the 1975
fecundities and survivals remain unchanged for 100 years.

Step 3. Simulate the effects of a family planning program, for example
one that makes birth control available free, and gives incentives for small
famnilies. Assume that the effect of this program is very strong and imme-
diate; decrease the fecundity of each age class by the same percentage so that
the finite rate of increase is equal fo 1.000. What percentage decline in
fecundity was necessary to make the long-term population growth zero (fi-
nite rate of increase = 1)? Save the model in another file.

Step 4. Simulate the population growth with the reduced fecundities
undil 2075. What will be the expected population size in year 2075? How
much will the population increase {in absolute terms and as a percentage) in
100 years urder the reduced fecundities? Why did the model predict that
the population will continue to increase even though the finite rate of
increase is equal to 1.0000?
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Step 3. Repeat Step 3, but reduce fecundities in another way. Instead of
reducing fecundities of all age classes by the same amount, begin with the
youngest reproductive age class (ages 10-20). Decrease its fecundity until
the finite rate of increaze is equal to 1.0000. If the finite rate of increase is
above 1.0 even when the fecundity of 10-20-year-old individuals is zero,
start decreasing the fecundity of the next age class. Save the file under a new
name. What percentage did you have to decrease the fecundity of each ape
clags? Describe what this means in terms of the reproductive behavior of the
people in this example? How is this sort of reduction in fecundities different
from the one in Step 37 -5

Step 6. Repeat Step 4 with the new set of fecundities, Compare the
results with those of Step 47 Which method results inl a lower population
size?

Step 7. How realistic is our assumption that the family planning pro-
gram we simulated will decrease the finite rate of increase to 1.0
immediately? If this decrease takes a number of years (or decades), how
would this affect the final population size? How might social factors (such
as education of, and economic independence of women, and increased social
security for older people} affect the rate with which fecundities decrease?

Step 8. Remember from Chapter 1 that per capita energy consumption in
industrial countries is about 9.3 times that in developing countries. If in the
next 100 years, the per capita enctgy consumption in the developing country
in this example reached the level of consumption in the industrialized world,
how much would the total annual energy consumption in that country.
increase by 2075: .

(a) if there is no change in fecundities?

{b} if fecundities change as in Step 37

(c) if fecundities change as in Step 52, .

Exercise 4.3: Leslie Matrix for Brook Trout

Brook Trout {Salvelinus fontinalis) is a freshwater fish that is popular with
anglers. Table 4.5 gives the number of brook trout in Hunt Creek (in Mich-
igan), taken from a paper by McFadden et al. {1967). The data in this and the
next table are provided on the distribution disk of RAMAS Ecolab in three
spreadsheet formats (for Lotus 1-2-3, Quattra Pro, and Excel).

Step 1. Calculate the survivai rates for each age group (S;, 5, 5, and 5;)
in each year. For example, 5, for 1949 is 2013/4471, or 0.4502. Note that you
cannot calculate the survival rates for 1962 (because there is no data for
1963). Also note that 5, = (), because no five-year olds were observed. If you
know how to use spreadsheet software, see below before you begin this step.

Step 2. Calculate the average survival rate for each age class.
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Table 45. Abundance of Brook Trout in Hunt Creek by

age classes.
Year Age classes Total
0 1 2 3 4
1949 4471 2036 287 14 0 6,808
1950 3941 2,013 304 13 0 6,271
1951 4287 1851 265 16 1 6,420
1952 5033 1763 26 16 0 7073
1953 5387 1637 175 13 0 7212
1954 6325 2035 M 13 a 8,607
1955 4235 2,325 383 4 0 8,967
1956 4949 1612 392 51 1 7,005
1957 6703 179 309 B3 1 8412
1958 5087 2653 A5 26 2 8,133
1959 4038 2395 685 68 0 7,186
1960 5057 2217 473 a7 1 7,793
1961 2809 2017 49 23 a 2,258
1962 5052 1,589 448 52 2 7,143

From McFadden et al. (1967).

Step 3. Calculate the standard deviation of each survival rate. You can do’
this in three different ways. Any one of the three is acceptable {although they
may give slightly different results).

{a) If you have (and know how to use) any one of the three spreadsheet
software mentioned above, first load the file BTROUT.WK1 (for Lotus 1-2-3),
BTROUT.WQI {for Quattro Pro), or BTROUT.XLS (for Excel). You can then
calculate the survival rates (Step 1) by dividing the appropriate numbers (be
careful with the years). After calculating the survival rates for each age and
year, calculate thelr averages (Step 2) and their standard deviations {Step 3)
using the built-in function of the software to calculate averages and standard
deviations. Read the manual of the software you have for more information.
If the software gives an option of either "population,” or "sample” standard
deviation, use the “sample standard deviation.”

(b} If you have a calculator tha! performs standard deviation calcula-
tions, you can use it. Note also that the Calculator program that comes with
Microsoft Windows also allows the calculation of standard deviations (when
you select "View /Scientific”). Use the help fadility of this program to learn
how to use it.
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{c) You can zlso use a short-cut that allows an approximate estimation of
standard deviation from a range of observations. Range is the difference
between the maximum and minimum of a set of numbers. To use this
method, first caleulate the range for each survival rate, by subtracting the
minimum ever observed over the 13 years, from the maximum. Then divide
this number by 3.336. This number is valid only for samples of 13 data points
(as is the case here). For samples of different sizes, the constant used to
divide the range is different (see Sokal and Rohlf 1981, page 58).

Step 4. Caiculate the fecundities of each age class, and each year. For
example, to calculate the fecundity of one-year olds (F,) in 1948, you need to
divide the number of zero-year olds alive in 1950 that were produced by
one-year olds, with the number of one-year olds in 1949, From the above
table, we Jmow the number of one-year olds in 1949 (2,036}, and the total
number of zero-year olds alive in 1950 (3,941), but we need to know how
many of these zero-year olds were the offspring of individuals that wece one
year ald in 1949. We can obtain this information from the Table 4.6, which
gives, for each year, the proportion of young produced by each age class (the
sumn of each row Is 1.0}). For example, in 1949, 64.7% of the young were pro-
duced by one-year olds. Thus the number of young (that were alive in 1950}
that were produced by one-year olds in 1949 was 0.647 muitiplied by 3,941,
or 2,550, The fecundity of one-year olds in 1949 was

TF0949) = 9;6%9_5_{ = 12525

The f-ecu.ndity of two-year olds in 1949 was

»

F,{1949) = m0.319;8)'(? 341 4385

Note that both fecundities use the same total number of zero-year olds in
1950 (3,941). Calculate the rest of the fecundities. There should be a total of
52 fecundities (4 age classes, 13 years). Note that you cannot calculate the
fecundity for 1962 (because there is no data for one-year olds in 1963}, and
that the fecundity of the Hrst age class, F, =0, L.e., this year's young cannot
produce young that are counted in the next census. Also note that in 8 out of
13 years, the abundance was zero in age class 4. For these years you cannot
caleulate F, (it is #ot zero; it is unknown).

The data in this and the previous table are provided on the distribution
disk of RAMAS EcoLab in three spreadsheet formats (for Lotus 1-2.3,
Quattro Pro, and Excel). If you have {(and know how to use} any one of these
software, you ¢an make these calculations much faster.



152 Chapter 4 Age Structure

Table4.6. Proportion of all young produced
by different age classes of Brook Trout in Hunt

Creck,
Year Apge classes
1 2 3 ¢4
1949 (06471 03193 00336 0
1950 06417 03333 0029 0
1951 063% 03063 00450 0.0090
1952 06275 03333 00392 0

1953 06750 02750 Q0600
1954  0.6827 02885 (.0288
1955 0609 03425 0047
1956 05000 03731 0.1269
1957 05726 03333 (.0040
1958 06358 02980 0059 0.0066

oo oo o

1959 04906 04151 00943 ]
1960 05422 03675 0.0904 0
1961 05833 03681 (0.0486 0

1962 04823 (04043 01064 00071
From McFadden et al. (1967},

Step 5. Calculate the average fecundity for each age class. Calcualate F, as
the average of fivénumbers (three of which are zero), and other fecundities
as averages of 13 numbers.

Step 6. Calculate the standard deviation of each fecundity. You can do
this in three different ways (see above). Be careful when calrulating the stan-
dard deviation of F;. You should calculate the standard deviation of five
numbers. For example, if you use the range approximation, divide the range
of F, with 2.326 {because the sample size is 5, not 13).

Step 7. Combine the average survival rates and average fecundities into
a Leslie matrix. Make another matrix with the corresponding standard devi-
ations.

Exercise 4.4: Fishery Management

In this exercise, you are asked to manage a fishery. Your goal is to maximize
the harvest, while minimizing the risk of decline. This fishery exercise is
based on the brook trout model you developed in the previous exercise.
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Step 1. Start RAMAS EcoLab, select the "age and stage structure” pro-
gram. Select "New™ from the TFile menu (this will open General
Information). Enter an appropriate title (and if you wish, comments), and
enter the following parameters of the model:

Replications: 0
Duration: 20
Cignore constraints {clear)

Click OK. Select Stages, and dlick "Add.” Rename the stages as "Age 0,
"Age 1" ete. Click OK, o

Step 2. Select Stage matrix, and enter the Leslie matrix you caleulated in
the previous exercise. Select Standard deviation malrix, and enter the
numbers you calculated in the previous exercise. Select Initial abundances,
and enter the abundance of each age class in 1962, from the table in the pre-
vious exercise. In each window, click OK after entering the parameters. Save
the model in a file.

Step 3. Run a deterministic simulation of this model. Record the final
population size (Trajectory summary; total abundance at year 20j.

Step 4. Now, we will add harvesting. Two types of harvesting can be
simulated with the program. Both are specified in Management & Migra-
tion under the Model menu. On the left side, there is list of management
actions. Click the "Add” button under this list once to add a new
management action. A new action will be added to the list on the left of this
dialog box. The newly added action is assumed to be a "harvest/emigration.”

First, we will simulate praportional harvest. On the right side of the-
window, under "Quantity” select Proportion of individuals" by clicking on
it. Then enter a number between 0 and 1 (say, 0.1} in the edit box next td the
label "Proportion of individuals.” This is the proportion of each age class
harvested. Next, you need to select the age classes to which this harvest rate
applies. We will assume that the zero-year-old fish are too small to be of
commercial value, so we skip this first age class. The abundance of the last
age class is too low w experiment with, so we will not harvest this class
either. We will assume that the same proportion of other age classes are har-
vested. This may not be a valid assumplion in most cases, but it does
simplify the exercise. Click on the little arrow next to "In Stages.” and select
"Age L." Click on the Little arrow next to "Through,” and select "Age 3." Click
OK.

Step 5. Now change the harvest rate (i.e., the "Proportion of individuals”)
in such 2 way that the abundances in the last 10 years are as close to each
other as possible (i.c., the population is slationary). You will probably have
to run several simulations before you <an find the correct number that keeps
the population sizes stationary. What is the harvest rate you found? Save
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this model in a different file (such as TROUT-PH.ST, for proportional har-
vest). Record the number of fish in each age class at the end of the simulation
(Final stage age/stage abundances)

Step 6 We will now repeat Steps 4 and 5 with constant harvest for the
same age classes. Constant harvest refers to a fixed number of individuals
harvested at each time step. But we don't want this number to be the same
for all age classes {bécause there are many more younger fish than older
fish). To guess these constant numbers, multiply the number of fish in each
age class at the end of the simulation (from the previous step) with 2/(1 - k),
where k is the proportional harvest rate you found, then round to the nearest
integer. For example, suppose the abundance of the second stage ("Age 17} at
the end of the simulation in Step 5 was 2,000, and the harvest rate was 0.06.
In this case use a constant harvest of 2, (00 x 0.06/(1 —0.06), or 128 fish for this
age class. Select "Management & Migration” and elick on "Number of indi-
viduals" (under "Quahtity”). Type "128" as the number. Make sure that this
number applies ondy to "Age 1." Thus, click on the litde arrow next to
"Through,” and seleci "Age 1." Thus this management action refers to har-
vesting 128 individuals in stages "Age 1" through "Age 1.”

Calculate the number to be harvested for the other two age classes in the
same way. To enter the number for "Age 2," click the "Add" button. This
adds a new management action to the list, also named "Harvest/Emigra-
tion.” Click on the newly added “Harvest/Emigration." The numbers on the
right side of the window now refer to this new action. Enter the number you
calculated as the "Number of individuals,” and change "In stages ... through

—.." to refer to "Age 2" Repeat for "Age J." Thus, you should have three
managament actions, all of the "harvest/emigration” type, and each refering
“to a single age class. Click OK.

Run a deterministic simulation, and check the final abundance. If the
population is increasing or declining, adjust the constant harvest numbers
{proportionaily) until the abundances in the last 10 years are as close to each
other as possible (1., the population is stationary). You probably won't have
to make any adjustments to the initial guesses,

What are the harvest amounts you found? Save this model in a different
file (such as TROUT-CH.5T, for constant harvest).

Step 7. Now run stochastic simulations (by changing the number of rep-
lications to 1000, and making sure demographic stochasticity is used) with
each of the three models (no harvest, proportional harvest, and constant
harvest) you have developed and saved. Check the risk of falling below 1000
individuals for each simulation. (It might be difficuft to read the precise
value of the probability from the screen plot. See Exercise 2.4 for an example
of getting the exact probability value.)
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Compare the three results. Explain the differences in the light of the die-
cussion on "Harvesting and density dependence” in Chapter 3.

4.9 Further reading

Jenkins, 5. H. 1988. Use and abuse of demographic models of population
growth. Bulletin of the Ecological Society of America 69:201-202

Keyfitz, N. and W. Flieger. 1990. World population growth and aging: demo-
graphic trends in the late hwentieth century. University of Chicago Press,
Chicago. .

Leslie, P. H. 1945. On the use of matrices in certain populatlon mathematics.
Biometrika 33: 183-212

McFadden, . T, G. R. Alexander and D. S. Shetter. 1967. Numerical changes
and population regulation in brook trout Selvelinus fontinalis. ]ourmz! of
the Fisheries Research Board of Canada 24: 1425-14565.

U.S. Burean of the Census home page. http:/ /www.census.gov/
Includes demographic data on the population of the US. and other
countries,






Chapter 5
Stage Structure

5.1 Introduction

The basic assumption of age-structured models is that the demographic
characteristics of individuals (such as fertilities and survival chances} are
related to their age, and among individuals of the same age, there is little
variation with respect to these demographic characteristics. ‘This assumption
is nat appropriate for all species; age is not always a good indicator of
demography. In some plants, survival and reproduction depend on the size
of the individual. Larger individuals produce more seeds and are more
lixely to survive. Such a species could be modeled with an age-structured
model, only if individuals in the same age class were more or less the same
size. Usually this is not true; plant growth is often plastic, meaning that the
rate with which individual plants grow in size depends on environmental
conditions. Those seeds that happened to land on a favorable spot will grow
faster and reproduce at an earlier age than those that were less lucky. Forest
trees, for example, can spend years suppressed in the understory before an
opening in the canopy allows them to grow and begin producing seeds.
Openings in the canopy occur when canopy trees die due to chance events

157
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such as wind, disease, and fire. As a result, the age of a tree that has been
waiting in the understory may have nothing to do with its chance to begin
growing to the canopy.

In such a case, it may be better to use a stage-structured model, in which
the individuals are grouped into stages defined by their physiological, mor-
phological, or other characteristics that have an important effect on their
probability of survival and reproduction. For the above example, the stages
may include seeds, seedlings, saplings, understory trees, and canopy trees.

Animal species may also be better modeled using a siage-structured
approach. For example, survival rates and fecundities may depend on the
physiological stages—such as egg, larva, pupa, and adult for insects, or
juvenile and adult for birds. Again, such species could also be modeled with
a Leslie matrix, but only if individuals took the same length of time to reach
these stages (in other words, if each individual spent the same length of time
in each stage). Otherwise, age structure will not capture the differences
among individuals in terms of their survival and reproduction.

There might also be practical reasons for using stage structure instead of
age structure. For example, it may be impgssible to determine the age of
individuals, hence impossible o estimate age-specific vital rates. In such
cases, a stage-structured model may be more appropriate.

5.2 Assumptions of stage-structured models

The basic assumption of stage-structured models is that the demographic
characteristics of individuals are retated to their developmental stage. The
assumption is that there is little variation among individuals in the same
stage with respect to their demographic characteristics such as chance of
surviving, chance of reproducing, and the awmber of offspring they produce.

This assumption is quite important, [t means that what an organism will
do depends only on the stage it is in now, and not on what stage it was in the
previous time steps, or how long it remained in each stage. For example, a
stage structured model of forest trees {mentioned above) based on size
would assume that the chances of survival and growth of an individual sap-
ling depend on its size, but not on how long it has waited in the understory,
or whether it was a seed or seedling in the previous time step.

Other than this basic assumption, stage-structured models may also
assume that (1) the population is closed, i.e., there is no immigration or emi-
gration; (2) the vital rates are constani, ie, there is no demographic or
environmental stochasticity; (3) the vital rates are not dependent on
abundance, i.e., there is no density dependence. However, it is quite easy to
dispense with these assumptions and add migration, stochasticity, and den-
sity dependence to a stage-structured model.
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5.3 Stage structure based on size

The most impartant difference between an age-structured and a stage-
structured model involves the type of transitions; in other words, the
number and type of transitions pessible for an individual in a given age or
stage class. In an age-structured model, there are only two types of trans-
itions: an individual may get older {i.e, move to the next class}, and/or it
may produce offspring (i.e., contribute to the first age class). If neither of
these happens, the model assumes that the individual died. These two types
of transitions are represented by the two types of nonzero elements of the
Leslie matrix: those at the subdiagonal {i.e., elements one below ihe diagonal
going trom the upper left of the matrix to the lower-right), representing sur-
vival, and those in the first row, representing fecundities. Below is the Leslie
matrix we discussed in the previous chapter, with the assumption that F,= 0,
i.e., the youngest individuals do nor reproduce (which is often the case). We
can depict this age-structured model with a diagram (Figure 5.1) in which
boxes represent age classes and arrows represent transitions (survivals and
fecundities) from one age dass to another.

0 F F F

5 0 0 0
L =

05 0 0

cC 0 5 0

§
0 year ) L9 | dyear 1 o | 2year 2 3 year
old old old old

Figure 5.1. Diagram for an age-structured model.

We discussed one modification of the Leslie matrix in the previous
chapter involving a third type of transitton. When we combined three-
year-old and older individuals info a composite class, their survival rate was
represented by the matrix element at the lower-right comer of the matrix
below. We will use the symbol 5;. for the survival of three-plus-year-old
individuals. When these individuals survive for another year, they are still
counted in the same class. This is represented by the loop around the box for
"3+ year old" in Figure 5.2. The rest of the figure is the same as Figure 5.1.
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O F K, F,
S 0 0 0
L —
0 5 0 0
0 0 5 S,
Y
S, S s, )
0 year »| 1year ! 2 year 3+ year
old old old old

Figwe 52. Diagram lor an age-stiuctured model with a composile
age dlass for individuals three-years-old and older.

Now consider a model in which individuals in any class (not just the last
one} can either move to the next class or stay where they are. Obviously this
cannot happen in an age-structured model. If there is an age class for tvo-
year-clds, then a oneyear-old individual will either die, or survive to
become two years old. However, if the classes are based not on age, but on
the size of the individuals, then a *medium-sized” individual can grow to be
"large-sized,” or stay as “medium-sized.” Such a model may be represented
by a diagram with loops for each stage (Figure 5.3), or by the following stage
matrix.

Sm Fo P Fir
0 S Sum 0
¢ 0 Sa Su

L =

(jgﬁ Sss (—\SHM du

oo X L,

Tiny {——w| Small |— | Medium| - —w=-| Large
\\—.Fﬁ,—’/

V fix

Figure 5.3. Diagram for a stage-structured medel,
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In this matrix, the subscripts T, §, M, and L refer to "tiny,” "small,” "me-
dium," and "large.” All survival rates now have a subscript with two letters,
indicating the beginning and ending stages referred to by the survival rate.
For example, 5y is the proportion of "medium” individuals whe became
“large” in the next time step, and S, is the propartion of "medium” individ-
uals who remained as "medium” in the next time step. The overall survival
rate of "medium” individuals is

Su = Sy + Sy

and their fecundity is F,,;, because fecundity is a transition from one stage (in
this case "'medium”) o the stage in which individuals start their lives. In this
model we assumed that all offspring start their lives as “tiny” individuals.
This is not necessarily the case for all species. There may be small and big
offspring (seedlings, for exampie), and you might want to model them in
separate classes. We also agsumed that a “small" individual can become a
"large” individual in two time steps, because it must first become a “medium”
individual. If it were possible for a “small” individual to become "lazge” in a
single time step, then (1) there would be a nonzero element S5, in the second
columpn, last row of the matrix, and (2) there would be an arrow going
directly from "small” to "large” in Figure 5.3. Note that, In these diagrams,
each element of the matrix is represented by an arrow; the number of arrows
in a diagram is equal to the number of nonzero elements of the mateix.

5.4 A stage model for an Alder

A stage-structured model based on sizc was developed by Huenneke and
Marks (1987) for the Speckled Alder (Alnus incang). This is a comunon shrub
of eastern North America. It forms dense thickets in which alder seedlings
have a very low survival rate; thus most of the reproduction s vegetative, in
the form of sprout production.

Huenneke and Marks (1987) censused and measured alders from 1979 to
1982. They classified alders in thelr study populations with respect to the
diameter of their stems at breast height (dbh; diameter at 1.4 m above the
ground), a common measure of size for trees and shrubs. They grouped
stems into the following five size classes:

Stage 1: 0 cm dbh (i.e., stems shorter than 14 m)

Stage 2: 1.1 ta 0.9 cm dbh

Stage 3: 1.0to 1.9cm dbh

Stage 4: 2.0 to 2.9 cm dbh

Stage 5: 3010 3.9 cm dbh
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Because the census was repeated every year from 1979 to 1952, Huen-
neke and Marks (1987, Table 2) estimated three stage matrices, each
representing a transition from one year to the next (1979 to 1980, 1980 to
1981, and 1981 to 1982}. We combined these three matrices and obtained the
following mean matrix.

1 2 3 4 H]
1 ¢.637 0.033 0,100 0.163 0.230
2 0.107 0.580 0.0 0.0 0.0
3 0.0 0.353 0.763 0.0 ¢.¢
4 g.0 Q.0 0.237 0.8647 0.0
5 0.0 0.0 0.0 0.277 2.737

In this matrix, the first row (except for the first element, 0.637) refers to
vegetative production of new sprouts, the diagonal elernents (0.637, 0.59, ...,
0.737) refer to the proportion of stems that survive and remain in the samg
size class, and the subdiagonal elements (0.107, ..., 0.277) refer to the propor-
Hon of stems that survive and increase in size to the next class. For example,
the fates of individuals in stage 2 are given by the numbers in the second
column of the matrix: on average, 53% of stems in stage 2 remain in the same
stage after a year, and 353% of them increase in size. The rest
{ 1-0.59-0.353 = 5.7% ) die. The first number in this column indicates that
on average each stem in this dass produces 0.033 sprouts. This means that
many stems do not produce any sprouts, and the total number of sprouts
produced by stage 2 stems, divided by the number of stems in this stage is,
on average, 0.033.

For stage 5, there is a single number for survival. All stage 5 stems that
survive remain as Stage 5 stems, because this is the stage for the largest
sterns. The largest stems happened to have the largest fecundity (an average
of 0.23 sprouts per stem).

As we mentioned above, Huenneke and Marks estimated three matrices
for three years. We calculated the above mean matrix as follows. For each
element, we calculated the arithmetic average of the corresponding matrix
clements from the three matrices {Huenneke and Marks discuss other
methods of combining data from three years). For example, the survival rate
of stems in stage 5 was estimated as

0.83 from 1979 to 1980
0.71 from 1980 to 1981
067 from 1981 to 1982

The average of these numbers is 0.737 (the number in the above matrix),
and their standard deviation is 0.068. We can calculate a standard deviation
for each element of the matrix, because we have three estimates {from three
years) for cach element. We can arrange the standard deviations we have
calcwdated in the form of & matrix, so that the standard deviations will corre-
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spond to the means in the above matrix. (Note that, as we discussed in the
previous chapter, we do this only for visual convenience; one cannot do
operations such as matrix multiplication with this matrix). The result is the
following matrix of standard deviations.

1 2 3 4 5
1 0.118 0.00% 0.629 0.046 0.08&7
2 0.066 0.139 0.0 0.0 0.0
3 0.0 0.188 0.071 0.0 0.0
& c.0 0.0 0.071 0.066 0.0..
5 ¢.0 0.0 0.0 0.078 0.068

Given a mean stage matrix and the corresponding standard deviations,
the calculations needed to make projections for a population are very similar
to the calculations we discussed in the previous chapter. As in the age-
structured models, we ako need to know the initial number of individuals in
each stage, arranged in the form of a vector (a column of numbers, one
number for each stage). To make a projection, we multiply a stage matrix
with this vector, as we did for the age-structured model of Helmeted
Honeyeater in the previous chapter. In a stochastic model, the matrix we use
for this projection is not the mean matrix, but a different malrix at every time
step. We select the elements of this matrix from random distributions with
the means and standard deviations given in the two matrices above, We then
make the matrix multiplication

N(e+1) = M) - N(D

——
where M(f) is the stage matrix for year !, and N{¥) is the vector of stage
abundances in year f .

5.5 Building stage-structured models

When biologists build stage-structured models for the species they study,
they often start by deciding how to divide the population into stages. In the
previous sections, we discussed models based on size of individuals. In a
stage-structured model, individuals in a population may be grouped into
classes based on characteristics other than size. This may be the physiolog-
ical, morphological, or developmental state of the individuals, or a
combination of one of these with size or weight. How the population is
divided into stages depends on several factors. The most important factor is
what the demography of the species depends on. If survival rates or fecun-
dities have nothing ko do with the size of an individual, then there is no point
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in building a size-structured model. Other facters may involve more
practical considerations such as the ease of identifying different life stages or
measuring other characteristics, and the amount of data available.

For an Insect species, 2 matrix model might group individuals into
developmental stages such as egg, larva, pupa, and adult. For a bizd species,
the stages might be juveniles {or fledglings), non-breeding adults, and
breeding adults.

The difference betweer age-based and stage-based matrix models is that
in a stage matrix, any element can be greater than zero (though stage
matrices with 2/f elements greater than zero are quite rare). The element at
the ith row and jth column of a stage matrix represents the rate of transition
from stage j to stage i. Rate of transition in general means the proportion of
individuals that were in stage j at time ¢ that "become” stage i individuals at
time #+1, or “conkribute to" the number of stage{ individuals al time 41
through reproduction. Thus, each element can describe reproduction, sur-
vival, or both,

Consider the following stage-structured model of Jack-in-the-pulpit
(Arisagma triphyllum), a perennial herb of deciduous forests (Bierzychudek
1982, Table 2: the matrix shows the transitions in the Falt Creek population
from 1977 (v 1978),

1 2 3 4 5 & 7
1 0 0 0.07 1.82 4.69 6.51 7.00
2 0.20 1.17 0.56¢ 0.4%9 0.47 0.47 0.47
3 0 0.10 0.60 0.06 0.06 0:13 9
4 0 0 0.04 0.68 O 0.07 ¢
5 0 0 .03 0.09 0.12 0O 0.14
6 0 0 g.01 ¢.¢% 0.2% 0.27 0,14
7 4 o 0.01 0.04 0.41 0.53 0.71

The stages are seeds (stage 1) plus six size classes based on leaf area
{stages 2 through 7). The first row of this matrix represents the fecundity
{seed production) of plants in different stages, and the first column gives the
survival rate of seeds. There is only one number in this column, thus sur-
viving seeds (20% of all seeds) become the smallest plants. In the second
column, we have two numbers, just as we did in the size-structured mode] of
the previous section. The second number {(.10} is the rate of transition from
stage 2 to stage 3. Note, however, that the rate of transition from stage 2 to
stage 2 is preater than 1.0 (unlike in the previous section’s model). Thus, it
cannot refer only to the proportion of stage 2 plants that remain as stage 2
plants {this would be less than or equal to 1.0). The reason it is greater than
L0 is that this number also includes vegetative reproduction by stage 2



Building stage-structured models 165

plants, When there is vegetative reproduction, the "offspring” (ie., the
recruits to the population) are plants rather than seeds. In this case these new
individuals enter the population in stage 2.

How about the third column? This column shows what happens to
stage 3 individuals. The first number in this column (0.07} is again the seed
production. The second number is, again, the sum of two numbers: vegeta-
tive reproduction by stage3 individuals, and the proportion of stage3
individuals that become stage 2 individuals in the next time step. Because
the stages are defined in terms of plant size, this means that some part of this
number {0.36) represents plants that become smaller in size. This is not
unusual in models based on size. This column shows that Jack-in-the-pulpit
may have very plastic growth. While some plants may decrease in size,
others (about 1% of stage 3 plants) may grow a lot, to reach the largest size
class in just one year.

5.5.1 Residence Times, Stable Distribution, and Reproductive
Value

Another property of stage-structured models that is different from those
with age structure concerns the average time individuals spend in each
stage. I an age-structured model this is the same for all age classes. If age is
defined in years, each individual spends exactly one year in each age class
{the only exception is the composite age class, if there is ong). In a stage-
structured model, individuals may spend different amounts of time in
different stages. The zverage time individuals spend in a stage is given by the
reciprocal of one minus the diagonal element:

. " . 1
Residence time in stage i = T - 5)
This assumes that the diagonal element does not include reproductive trans-
itians. If it does, the reproductive rate must be subtracted before the above
formula is used. If the diagonal element is zerq, then residence time is 1 time
step (as is the case for age-structured models). If the diagonal element is 0.5,
then this means that half the individuals remain in the same stage, and the
average residence ime becomes 2 time steps.

In the previous chapter on age-structured models, we discussed three
variables that are based on the Leslie matrix: the finite rate of increase (A},
the stable age distribution, and the reproductive value distribution. These
variables have the same meaning (and are calculated in the same way) for
stagestructured models. The stable stage distribution gives the proportion
of individuals in each stage that all initial distributions converge to, if given
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enough time (assuming no stochasticity, migration, or density dependence).
The finite rate of increase (A) is the rate with which the population grows
once it reaches the stable distribution. Repraductive value gives the number
of offspring an individual in 2 given stage will preduce, relative to thase
produced by an individual in the first stage.

5.5.2 Constraints

In an age-structured model, elements of the first row of the matrix represent
fecundities, and elements in the other rows represent survival rates. Most
stage-structured models have a similar characteristic. Usually, there is only
one (often, the First) stage that represents new recruits to the population
(such as stage 1, for "sprouts,” in the Speckled Alder model discussed above).
This means that only the first-row elements represent fecundities; elements
in the other rows are survival rates (either surviving and moving to another
stage or surviving in the same stage). If this is the case, the sum of all ele-
ments in a given column, excluding the first row, is the total proportion of
survivors from that stage, and cannot exceed 10. (Note that the
Jack-in-the-pulpit example provides an exception, which we will discuss
below.)

For example, in the Speckled Alder model, 66.7% of stage 4 plants in a
given year remain in the same size class in the following year, and 27.7%
grow to the next size class (stage 5). Thus, a total of 94.4% of stage 4 plants
survive and the rest (5.6%) die. Obviously, the total of these two ransitions
(stage 4-to-stage 4 and stage 4-to-stage 5) in this model must be less than or
equal to 100%. This is especially important in stochastic models, where sam-
pling the trapsition rates from random distributions may result in column
sums of above 1.0, even if the mean values were restricted to be between 0
and ).

In RAMAS Ecolab, you can specify whether you want to impose con-
straints on matrix elements to ensure that colurnn sums {excluding the first ,
row) are always between { and 1. As a defauit, the first row of the matrix is
assumed to represent reproduction, and all other rows are assumed to rep-
resentt survival rate. The program checks both the average matrix (specified
in Stage matrix under the Model menu) during editing, and each sampled
stage mairix during a simulation, to make sure that {1) all elements are non-
negalive, (2) for each column, all elements except the one in the first row add
up to less than or equal to 1.0. If the first check fails, negative elements are set
to zero. If the second check fails, the program makes automatic corrections,
by proportionally decreasing each nonzero element (except the first element)
of the column until the sum equals 1.
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In some cases, this constraint is invalid because there is recruitment to
stages other than the first one. This means that elements in rows other than
the first one also represent reproduction {perhaps vegetative reproduction),
and therefore should not be restricted to add up to 1.0 (for example, the
Jack-in-the-pulpit model). If this is the case, you must check the box labeled
Ignore constraints in General informatian. The program then will ignore the
second check discussed above; and any element, as well as any column sum,
may be above 1.0 (although all elements are still constrained to be nonnega-
tive). )

-

5.5.3 Adding Density Dependence

When we added various types of density dependence to our models in
Chapter 3, the models did not have age or stage structure. The population
growth was determined by the growth rate { R ) and its variation. We mod-
eled density dependence by making the average value of R a function of
abundance.

In the previous chapter, the only density dependence we added to an
age-structured model was of the ceiling type. This type of density depen-
dence is simple to add to any model, because it works in a similar way
whether there is age/stage structure or not. In either case, if population
abundance increases above the ceiling ( K}, then it is decreased back to K.
The only difference in the case of models with age or stage structure is to
decide which age or stage class abundance to decrease. One option is to
decrease abundances of al ages or stages proportionally (this is what
RAMAS Eqolab does). For example if K= 1,000, and N = 1,040, then abun-
dance in each age class or stage is decreased by 40/ 1040, or by 3.8%. As long
as the abundance is below the ceiling, the population grows (or dectines, or
fluctuates) accerding to the stage matrix and the standard deviations.

When density dependence is of the scramble or contest type (such as the
models in Section 3.8.1), then the moclel becomes more complicated. In this
case, we want the population’s average growth rate to be a function of
abundance. But in an age- or stage-structured model, the growth rate is not a
specific parameter; it is a result of various parameters (survivals, fecundities)
that make up the Leslie matrix or the stage matrix. Abundance is also not a
single variable; it is made up of the abundances of the different age classes or
stages, Because of multiple parameters {fecundities and survivals) that might
be affected by the abundance, and because of different measures of abun-
dance, there are many different ways of modeling density dependence inan
age- or stage-structured model. What we use in RAMAS EcoLab is one of the
simplest ways: the total abundance (of all ages/stages) affects all elements
of the stage matrix (fecundities and survivals) proportionally.



168  Chapler 5 Stage Structure

This density dependence is implemented in RAMAS EcoLab in such a
way that the result is the same as in the simpler density-dependent models
we discussed in Chapter 3. When the total abundance (of all ages/stages) is
equal to K (when the population is at its carrying capacity), then the growth
tate of the population (determined by the stage matrix) is 1.0; when the pop-
ulation is above its carrying capacity { N> K}, the growth rate becomes less
than 1.0, and when the population is below its carrying capacity ( N < K}, the
growth rate increases above 1.0. When the population abundance is so low
that the effects of density dependence are negligible, then the average
growth rate is equal to R,,,, the maximum rate of increase. R, is a required
parameter (in addition to K) if the density dependence is of the scramble or

contest type.

5.6 Sensitivity analysis

An important question that comes up in studies involving stage-structured
models is the contribution of each matrix element to the dynamics of the
population. In other words, how sensitively does the population’s future
depend on each element of the stage matrix. There may be several reasons
for asking this question. Two of the common reasons invelve planning of
future field research and evaluating management options.

5.6.1 Planning Field Research

Because of lack of sufficient data and measurement errors, parameters of a
model are often known as ranges instead of single estimates. For example,
we may know that the average juvenile survival is between 0,30 and 0.60,
and the average adult survival is between 0.85 and 0.9, but may not know
exactly what the averages are. In such cases, collecting more data makes
these ranges narrower, and consequently the results become more certain.
But if there are many parameters (lransitions among many stages) that are
known with such uncertainty, which should we try ta estimate better first?
Given that there is a cost associated with additional field work, it makes
sense {0 know whether our research money is better spent collecting data for,
say, juvenile survival or adult survival.

There ate three considerations in making such a decision. The first one is
the contribution of each parameter {each matrix element} to population
growth. There are various methods for making this calculation. Some of
these methods, such as “sensitivities” and “elasticities,” are based on the
effect of each vital rate on the eigenvalue of (finite rate of increase given by}
the stage matrix. These measures are reported in RAMAS Ecolab (click
"Display” in Stage matrlx, select "Sensitivities and elasticities," and scroll
down the window; press @) for additionat information). However, these



Seusitivity analysis 169

measures ignore variability, density dependence and the initial distribution
of individuals to stages (the program gives a waming about the relevant fac-
tors ignored by these measures). In addition, they focus on the deterministic
growth rate, rather than the mote relevant results such as the risk of
extinction.

Another method of calculating sensitivities involves calculating the
effect of each matrix element on the risk of extinetion or chance of recovery
of the population. This is similar to the sensitivity analysis described in
Exercise 2.4 (Chapter 2), in which we changed each parameter by plus.and
minus 10%, and checked the difference in the probability of andncrease with
the low and the high value of each parameter. The advantage of this method
is thet it incorporates all the factors in the model (including density depen-
dence and variability), and # focuses on probabilistic results (extinction risk
or recovery chance).

The second consideration in dediding wlich parameters are more
important to estimate more precisely is the uncertainty in each parameter.
For example, if we are very uncertain about juvenile survival (e.g., the esH-
mated range is 0.3 to 0.6} and reasonably certain about adult survival {(eg.,
the estimated range is 0.85 to 0.90), then it would make sense to spend more
time and money for additional data on juvenile survival. With the risk-based
method desaribed sbove, we can take this consideration into account by
changing each parameter to the lower and upper values of its estimated
range (ie., 0.3 and 0.6 for juvenile survival; 0.85 and 0.90 for adult survival),
instead of changing them plus and minus a fixed percentage. This way, a
parameter with a wider range will contribute more to uncertainty about the
risk of extinction {other things being equal).

With the deterministic methods {such as elasticities), it is not always
possible to take this consideration into account, because those methods are
based on linear approximations, which means they assume that growth rate
changes linearly with changes in vital vates. This is often a good approxima-
tion for small changes, but may not be valid for large ones (e.g. when a
survival rate is known as a wide range}.

Another disadvantage of the deterministic methods is that they are often
applied only to matrix elements. However, as we saw in the last chapter,
some matrix elements may have to be estimated as products of two vital
rates. For example, fecundity may be estimated as the product of matemity
{e.g., number of fledglings per adult) and survival of the juveniles until the
next census. If we want to decide whether the field work should focus on
maternity or juvenile survival (which may require different types of study
design), then the sensitivity of the population growth rate to their product
(fecundity) is not very useful. In an exercise below, we will explore the sen-
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sitivity of the risk of decline of a spotted owl population to uncertainties in
two different vital rates (each of which contribute to two stage matrix
eflements).

The third consideration is the relative cost of obtalning enough data for
different parameters. For exampte, if it requires much more money to reduce
the estimated range in, say, survival by a certain amount, than to reduce the
range in fecundity by the same amount, it makes sense to focus on fecundity
instead of survival. This consideration can be taken into account by first cal-
culating the expected decrease in uncertainty in each parameter with a fixed
amount of research muney, and then using these ranges in the analysis. For
example, we might guess that if we spend a certain amount of money
obtaining more data on juvenile survival, we might reduce its range from
{0.3-0.6] to [0.4-0.5], and with the same amount of money, we might reduce
the range in adult survivat from [0.85-0.90] to [0.85-0.89]. Obviously, such a
guess would be approximate at best. Also, once a certain amount of data is
collected, and new parameters are calculated, the relative contributions of
each parameter will change. At that point, we will need to recalculate our
strategy.

These considerations can also be extended to parameters other than
those in the stage matrix (average vital rates). Often, the variabilities of vifal
rates are known even more poorly than their averages. We may be uncertain
about the type of density dependence, or the number of stages to use in the
model. In addition, factors such as density dependence may have strong
effects on extinction rigsks. The risk-based sensitivity analysis that we first
explored in Exercise 2.4 is suitable for incorporating parameters of a model
other than the stage matrix elements. In each of these instances the sirategy is
the same: change mode! values or model structure to their alternatives and
measwre the importance of the change by the effect it has on the risks of
decline.

5.6.2 Evaluating Management Options

Another application of sensitivity analysis involves decisions about which
vital rates to focus on in management and conservation efforts. For example,
protecting nests of Loggerhead Sea Turtles may increase the average fecun-
dity, whereas installing escape hatches in shrimp traw] nets reduces the
mortality of larger turtles (see Exercise 5.3 below). The decision about which
conservation measure to invest in, is partly a question of whether it is better
to increase fecundity or survival,

The gvaluation of management options requires considerations similar to
those for planning field research. The first is the contribution of each vital
rate to the expected growth rale, and the chances of decline or recovery of
the population. Thus, a formal sensitivity analysis of a model can provide
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some insight into how best to manage a population. If competition, for
example, affects juveniles but juvenile survival contributes Little to the
growth rate or dedline risk, then controlling species that compete with juve-
niles is unlikely to be of much help.

The second consideration is how much each vital rate (or other model
parameter) can be changed with management. For some species, it may be
possible to increase fecundity by, say, 10%, but adult survival (being already
high) can perhaps be increased only by 5%. For some species, it may not be
possible or practical to inarease certain vital rates at all. Further complicating
this issue is the fact that each management or conservation action may affect
more than one vital rate, For example, protecting nest Jocations of a bird
species may improve fecundity, and to a lesser extent sirviva) rates, whereas
restoring dispersal habitat may improve dispersal rates, juvenile survival,
and to a lesser extent adult survival. In these cases, a parameter-by-
parameter analysis of sensitivity does not make sense, because the
parameters carnot be changed independently (or in isolation from others). It
is much better to do a whele-mode) sensitivity analysis and compare man-
agement options instead of single parameters. This can be done by
developing models for each management or conservation alternative. Each
mode) incorporates changes to all the parameters affected by that particular
alternative. The results of these models than can be compared to each other,
as well as lo a "no-action” scenario.

The third consideration is the relativa cost of each management action.
Even if, say, increasing adult survival by 5% results in a lower extinction risk
than increasing fecundity by 10%, if the formez is so expensive that, with the
available resources, it can be carried oui in fewer populations or for fewer
threatened species than the latter, then perhaps the latter is the better option.
in an exercise in Chapter 7, we will further explare the effect of cost on eval-
uating management options for an endangered bird species.

5.7 Additional topic

5.7.1 Estimation of Stage Matrix

Estimation of a stage matrix from datz i3 similar to that of a Leslie matnx,
with a few important differences.

The first step in determining the stage matrix is to decide on what the
stages are. This mostly depends on the life history of species studied. [f the
stages are defined on the basis of the size of organisms, then the number of
stages, and the size limits for each stage must also be decided. This may be a
complicated problem. On the one hand, itis necessary to define a sufficieatly
large number of stages so that the demographic characteristics of individuals
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within a given stage are similar. On the other hand, it is necessary to have a
sufficiently large number of individuals in each stage so that the transition
probabilities can be calculated with reasonable accuracy (see Vandermeer
1975 and Moloney 1986).

Once the stages are defined, the estimation of the stage matrix elements
depends on the type of data available. If individuals can be followed through
at least two time steps, and their siage at each time step recorded, these data
can be used in estimation by the following method, discussed by Caswell
(1989). At each time step, individuals are identified by their stage. Since each
individual's stage in the previous time step is also known, it can be assigned
to a particular cell in the table below. The ruambers in the cells represent the
number of individuals making such a transition. Suppose such tallying for a
particular time step yielded the following hypothetical table,

At time t-1, individuals that were in stage:

1 2 3 4
At time f, 1 3
individuals | 2 4 15
that arenow | 3 8 12
in stage: 4 1 4
Deaths 3 6 12
Total 10 30 0 16

According to this example, out of the 10 individuals that were in stage 1
last year, 3 of them are still in stage 1 this year, 4 of them are now in stage 2
and the remaining 3 died. After all the individuals are thus tallied, non-
repruductive transitions are calcutated by dividing each stage-by-stage cell
by the column total {which includes deaths). For example, 4 out of 10 in the
above example corresponds to a transition rate of 0.4 from stage 1 o stage 2
per year. This calculation yields a four-by-four matrix. For this case, we get

030 0 0 0

040 050 O 0
0 027 060 O
0 003 015 023

Note that if there are no individuals in a particular stage at time ¢-1, trans-
ition rajes fram that stage (ie., the elements in the corresponding column of
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the stage matrix) cannot be estimated. In such a case, data from several time
steps must be used to ensure that all columns have at least one positive ele-
ment.

The calculation so far is based on following individuals, which allows
estimation of transition from one stage to another. But a stage matrix also
includes reproduction. To estimate fecundities wilh the same method, we
need data on the number of new individuals added to each stage. Often new
individuals are added only to the first stage (such as "seeds” or "fledglings™),
but in some models they may be added to more than one stage (such as
“small juveniles” and "large juveniles"}). In addition to the numpber of such
new individuals, we nzed data on the stage their parents belonged to. If we
have such data, we can construct a table comparable to the one above. I this
table, the number of recruits to stage i that are born of parents in stage j are
recorded in cell i;j (e, row i, column j). For this example, suppose there
were 40 recruits (to stage 1) at ime #, all produced by parents who were in
stage 4 at time {-1. Thus, all reproduction in this case is recorded in row 1
column 4 of the matrix. The number of offspring (40) is divided by the
number of individuals in stage 4 at time -1 (in this case, 16). The matrix of
reproductive transition rates is therefore

0 0 9 23
0 0 0 0
0 0 0 a
0 0 0 a

The nonreproductive transitions and reproductive transitions are then
added together element-wise to obtain the following stage matrix for time
#-1
030 0 0 250
040 050 ¢ 0
0 027 060 O
0 003 015 0325

There will be a different matrix estimated for each time step, and means and
standard deviations can be estimated for each matrix element. If the sample
sizes differ greatly for different time steps, it might be necessary to calculate
weighted averages for the transition probabilities (see Additional topics in
Chapter 4).

Another way of estimating parameters for a stage matrix involves cen-
susing the population at several time steps. At each census, all individuals
are counted, and classified according to stage. This method does not require
following each individual, but requires more years of data. It involves a
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multiple regression analysis for each stage (see Additional topics in
Chapter 4 for multiple regression for age 0). For more information on
methods of estimating the stage matrix, see Caswell (1989).

5.8 Exercises

The use of RAMAS EcoLab to build a stage-structured model is very similar
to its use for age-structured models. For both, we use the same program
{"Age and Stage Structure”). The main differences are: (1) in Stage malrix
and Siandard deviation malrix, any number can be greater than zero, and
{2} in General Information, the option Ignore constrainls may be ¢ither
checked or unchecked (clear), depending on the model {see Section 5.5.2
above}.

Exercise 5.1: Reverse Transttons

The diagram for a stage structured model was provided in Figure 5.3. Con-
sider the situation in which you cbserve an individual decrease in size
between one census and the next. The change in size is sufficient that the
individuals should be classified into a smaller size class. Such events may
result from herbivory, or wind damage (in plants), or from loss of condition
in animals. This would require new arrows poing (say) from targe to
medium, or from medium to small. Assume that transitions of this kind were
observed in Alder. Assume that 5% of all individuals in stege 3 were classi-
fied in the next census as stage 2 instead of stage 3 {in other words, instead of
staying in the same stage, they moved to a smaller stage). The proportion
that became larger did not change. Make the same assumptions for individ-
uals in stages4 and 5. Rewrite the matrix for Alder in Section54,
incorporating these new rates.

Exercise 5.2: Modeling a Perennial Plant

The following matrix is a stage-structured mode] of the Teasel (Dipsacus syi-
vestris), which is a perennial plant that is found mostly in disturbed habitats
(Wemmner and Caswell 1977, Caswell 1989). The time step of the model is one
year, and the stages in the model are

{1) first-year dormant seeds (51)

{2) second-year dormant seeds (52)

{3) small rosettes (R1}

(4) medium rosettes (R2)

(5} large rosettes (R3)

{6} flowering plants (FP)
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81 &2 Rl R2 R3 FP
Bl 0 o 0 0 o 322.380
82 0.966 0 0 0 0 ¢.000
R1 0.013 0.010 G.125 © 0 3.448
R2 0.007 @ 0.125 D0.238 O 30.170
R3 0.008 0 0 0.245 0.167 0.862
FP o 0 0 0.023  0.750 0.000

Notice that there are transitions from flowering plants to.first-year dor-
martt seeds, and all three classes of vegetative rosettes. In this case, these
transitions do not represent vegetative reproduction, but the fact that seeds
produced by flowering plants in one year may germinate to produce rosettes
in the following year. This requires a transition from flowering plants to
rosettes. (A transition from flowering plants to seeds, and seeds to rosettes
would take two years instead of one year.) Because of this characteristic of
the modet, the constraint of keeping column sums less than or equal to 1.0
does not apply. Thus, in General Information, Ignore constraints must be
checked. This matrix was estimated from an experimental study in which
each field in the study area was seeded with 3,900 teasel seads in the winter.
Thus the initial population consisted of 3,900 individuals (dormant seeds) in
the first stage, and none in other stages. The experiment lasted for 5 years.
We will use this as the simulation duration. This is appropriate because this
species is oflen found in ephemeral habitats.

Step 1. Draw a diagram of this model.

Step 2. Enter the model into RAMAS EcoLab. In Stage matrix, click
"Display"” and select each type of graph, to answer the following questions.
(a) What is the most abundant stage at the stable stage distribution?

(b) Which stage has the highest reproductive value?

(c) On average, in which stage do individuals spend the most ime?

{d) Is the initial distribution similar to the stable distribution?

{e) What is the annual rate of increase?

(D Calculate the number of individuals you would expect in the population
in one year and in two years, based only on this growth rate, and the inilial
abundance of 3,900.

Step 3. Run a deterministic simulation for 5 years. What is the popula-
tion size in year 22 How does it compare with your prediction (in Step 2)
based only on the growth rate? Why is there a difference?

Step 4. We do not know the variation in stage matrix elemenits, 50 in this
exercise we will assume that there is only demographic stochasticity.
Remember that demographic stochasticity is especially important in small
populations. Do you think that this model will give very different results
when you add demographic stochasticity?
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Step 5. Run a simulation {using demographic stochasticity) with 1,000
replications. How do population projections compare to the deterministic
projection?

Step 6. What is the probability that this population will exceed 20,000
individuals (including dormant seeds) anytime within the next 3 years?

Exercise 5.3: Sea Turtle Conservation

Loggerhead Sea Turtle (Caretta caretta) is a threatened marine reptile. It is a
lung-lived iteroparous species. Determining the age of Loggerhead Sea Tur-
tles is very difficult due to their fast juvenile growth and their brittle shell
that cannot hold marking tags. The following stage matrix is from a study by
Crowder et al. (1994). In this matrix, the time step is one year, and the stages
are defined as follows:

(1) hatchlings
(2) small juveniles
(3) large juveniles
(4) subadults
(5) adults
1 2 3 4 5
1 0 0 0 4.665 61.896
2 0,675 G.703 4] . 1} a
3 0 0.047 0.657 4] V]
4 o 0 0.01% {4.682 0
5 0 0 0 0.061 0.8091

In this matrix, the two numbers in the first row represent the fecundity of
subadulls and adults. The diagonal elements (for example, 0.703 for small
juveniles) specify the proportion of the individuals in a stage this year that
will be in the same stage in the following year. The subdiagonal elements
specify the proportion of individuals in that stage that grow to the next stage
in the following year {for example, 4. 7% of the small juveniles become large
juveniles each year). The sum of diagonal and subdiagonal elements give the
total rate of survival for individuals in that stage (e.g., 75% of small juveniles
survive per year). Thus, in General Information, Ignore constraints must be
unchecked (which is the default). We will make the following assumptions
about this model:

{1) The inital abundance is 100,000 turtles, distributed zmong stages as
30,000 hatchlings, 50,000 small juveniles, 16,000 large juveniles, and 2,000
subadults (no adults).
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{2) The standard deviation of each vital rate {each element of the matrix) is
10% of its mean value.,

{3) The density dependence is Ceiling type, and the carrying capacity is
500,000 turtles.
Step 1, Enter the model into RAMAS EcoLab, and save itin a file. Runa
simulation (with both demographic and environmental stochasticity) for 30
years, and report the following:

(a) Probability of increasing to more than 200,000 turtles sometime in

the next 30 years. -
{b) Probability of falling below 20,000 turtles sometime in the next 30
years.

1t might be difficult to read the precise value of the probability from the
screen plot. See Exercise 2.4 for an example of getting the exact probabilify
value.

Step 2. One of the threats the Loggerhead Sea Turtle faces is accidental
capture and drowmning in shrimp trawls. One way to prevent these accidents
is to install escape hatches in shrimp trawl nets. These are called turtle
exclusion devices (TED); they can drastically reduce the mortality of larger
turtles (i.e, large juveniles, subadults, and adults). The following matrix
shows what might happen to the stage matrix if TEDs were widely installed
in existing traw] nets.

1 2 3 4 5
1 1 0 0 S5.448 69.39
2 a.875 0.703 0 0 0
3 it 0.047 0.767 a 0
4 0 0 0.022 ¢.765 0
5 g 0 0 0.0¢c8 0.87¢6

The numbess in bold show the vital rates that are assumed to increase as
a result of TEDs. Both the proportion remaining in the stage and the propor-
tion growing to the next stage are higher for the three stages affected. In
additon, the fecundities are slightly higher. This is because the fecundities
give the number of hatchlings this year, per subadult/adult turtle in the
previous year. Thus fecundities incorporate both fertility, and the survival
rate of subadults and adults. If subadults and adults survive better, then
fecundity is also higher.

Enter the model with TEDs into RAMAS EcoLab, and save it in a dif-
ferent file. Keep all other parameters (including the standard deviations) the
same. Repeat the simulation as in Step 1, and report the following:
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(a) Probability of increasing over 200,000 turtles sometime in the next 30
years

(b) Probability of falling below 20,000 turtles sometime in the next 30
years

How would TEDs change the prospects for this species?

Step 3. Another important source of mortality for most marine turtles
occurs in the very beginning of their lives, between the time the eggs are laid
in a nest in the beach, and the time they hatch and are able to reach a safe
distance into the sea. Most turtle conservation efforts in the past have con-
centrated on enhancing egg survival by protecting nests on beaches ar
removing eggs to protected hatcheries {Crowder et al. 1994). We will assurme
that the effect of such an effort is an increase in the fecundity values.

Load the first turtle model you created (without the effect of TEDs}. Your
goal is to find out how much the fecundities must increase to give the same
probability of increasing over 200,000 turtles as the model with TEDs (in
Step 2). Increase the two fecundities by the same proportion {(any propor-
tion), and run a simulation (do not change the standard deviations). Check
the probability of increasing over 200,000 turtles sometime in the next 30
years. If it is less than what you found in Step 2, increase them some more
{again, in proportion). If it is more, decrease the fecundities. You don't need
to get exactly the same answer. If the two probabilities (with TEDs and with
beach protection) are within 0.1 of each other, you can stop.

How much must the beach protection increase fecundity in order to offer
the same protection to turtles as offered by TEDs? {In other words, What is
the ratio of the final fecundity to the unchanged fecundity?) Which method
seems more effective?

Exercise 5.4: Sensitivity Analysis

Northern Spotted Owl {Strix cccidentalis cauring) is a threatened species
inhabiting the old-growth forests of the northwestern United States. Demo-
graphic studies on various populations of this subspecies have been
surnmarized by Burnham et al. (1996). The following stage-structured model
is based on data from one of these studies (in Willow Creek study area in
northwest Califomia; “CAL” in Burmham et al. 1996).

This model assumes 2 birth-pulse population and a past-reproductive
census (see the section on "Estimating a Leslie matrix from a Life table” in the
previous chapter). [n this model, there are three stages: juveniles are newly
fledged owls, subadults are one year old, and adults are all older owls. The
following are the model parameters.
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5;: juvenile survival rate; the propartion of fledglings that survive to
become one-year old subadults

5, : subadult survival rate, proportion of one-year old subadult owls
that become two-year olds

5, : adult survival rate, propartion of older owls that survive one year

m, m, and m, : maternities (number of fledglings produced per owl} of
juveniles, subadults, and adutts, respectively

Note that because of the assumption of post-reproductive census, m,
refers to the number of fledglings produced by an ow! that has fledged in the
previous census, almast a year aga. Thus ng, is the maternity of owls that are
almost 12 months old, and §) is the survival of fledglings to become sub-
adults. The product §;-m, is the number of fledglings produced by each
juvenile that was counted in the last year's census (see Figure 47 in the

previous chapter). Thus, the stage matrix is

Sm S,m, S,-m,
5, o 0
0 s, 5,

The following table gives the values of these parameters for the study area
"CAL," together with their standard error (Burntham et al. 1996). Standard
error (5.E.) is a2 measure of the measurement or sampling error associated
with the estirnation of each parameter.

m, e, m, 5 S, S,
Mean 0094 0205 033 033 0868 0868
SE. 0.067 0077 0.02¢ 043 0012 0012

In this exercise, we will yse the standard errors as measures of parameter
uncertainty (i.e., measurement error). In addition to this uncertainty due to
measurement errors, the parameters also have natural variability due to
environmenial fluctuations. We will model environmental stochasticity with
the following standard deviations:

0.0294 0.0437 0.0711
00190 0 0
0 0.0499 0.0499

The method of caleulating the standard deviations for this model is based on
Akgakaya and Raphael (1998).
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In this exercise, we will perform a sensitivity analysis, with the aim of
deciding on which parameters to concentrate in future demographic studies.
We will do this by analyzing how much the uncertainty in each survival rate
contributes to the uncertainty of the results. In other words, which parame-
ters are important in terms of the reducing the uncertainty m the model?

Step 1. In General Information of RAMAS Ecolab ("Age and Stage
Structure"), specify 1,000 replications and 50 Hime steps (years), Also, make
sure that (1) "Use demographic stochasticity” is checked and (2) "Ignore con-
straints” is clear {not checked). In Stages name three stages as “Juveniles,”
“Subadults,” and "Adults” In Standard devlation malrix, enter the
standard devialions given above. In Inltlal abundances, enter 46, 41, and
313 for juveniles, subadults and adults, respectively.

Step 2. Calculate the stage matrix given sbove using the average esti-
mates of the parameters, enter in Stage matrix and save in a file (e.g., named
"NSQaverage").

Step 3. Creale four additional models, with plus or minus 1 standard
error of juvenile and adult survivai. The four models will differ only in their
stage matrix. For each model, calcutate the stage matrix as described below
(note that each survival contribuies to two elements of the stage matrix). Do
not change the mean maternity values.

(1) Juvenile survival = average minus one standard ermor, For all other
parameters, use the average values.

{2) Juvenile survival = average plus one standard error. For all other
parameters, use the average values.

(3) Adull survival = average minus onc standard error. For all other
parameters, use the average values.

{4) Adult survival = average pius one standard error. Far all other param-
eters, use the average values,

Save each model in a separate file, with descriptive names (such as "HighA-
dultSury,” "LowJuvSury,” etc.).

Step 4. Run each model. Click the "text” button in the upper-left corner of
the Simulation window to complete the simulations faster. Record the risk of
falling to or below 5 individuals (i.e., risk of decline at threshold = 50) in the
table below. Calculate the difference in risk with the low and high value of
each parameter.

Probability of declining to 50

Parameter: with low value | with high value difference

Juvenile survival

Aduli survival
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Step 5. Which parameter needs to be estimated more precisely? Open
the file you have saved in Step 2, with average values of all parameters. In
Stage matrlx, click first "Display,” then "Sensitivities and elasticities,” seroll
down to the elasticity matrix? "Elasticities” and "Sensitivities" are measures
of the contribution that each matrix element makes toward the dominant
eigenvalue of the stage matcix (see Section 5.6). According to this result,
which survival rate is more important? Is there a difference in the results of
risk-based sensitivity analysis you performed, and the deterministic elastici-
ties? If so, what might be the reason(s) for the difference?

o

5.9 Further reading

Caswell, H. 1989. Matrix Population Models: Construction, Analysis, and Inter-
pretation. Sinaver Associates, Sunderland, Massachusetts.

Crowder, L. B, D. T. Crouse, 5. 5. Heppell, T. H. Martin, 1994. Predicting the
impact of turtle excluder devices on loggerhead sea turtle populations.
Ecological Applications 4:437-445.

Lefkovitch, L. P. 1965. The study of population growth in organisms
grouped by stages. Biometrics 21:1-18.

Usher, M. B. 1966. A matrix approach to the management of renewable
resources, with spedal reference to selection forests. fournal of Applied
Ecology 3:355-367.






Chapter 6
Metapopulations

and Spatial Structure

6.1 Introduction

In the previous chapters, we developed models with varying degrees of
complexity. in developing each of these muodels, we focused on the dynamics
of a single pupulation. This is often sufficient as many of our questions con-
cern populations within confined areas, such as the extinction risk of the
Helmeted Honeyeater in a single nature reserve (Chapter 4), management of
the Brook Trout fishery in a river (Chapter 4), and the growth of the Muskox
population on an island (Chapter 1}. In other cases, the population may live
in a large aren, but the relative uniformity of its habitat suggests the use of a
single population model, as in the case of the Loggerhead Sea Turtle

183
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(Chapter5). But often, species exist in a number of populations that are
either isolated from one another or have limited exchange of individuals.
Such a collection of interacting populations of the same species is called a
metapopuiation. Each distinct population in a metapopulation may be
referred to as a subpopulation, a local population, or simply as a population,

In developing models for species that live in more than one population,
we need lo address the interaction between these papulations. For example,
populations of Mountain Sheep (Ovis canadensis) in southern California
inhabit mountain "istands” in a desert (Figure 6.1). These populations live in
15 of these mountain ranges, which are separated by 6 to 20 km of unsuitable
desert habitat (Bleich et al. 1990). Mountain Sheep cannot live for long in the
desert, but they can migrate through it. Bleich et al. (1990) documented
movement of Mountain Sheep between 11 pairs of these mountain ranges,
and concluded that the movement of sheep among mountain patches was
important for their conservation for both genetic and ecological reasons.

Populations of many species like the Mountain Sheep occupy patches of
high-quality habitat and use the intervening habitat only for movement fzom
one palch to another. Metapopulations both oceur naturally as a result of
spatial heterogeneity, and are created as a result of human actions. We will
discuss these two factors next.

50 km

Figure 6.1. Populetions of Mountain Sheep in Soutnern Califomia.
Shaded areas indicats mountain ranges with resident populations,
arrows indicate documnented intermountain movements; the dotted
Ines show fenced highways (after Bleich i al. 1990).
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6.1.1 Spatial Heterogeneity

Spatial heterogeneity refers to the nonuniform distribution or occurrence of
environmental variables and evenis in different parts of the landscape. Many
spedes naturally exist as metapopulations because the environmental factors
necessary for their survival occur in patches. For example, Giant Kelp (M-
crocystis pyrifera) in the coaslal waters off southern California grow in "forest”
pakches determined mostly by the properties of the substrate on the ocean
floar, exposure to wave action, and water depth {Burgman and Gerard 1989).
There are numerous other examples of patchy distribulion of habitats; you
may think of ponds in a forest, islands in an archipelago, or molintain ranges
ina desert. .

One of the assumptions we made with the first set of models (Chapter 1)
is that all individuals, no matter where they occur, experience the same
changes in the environment and the same chances of surviving and repro-
ducing. This assumption is not valid for most metapopulations. In addition
io the spatial variation in environmental factors (such as soil conditions,
elevation, vegetation, water depth, etc.), many of the extreme events we dis-
cussed in Chapter2 (such as fires, droughis, and floods) affect different
populations of 2 metapopulation to varying degrees. The changes caused by
such events are usually not uniform throughout the landscape, and how an
individual fares will depend on where it happens to be. For example, fires
often burn in mosaics that depend on fuel loads, moisture conditions, land-
scape characteristics, and prevailing winds. Different parts of the habitat
burn at different intensities and with different frequencies, and some parls
escape fire altogether.

Another example of the spatial heterogeneity of envirenmental factors is
the disturbance pattern that characierizes the dynamics of Furbish's Louse-
wort (Pedicularis furbishiac), an endangered plant endemic to northern Maine
(USA) and adjacent New Brunswick {Canada}. It was assumed to be extinct
for 30 years until its rediscovery in 1976 {(Menges 19%0). Ii is now known to
exist in 28 populations along a 140-mile siretch of the St. John Rivér.

The dynamics of the Furbish’s Lousewort metapopulation are character-
ized by frequent extinctions of its populations caused by [oca! disturbances
such as ice scour and bank slumping, which are distributed patchily
{(Menges 1990). These disturbances also seem to be essential for the species’
survival since they prevent tree and shrub establishment (events which
would depress Lousewort populations}. As a result, individual populations
are shorl-lived, with fairty rapid increases followed by catasirophic losses.
This natural disturbance pattern makes the viability of the species dependent
on dispersal and establishment of new populations (Menges and Gawler
1986; Menges 1990).
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6.1.2 Habitat Loss and Fragmentation

Loss of habitat is probably the most important cause of species extinction in
recent times. Habitat loss often results not only in an overall decrease in the
amount of habitat, but also in discontinuities in the distribution of the
remaining habitat. Discontinuities can be created by opening land to agei-
culture, and by construction of buildings, dams, roads, power lines, and
utility corridors. The result is the fragmentation of the original habitat that
now exists into disjunct patches. Any population that inhabited the original
habitat will now be reduced to a smaller total size and would be divided into
multiple populations. Further fragmentation results in a decrease in the
average size of habitat patches and makes them more isolabed.

Other effects of fragmentation are manifested through increased edge
effects, When habitat patches decrease in size through fragmentation, the
populations inhabiting them become more vulnerable to adverse environ-
mental conditions that are prevalent at the edges of the habitat patch, but not
in its interior. For a forest patch embedded in an agricultural or a disturbed
landscape, these environmental changes might include increased light and
temperature or decreased humidity. They might also include biotic factors,

An example for biotic factors is the Brown-headed Cowbird (Molothrus
ater) that parasitizes nests of forest-dwelling bird species. Cowbirds are more
abundant at forest edges. They lay their eggs in the nests of ather birds, who
then raise cowbirds instead of their own young. In a study of forest frag-
mentation in the Ainerican Midwest, Robinson et al. (1995) found that
parasitisin by cowbirds wes higher in more fragmented landscapes. This is
because the proportion of forest that is away from the edges is lower in a
forest that is made up of smaller patches. For example, if the interior of a
forest that was not subject to edge effects such as cowbird parasitism began
at 250 m away from the forest edge, then a hypothelical, circular patch of
forest wilh a total area of S km® would have 64% interior forest habitat
(Figure 62).

A patch with the same size edge but with an area of 1 km® would have
31% interior fores] habitat, and a patch with 0.5 ki’ |otal area would have
only 14% interior forest habitat. A 5 km? patch may seem to have 10 times the
habitat as a 0.5 km’ patch, but considering edge effects, it might actually
have 46 times maore habitat [ (5 x 0.64)/(0.5 x0.14) = 45.7 |. Thus a landscape
that has many small patches of habitat may have much less interior habitat
thar a similar-sized landscape with larger patches, because of edge effects. [f
the patches have shapes different from a perfect circle, or if the edge effects
can penetrate a greater distance into the forest, this ratio would be even
higher.
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Figure 6.2, Edge effects: circular patches with an edge of 250 m, and
argas ol 5, 1, and 0.5 km®. The perceniages represant the ratio of the
area of interior lorest habilat {darker shadad regions) to the total patch
area.

6.1.3 Island Biogeography

Island biogeography is concerned with the patterns of species richness on
oceanic islands. One of these pattems is related to the size of the istand.
Larger islands often have more species than smaller islands. The relationship
between the size of an island and the number of species it has is described by
a species—area curve, which is often plotted on a graph with both axes in
logarithms, The equilibrium theory of island biogeography (MacAxthur and
Wilson 1967} attempts to explain this pattern based on two processes:
extinction and colonization. According to this theory, rate of extinction
increases as more species are added to an island (solid line in Figure 6.3).
Note that extinction rate here refers 1o the number of species that become
extinct per unil time, and not to the extinction risk of any particular species.
Assuming the extinction risks are conslant, the number of spacies bacoming
extinct shoutd increase with increased number of species on the island.
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The other process, colonization of the island by new spedes, is expected
to decrease as the number of species on the island increases (dashed line in
Figure 6.3). Assuming that the rate of immigration is constant, when the
number of species already present on the island is higher, fewer of the
immigrants will belong to new species. Thus the rate of colonization will
decrease, and will reach zero when all the species on the mainland are
present on the island. The equilibrium theory of island biogeography views
the number of species on an island as an equilibrium between these two
processes. Thus the island in Figure 6.3 has § number of species at equilib-
rium. According to the theory, the rate of extinction of species is alse
determined by the size of the island; larger islands are expected to have
lower rates of extinction (two solid lines in Figure 6.4). Larger islands may
have larger numbers of individuals per species, causing a lower risk of
extinction. If several species have lower risk of extinction on larger islands,
those islands would, in the long term, have a larger number of spacies,

The other process, colonization of the island by new species, is expected
to be a function of the distance of the island to the mainland. The number of
species immigrating per unit time to islands close to the mainland is
expected to be higher than the number immigrating to islands farther away
(two dashed lines in Figure 6.4). The balance between exinction and coloni-
zation determines the equilibrium number of species on distant and large

islands [ Sy, ), distant and small islands { 5g ), close and large islands { 53 ),

and close and small islands { 5 ).

The pattern of increased number of species on larger istands has also
been observed for habitat islands, i.e., patches of one type of habitat (say,
forest) surrounded by another (e.g., agricultural areas). There are explana-
tions for these patterns other than the equilibrium theory discussed above.
For example, larger islands often have a greater variety of habitats, which
contributes to the larger number of species.

Whether the equilibrium theory of island biogeography correctly deter-
mines the number of species on islands has been the subject of debate {see
Burgman et al. 1988 for a review). Another concern from a conservation
peint of view is that the theory cannot be used to determine which species
are likely to become extinct. Extinction risk of a species is determined to a
large extent by factors other than those in the theory. In earlier chapters we
examined some of these factors, such as stochasticity and density depen-
dence. In the rest of this chapter, we will discuss factors that are important
determinants of extinction risk at the metapopulation level.
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6.2 Metapopulation dynamics

In previous chapters, we developed several types of models that aimed at
evaluating the risk of extinction of a single population. Because many species
live in more than one population, one of three things might happen after a
single population becomes extinct, First, the population may be colonized by
individuals dispersing from extant populations of the same species (extan]
means “surviving,” or "not extingt”). Second, the population may remain
extinct; in other words, the habital patch where the population used to live
remains unoccupied by that species. This might happen if the population
lived in a remote paich of habitat isplated from other habitat patches occu-
pied by the species. Third, the population may be recolonized through
human intervention—hby the reintroduction of the species to its former
habitat. -

The type of population dynamics that is characterized by frequent local
extinctions and recolonizalions is a natural pattern for many species {e.g.,
Andrewartha and Birch 1954). Thus, even though each local population may
exist for only a short period of ime, the metapopulation may persist for a
long period, with a constanlly changing paltern of occupancy of local pop-
ulations in the metapopulation as patches “blink" off and on.

This dynamic complexity is further enriched by differences among the
populations in terms of their carrying capacities, growth rates, and the mag-
nitudes of environmenijal fluctuations they experience. In some cases these
differences may be very important for the overall dynamics of the
metapopulation. For example, big differences in productivity of populations
may lead to sinks, which are populalions that receive migrants but seldom
praduce any offspring or send emigranls to other populations.

When we want to evaluate the extinction risk of a species that exists in
multiple populations, it is necessary to use a metapopulation approach, This
is because in mos] cases the risk of exiinclion of the species cannot be
deduced from the extinction risks of ils constituent populations. The extinc-
tion risk of a single population is delermined by factors such as population
size, life history parameters (fecundity, survivorship, density dependence),
and demographic and envirorunental stochasticity lhat cause variation in
these parameters. The extinction risk of a metapapulalion or a species
depends not only on the factors that affect the extinction risk of each of its
populations, bul also on elher factors that characterize intexactions among
these populations. The additional faclors that operate at the metapopulation
or species level include the number and geographic configuration of habitat
palches that are inhabited by local populations, the similarity of the envi-
ronmenlal conditions that the populations experience, and dispersal among
populalions that may lead lo recolonization of locally exlinct patches. We
will discuss these factors next.
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6.2.1 Geographic Configuration

When a species lives in several patches, much depends on exactly where
those patches are, i.e., on their spatial arrangement. This determines the dis-
persal rates, as well as the similarity of the environmental conditions in
neighboring paiches (we will discuss these factors in the next two sections),

Metapopulation models assume that some parts of the landscape are
habitat patches (that are, or at least can potentially be, occupied by popula-
tions), and the remainder is unsuitable habitat. In some cases, the species in
question has a specific habitat requirement that has sharp boundaties,
making patch identification quite straightforward. Most examples of patchy
habitats we discussed above (ponds in a forest, islands in an archipelago,
woods in an agricultural landscape, or mountaintops in a desert) fit this
category.

In other cases, habitat quality varies on a continuous scale and designa-
tion of areas as habitat and nonhabitat may be somewhat arbitrary. Or, the
boundaries may not be clearcut for human observers. What seems to be a
homogeneous landscape may be perceived as a patchy and fragmented hab-
itat by the species living there. If the suitability of habitat for a species
depends on more than one factor, and some of these factors are not easily
observable, the habitat patchiness we observe may differ from the patchiness
from 2 species’ point of view. An example is the Helmeted Honeyeater (Li-
chenostomus melanops cassidix) that we discussed in Chapter 4. The habitat
requirements of this species include the presence or absence of surface water,
the density of Eucalypius stems, and the amount of decorticating bark on
these stems (Pearce et al. 1994). In such cases, the information about habitat
requirements may be combined by computer maps of each required habitat
characteristic, using geographic information systems (Akgakaya 1994). This
allows us, in effect, to see the habitat paiches as perceived by the species.
Alkgakaya et al. (1995) used this approach to model a metapopulation of
Helmeted Honeyeaters.

6.2.2 Spatial Correlation of Environmental Variation

Spatial correlation refers to the similarity of environmental fluctuations in
different parts of the landscape—and, in the case of a metapopulation, in
different populations. By “similarity," we mean the synchrony of these fluc-
tuations rather than their magnitude. For example a habitat patch may
receive much less rain than another, but some years both may receive above
normal rainfall, and in other years both may receive below-normal rainfall. If
the patches experlence the same sequence of wetter-than-usual and drier-
than-usual years, this means that the rainfall is spatially correlated, even
though some parts of the landscape may get much more rain than others.
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The importance of this factor can best be described by a simple example.
Suppose that you need ko evaluate the extinction risk of a metapopulation
that consists of two populations. You have modeled each of these popula-
tions separalely, and know that each has a 10% risk of becoming extinct in
the next 100 years. You also know that these populations are in such
different places fhat the environmental fluctuations they experience are not
correlated. If their risks of extinction are mainly due to environmental fluc-
tuations, we can assume that these risks are independent of each other.
"Independeni” means that if one population becomes extinct, the other may
or may nof become extinct in the same time step; in other words, extinction
of one gives no information about the fate of the other.

Now we want to know the risk of extinction of the metapopulation, ie.,
the risk that both populations become extinct within 100 years. To calculate
this, we use a simple rule of probability, which says that when two events
are independent, the joint probability that both will happen is the product of
their consfifuent probabilities. Since each probability is 0.1, the joinf proba-
bility is 0.1x0.1=0.01, so the risk that the metapopulafion will become
extinct in 100 years is 1%.

Now assume that the populations are in the same environmenti, and we
know that if one becomes extinct, the other will as well. In ofher words, their
dynamics are correlated, and their risks of extinction are fully dependent. In
this case, the risk that both populations will become extinet is the same as the
risk thaf one will become extinct (because they only become extinct
together}. So, the risk of extinction of the metapopulation is 10%, or 10 times
higher than in the previous case of uncorrelated {independent) pepulation
fiuctuations.

This aspect of metapopulation dynamics was first peinted out by den
Boer (1968), who noted that when fluctuations were spread over a number of
separafe populations, the overall risk faced by the metapopulation was
reduced. Jf the fluctuations in the environment are at least partially inde-
pendent, so will be the fluctuations in populaéon growth rates. Thus it will
be less likely that all populations become extinct af the same time, compared
to a case where the fluctuations are synchronous.

Correlation among the fluctuations of populations is often a function of
the distance among them. If two populations are close to each other geo-
graphically, they will experience relatively similar environmental patterns,
such as fhe same sequence of years with good and bad weather. This may
result in a high correlation between the vital rates of the two populations.
For example, Thomas {1991) found that Silver-studded Butterfly {Plebejus
argus) populations fhat were geographically close tended to fluctuate in syn-
chrony, whereas populations further apart (>600m between midpoints)
fluctuated independently of one another. Similarly, Baars and van Dijk
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{1984) found that in two carabid beetles, Pterostichus versicolor and Calathus
melanecephalus, the significance of rank correlation between fluctuations
declined with increasing distance between sites.

When modeling metapopulations, the correlation among population
fluctuations may be modeled as a function of the distance among habitat
patches. This can be done by sampling the growth rates of each population
from random distributions that are correlated, and the degree of correlation
may be based on the distance among populations. (This s quite tedious to de
manually, but very simple lo do with a computer program; see Exercise 6.1.)
This approach was used by LaHaye et al. (1994) to model chrrelated meta-
population dynamics of the California spotied owl (Figure 6.5; see the
sample file OwLMP). LaHaye et al. (1994} modeled this spotted owl
metapopulation by making the growth rates of each population correlated
with the growth rates of other populations. They calculated the degree of
correlation based on the similarity of rainfall patterns among the habitat
patches.

6.2.3 Dispersal Patterns

If extinct populations (i.c., empty patches) are recolonized by individuals
dispersing from extant populations, a metapopulation may persist longer
than each of its popuiations. Therefore, dispersal among local populations
that leads to successful recolonization usually decreases extinction risk of the
species.

In this chapter, we use the terms dispersal and migration interchange-
ably and define them as the movement of organisms from one population to
another. Thus, migration does nof mean back-and-forth seasonal movement
between wintering and breeding locations.

The rate of dispersal is measured by the proportion of the individuals in
one population that disperse to another. Suppose there are 100 individuals in
population A; 5 of them disperse to population B, and 10 of them to popula-
tion C; the rest stay in population A. In this case the dispersal rate from A to
B is 5%, and from A to C it is 10%; and the total rate of dispersal from
population A is 15%,

Dispersal rate depends, to a large extent, on species-specific characteris-
tics such as the mode of seed dispersal, motility of individuals, ability and
propensity of juveniles to disperse, etc. These factors will determine the
speed and ease with which individuals search for and coloenize empty hab-
itat patches.

Dispersal rate between different populations of the same species may
also differ a lot, depending on the characieristics of the particular meta-
population or of the specific population. For example, the habitat that
separates two populations will affect the rate of dispersal between them.
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Pacific Ocean ""‘*\%, _—

Figure £.5. California Spotted Owl metapopulation {after LaHays st al.
1994).

Two woodland patches with a connecting row of trees (a habitat comridor)
between them may have a higher rate of dispersal than ather populations
separated by a highway (a barrier). Dispersal can also occur at different rates
in two directions between two populations. For instance, individuals from
local populations of a species along a river may migrate mostly or only
downstream, but not upstream. In addition to these factors, human-
mediated dispersal can have significant effecs on extinction probabilities
(we will discuss these Jater in this chapter). Below we discuss four other
factors that affect dispersal rates, including the distance between popula-
tiens, the abundance of individuals, their sex and age composition, and
chance events.

6.2.3.1 Distance-dependent dispersal

Dispersing individuals may have a higher chance of ending up in a close
patch rather than a distant patch. Thus dispersal may occur at a higher rate
between populations that are geographically close, The relationship between
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dispersal rate and distance can be described as a declining curve. Such a
function was used to model the dispersal of juvenile Califomia Gnatcatchers
(Polioptils c. califprnica), a threatened bird species (Figure 6.6).
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Figure 6.6. Proportion of dispersing Califormia Gnatcatcher (Palioptiia
c. californics) juvenilss as a lunction of distance (after Akgakaya and
Atwood 1997).

The curve that summarized the dispersal-distance relationship is based
on three parameters: average dispersal distance, maximum dispersal dis-
tance, and maximuin dispersal rate (the y-intercept). In this case, the average
distance traveled by dispersing juvenile gnatcatchers was about 2.5 km This
value determines how fast the curve declines as distance increases. The
larger the average dispersal distance, the slower the curve declines. The
maximum dispersal rate was 0.4, which is where the curve intersects the
y-axis. In this figure, the maximum dispersal distance is set to ¢ km, which is
why at a distance of % km, the curve drops to 0 {no dispersal).

6.2.3.2 Density-dependent dispersal

In some species, the dependence of dispersal or dispersal rates on popula-
Hon abundance is an important aspect of the ecology of the species. For
example, organisms may have a greater tendency to emigrate from their
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population under overcrowded conditions, resulting in not only a larger
number, but also a greater propertion of individuals leaving the population as
density increases. This causes the dispersal rate to be an increasing function
of abundance. A similar effect can also occur in plant populations if, for
example, high density causes an aggregation of frugivorous organisms that
help dispersal, resulting in a higher proportion of seeds dispersed from
larger populations than smaller ones. Under this model of density-
dependent dispersal, the rate of dispersal (and consequently the probability
of recolonization) is an increasing function of the density of the source
population.

Another type of density dependence in dispersal rates is called the step-
ping stone effect. It occurs when smaller populations are used only as a short
stop during dispersal, rather than for settling. In this case, the organisms
have a higher tendency to emigzate from smaller populations. For example,
the dispersal rates of voles from smaller islands were found to be higher than
dispersal rates from larger istands in an archipelago in Finland (Pokki 1981).

6.2.3.3 Age- and stage-specific dispersal

Dispersal rates can be age- or stage-specific, such as when only immature
individuals or only young males or females disperse to other habitats. In
most plant species, for example, dispersal occurs only in the seed stage.
Female Helmeted Honeyeaters disperse from their natal colony to breed.
And in most territorial bird species {such as the Spatted Owl and the Cali-
fornia Gnatcatcher), juveniles disperse farther away than adults. [f the age
and stage structure of the subpopulations {i.e., the proportions of individuals
in different stages) are different from each other, this factor may have a sig-
nificant effect on metapopulation dynamics.

6.2.3.4 Stochaslicity

The prapartion of individuals migrating from one population to the other
may also change in a random way. Simitar to demographic stochasticity in
survival and reproduction discussed in previous chapters, the fact that only
whole numbers of individuals can migrate from a given population to
another will introduce variation. Because of this similarity, if you specify
demographic stachasticity in RAMAS Ecolab, the program will sample the
number of migrants from a binomial distribution.

6.2.4 Interaction Between Dispersal and Correlation

The risk of extinction or decline of a species is determined by the factors dis-
cussed above and by the interrelationships among them. On the one hand,
the extinction probabilities of local populations that are relatively far from
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each other will be largely independent; hence perhaps the metapopulation
will have a lower cverall extinction risk. On the other hand, dispersal rates
(and hence recolonization chances) in such a metapopulation will probably
be lower compared to a metapopulation with closer local populations. Thus
there is always a trade-off between similar environments (and, consequently,
correlated extinctions) and higher dispersal rates for close populations.

Another important aspect of spatial structure is the inieraction between
these two factors. Interaction refers to the changes in the effect of one factor
that depend on another factor. In this case, how much dispersal helps reduce
the extinction risk of the species will depend on the similatity of the envi-
ronments that the populations experience. Consider the extreme case of
perfect correlation of environments. In such a case, populations will almost
always become extinct at the same time period, and whether there is dis-
persal or not before this time will not change the extinction risk. Dispersal
will decrease this risk only if the populations become extinct at different
times so that the extinct patches have a chance of being recolonized by
migrants from extant populations.

The interaction between djspersal and correlation is demonstrated in the
results of a study that compared the extinction risk of a single population,
with that of 2 metapopulation that consisted of three small populations
(Figure 6.7). The three populations had the same total initial abundance as
the single large population, and their risk of extinction in the next 500 years
was lower than thal of the large population, when carrelation was low (the
left end of the curves). In addidon, when the correlation was low, higher
rates of dispersal caused lower extinction risks. When correlation was high,
the single large population had a lower risk, and the effect of dispersal rate
was negligible (the four curves get closer towards the right end of the graph).
See Exercise 6.1 for another demonstration of the interaction between corre-
lation and dispersal.

6.2.5 Assumptions of Metapopulation Models

One of the first medels developed for metapopulation dynamics was by
Levins (1970). In this model, the proportion of occupied patches (p) is deter-
mined by colonization of empty patches and the extinction of occupied
patches:

dpidt=mp(l-p)-Ep

In this differential equation, dp/dt refers to the rate of change in the propor-
tion of occupied patches. The colonization parameter {m) is defined as the
probability of successful migration from an occupied patch to any other
patch per unit ime. The parameter E is the probability of extinction of a
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Figurea 6.7. Extinction of a single large population (horizontal line),
and three small populalions (curves) as a funclion of fhe corelation ol
environmental flucfuations. Each curve represents a different simu-
lation of the Ihree-population model with different dispersal rates (0%
1o 1%). Aler Akgakaya and Ginzburg (1991).

given local population in a unil time interval. Colonization (the first term in
the equation) is assumed to be proportional to the product of occupied
palches p and unoccupied patches 1-p, and extinction (the second, negative
term, £p) is proportional to the number of occupied patches. This model
predicts that the proportion of occupied patches will reach the equilibrium
number,

p=1-Em

In other words, the species will persist {or, the proportion of occupied
patches will be greater than zero) if the rate of colonization (m} exceeds the
rafe of extinction (E }.

This model predicts the future of the population in terms of the nunber
of accupied patches, instead of the number of individuals. As a result, it does
not incorporate the within-population factors (such as density dependence)
that we have discussed in previous chapters. Instead, it assumes patches are
either fully occupied (the population is at the carrying capacity) or they are
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empty (population is extinct). It also assumes that all patches are equal in
terms of risk of extinction 2nd chance of being colonized. Further, it assumes
that extinction of each population is independent of others.

Other metapopulation models that were based on Levin's mode] make
different assumptions regarding extinction and colonization rates. However,
most make the basic assumption that patches are either occupied or empty.
For this reason, we call these occupancy models.

The models we will develop in the exarcises using RAMAS Ecol.ab make
a different set of assumptions. As in previous chapters, they‘ describe-each
population by its abundance, and they incoiporate environmental and
demographic stochasticity. Their two basic assumptions are: (1) there is no
ape, stage, sex, or genetic structure (assumption 4 in Chapter 1), and {2) the
dynamics can be approximated by pulses of repreduction and mortality; in
other words, they happen in discrete time steps (assumption 6 in Chapter 1).
In terms of metapopulation-level factors, they assume that the correlation of
environmental fluctuations and the rate of dispersal among populations can
be described as a function of the distance among the populations. The dis-
tances among populations are calculated by the program based on the
coordinates of each population. Thus, in these models, the location of each
population makes a difference in terms of the dynamics of the meta-
population.

6.3 Applications

The existence of a speries in a2 metapopulation necessitates a different
approach than that used for single populations. This is especially true in the
case of applications in population ecology, such as assessing human impact
on threatened and endangered species, and evaluating options for manage-
ment and conservation. Each population of a metapopulation may be
impacted by human actions 1o a different degree. These effects may be
observed in terms of lower vital rates or carrying capacities. In addition, a
metapopulation can be impacted by human actions in ways that are not
easily noticeable with a single-population appreach. For example, logging
can increase the fragmentation of old-growth forests; agricultural expansion
can change the spabial distribution of remairing native habitat; highways
and power lines can decrease dispersal among populations and lead to
increased isolation of the remaining patches. Below, we will discuss types of
management options and impact assessments that are relevant for metapo-
pulations.
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6.3.1 Reintroduction and Translocation

The existence of multiple populations also brings with it new types of man-
agement options that do not exist for single populations. These include
reintroduction and translocation.

The [UCN (1957) defines reintroductions as the "intentional movemnent of
an organism into part of its native range from which it has disappeared or
become extirpated as a result of human activities or natural catastrophe.”
The intention is to establish a self-maintaining, viable population in an area
that was previously inhabited by the same species. Reintroductions should
be distinguished from tranglocations, the movement of individuals from one
patch of habitat to another.

Reintroductions are a risky strategy. A provisional survey noted 220
plant reintroduction projects conducted world-wide between 1960 and 1990,
involving 29 different plant families (WCMC 1992, Chapter 34). Preliminary
indications are that many have been unsuccessful because of poor horticul-
tural practice, poor ecological understanding, lack of post-planting
maintenance and monitoring. Griffith et al. (1989) reviewed translocations
and reintroductions around the world, and decumented more than 700 cases
per year, mostly in the United States and Canada. They found that translo-
cation of game species constituted 90% of translocations and that they had a
success rate of 86%. Translocations of threatened species made up the
remainder, and their success rate was just 44%. Dodd and Siegel (1991)
found that only 19% of translocations involving reptiles and amphibians
were successful,

There are many reasons for failure, including the quality of habitat into
which the animals are released and whether the individuals are wild or cap-
tive bred. Sodial structure of the population may interfere with the success of
the captive bred individuals reintroduced to a wild population (eg., see
Akcakaya 1990). The design of the reintroduction program is also important,
and includes such factors as the number, sex, age composition, and social
structure of the released population, the provision of supplementary food,
and the use of a single release or multiple releases over many years. To
succeed, reintroductions need to be carefully planned, executed, and moni-
tored.

Translocations may augment the natural dispersal rate and can be effec-
tive since they can easily be planned to be density-dependent, by moving
individuals from high-density populations to empty or low-density patches
(see Section 6.2.3.2 on density-dependent dispersal). Whether transtocation
will increase the persistence of the metapopulation depends on many fac-
tors; they indlude both the spatial factors we discussed in this chapter and
others such as the risk of injury or mortality due to handling and ransport
by humans.
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Planning of reintroductions and translocations often requires a meta-
population approach. If a species is to be reintroduced, questions such as “Is
it better to reintroduce 100 animals in one patch, or 50 in each of two
patches?” require an understanding of the metapopulation dynamics of the
species. The design of the optimal translocation schedule invalves questions
such as "How many?" and “From which population, to which population?’,
suggesting a metapopulation approach.

6.3.2 Corridors and Reserve Design

Dispersal between populations can also be increased by bmldmg or pro-
tecting habitat corrdidors, which are linear strips of habitat that connect larger
patches of habitat Although corridors for dispersal have long been
recommended as a conservation measure, there is often little reliable data on
how often comidors are used by a given species, and how much they
increase the persistence of the species (Simberloff et al. 1992}. Corridors may
increase dispersal rates, but not in all cases; and while increased dispersal
usually decreases extinction risks, models suggest that in some cases the
reverse may happen. Increased dispersal from source populations to sink
populations might increase extinction risks (Akgakaya and Baur 1996). Cor-
ridors may also help the spread of catastrophes such as fires and disease
epidemics, and act as sink populations (because of strong edge effects). In
swrumnary, it is not possible to make a general statement about the effective-
ness of corridors as a conservation measure; this depends on the particwar
metapopulation, and the particular landscape it lives in.

Ancther conservation option that relates to metapopulation dynamics is
the design of nature reserves, which involves selection of habitat patches
that will give the most protection to the species in question. This provides a
practical example of the interactions and trade-offs among components of
spatial structure, One question that occupied conservation biologists for
many years was whether a single large or several small reserves of the same
total area will provide better protection for a species againsl extinction
{known by the acronym SLOSS, single large or several small). (n the one
hand, several small populations may have a lower extinction risk if the rate
of dispersal is high enough and the degree of spatial cotrelation of environ-
ments is low enough. This is because a single large population will not
benefit from uncorrelated environmental fluctuations; if it becomes extinct, it
cannot be recolonized. On the other hand, compared to a large population,
each of the small populations will be more vulnerable to extinction due to
environmental and demographic stochasticity. Thus if they become extinet at
the same time, or if the extinct ones cannot be recolonized from others, a
metapopulation of several small populations may have a higher extinction
risk than a single large population (see Section 6.2.4).
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Thus there is no general answer to the SLOSS question. The answer
depends not only on these two factors (degree of correlation and chances for
recolonization), but also on ether aspecis of metapopulation dynamics, such
as the configuration, size and number of populations, their rates of growth,
density dependence, carrying capacities, etc. However, metapopulation
modeling allows us to find an answer to the SLOSS question for specific
cases, and to evaluate different configurations of habitat patches selected as
nature reserves. Actually, conservation biclogists are rarely faced with the
question in such simple terms. Often the monetary or political st of
acquiring a patch for a reserve might not be related to its size; in other cases
the size (or even the carrying capacity) of a patch might not be directly
related to its value in terms of the protection it offers. A small patch that
supports a stable population might contribute more to the persistence of the
species than a large patch that is subject to greater environmental variation
or human disturbances. Thus it is much mare productive to evaluate reserve
design options for a specific case, using as much of the available empirical
information 23 possible, than trying to find generalities that may or may not
apply to specific cases.

6.3.3 Impact Assessment: Fragmentation

It is important to note that the trade-off between large and small reserves we
discussed above only applies to the case where the total area of a single large
reserve is roughly equivalent to the total area of small reserves, If the meta-
population of several small populations in the above example has formed
from z single large one as a result of habitat fragmentatior, the answer (o the
above question will be much less ambiguous. A fragmented habitat that has
several small patches certainly contains a smaller (and a more extinction-
prone) tetal population compared to the original nonfragmented habitat,
The reason is that, as a result of fragmentation, (1) the total area of habitat is
reduced; (2} the movement of individuals (migration, dispersal} is restricted;
(3) the resulling habitat fragments are generally no more independent of
each other than they were before fragmentation; (4) populations in frag-
mented habitats may have lower vital rates because of edge effects (see
Section 6.1.2). Each of these point to an increased risk of extinction due to
fragmentation, but they may also have exceptions. For example, while it is
usually true that parts of the habitat would not have more independent {un-
correlated} environmental fluctuations after fragmentation, certain factors,
such as stower spread of fires or diseases may make the habitat fragments
more independent than parts of a single large habitat.
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Another factor to consider in applying metapopulation concepts to the
assessment of fragmentation effects (and reserve design decisions) is the
change in patch sizes over time. [n the above discussion about SLOSS, we
assumed that the size of the patches that are selected remains the same, or al
least, the change in size does not depend on whether one large or several
small patches have been selected. [n fact, because of edge effects, the original
habitat in smaller patches may decrease in size faster than in larger patches.
{This effect can be simulated in RAMAS EcoLab by specifying a negative rate
for the Temporal trend In K parameter in Populations; see below.)

All these interactions and complexities make it impossible to assess spe-
cies extinction risks or address questions about conservation and
management based solely on intuition or simple rules of thumb. When
conservation decisions are based on rules of thumb, a2 number of assump-
tions are made. Building models forces us to make these assumptions
explicit, and whenever data are available, to replace these assumptions with
maodel parameters estimated for the specific case at hand.

6.4 Exercises

In these exercises, we will use the "Multiple Populations” component of
RAMAS EcoLab. The following paragraphs describe the speciai features of
this component.

An Overview of the Program

The metapopulation models you can build with this program are based on
the unstructured models {models with no age or stage structure) we warked
onin Chapters 1, 2, and 3. In other words, each population is modeled in the
same way we modeled single populations vsing the "Population growth
{single population models)' program. The first window under the Model
menu (General Information) is the same as in that program; here you can
specify a title, comments, the number of replications and time steps, and
whether to use demographic stochasticity. The second window under the
Model menu (Populations) is also similar ta the ones you used in Chapters 2
and 3, but with two differences:

{1) On the left side of the window, there is a list of the papulations in the
metapopulation. On the right side, there are the parameters for the popula-
tion that is highlighted cn the list. There is one such set of parameters for
each population. Sg, to edit the parameters of a population, first click on its
name on the list, then click on the appropriate parameter and type in the new
value.
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(2) There are several additional parameters for each population. These
include the name and coordinates of the population, so that each population
comprising the metapopulation can be distinguished from athers. Another
new parameter is "Temporal trend in K,” which describes how the carrying
capacity of the population changes through time.

The "Display” button in Populations lets you view four graphs related to
the parameters of the population (the one that is highlighted on the list). The
first two graphs are related to density dependence and are the same as in
previous components. The third shows a histogram of the rates of dispersal
from the specified population to each of the other populations (see below).
The fourth graph shows the change in carrying capacity through time. The
"Carrying capadty (K)” parameter determines where the line in this graph
starts from (the y-intercept}, and the "Temparal trend in K’ parameter deter-
rmines how much it increases or decreases per time step {the slope of the
ling}.

Another feature of this program is the Metapopuiation map displayed in
the main window. The relative position of each population is caleulated from
the X and Y coordinates specified in Populattons screen. The areas of pop-
ulation circles are proportional to their carrying capacities if there is density
dependence; otherwise the initial abundance is used. The brightness {or
"fullness') of the population circles shows the relative degree of occupancy,
calculated as the ratio of initial abundance to carrying capacity.

If there is dispersal from one population to another, this is indicated by a
line between the iwo population circles. This line is not drawn if the expected
number of migrants (disperval rate multiplied by the carrying capacity of the
source population) is less than 0.1. The line connects to the source popula-
tion, but, at its other end, there is small gap (not visible in some cases)
between the end of the line and the target population, so that you may
understand the direction of dispersal. If there is dispersal in both directions,
then the two lines will be superimposed, and there will not be any gaps at
either end.

Also drawn on the screen are variows geographic features from an ASCII
file {which is specified as the "Map features” parameter in General informa-
tion). The format of this file follows that for RAMAS Metapop and RAMAS
GI5 (Akgakaya 1998), but for these exercises, you don't need to know the
format.

There is also an additional window that is not in the single population
program. The Digpersal and Correlallon window can be used to specify the
rate of dispersal between populations and the similarity of their fluchuations,
based an the distance between them. The distances are caiculated from the x-
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and y~coordinates specified in Populations. Dispersal rates are specified as a
functon of three parameters: average dispersal distance, maximum dis-
persal distance, and maximum dispersal rate (see Section 6.2.3.1).

Correlations are also specified as a similar function of distance. To keep
things simple, only one parameter needs to be specified: the correlation at a
distance of 100 units (2 unit depends on the units used to specify the coordi-
nates of populations). If this parameter is 1.0, all populations are fully
correlated; if it is 00, all populations are uncorrelated (have fully
independent fluctuations). If it is 0.5, then fluctuations of two populations
separated by 100 units (say, km) will have a correlation coefficient of 0.5.
Populations closer than 100 km will have a higher correlation, and those far-
ther apart will have a lower correlation. (For the curigus: the shape of both
functions is that of the negative exponential function y = a-exp(-4/b), where
d is the distance and a and b are parameters. The dispersal function is trun-
cated at the maximum dispersal distangce).

In Dispersal and Correlation, click the "View" buttons to view two
graphs that show dispersal rate and correlation as functions of the distance
between two populations. You can also see the rates of dispersal from one
population to all cther populations. For this, go to Populations, click "Dis-
play” and select "Dispersal rates.”" The hosizontal line shows the total rate of
dispersal from this population {which is alsa displayed numerically at the
top of the screen), and the vertical bars show the proportion of individuals
dispersing to other populations.

Exercise 6.1: Spatial Factors and Extinction Risks

This exercise demonstrates the effect of three spatial faclors on meta-
population extinction risks: number of populations, correlation among
population growth rates, and rate of dispersal among populations. The
exercise consists of several models of hypothetical metapopulations. These
models are saved in files that are described belaw. The files may also contain
results, If so, you do not need to run the simulation. If a file does not contain
results, the program will tell you this when you attempt to view a result
screen, and you will need to run a simulation with each model, and save the
results,

Step 1. Single lasge population

We begin with a single population which has a carrying capacity of 100
individuals. Open the file 1LARGEMP, which contains such a population
model. To review the specifics of the model, you can go through the input
patamelers in General Information and Populations. Other input windows
do not contain any information since there is only one population. Select
“Trajectory summary” from the Results menu to view the plot of population
size though time.
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For the estimate of extinction risk, select "Extinction/Decline” from the
Results menu. The graph shows the probability that the population will fall
(during the next 30 time periods) below each threshold level in the x-axis.
From the graph, read the risk of falling below 5 individuals, and record this
number.

Step 2. Comrelated environments; no dispersal

The file 5SM-C- MP contains a metapopulation model of five populations,
each with a carrying capacity of 20 individuals. Thus the total size of this
metapopulation is the same as that of the single large population in the pre-
vious example. The other population parameters (such as growth rate, its
standard deviation, survival rate, the duration of the simulation, efc.) are the
same as those of the single population.

Open the file 55M-C-LMP (the filename summarizes "5 small; correlated;
isolated ). Examine the input parameters in each of the three windows under
the Model menu. Notice the following:

(1) In General Informatlon and Populatlons, ail parameters except the initial
population size {Ny) and carrying capacity (K} are the same as in the
single large population; N, and K for cach of the five populations are
one-fifth of their values for the single large population.

{2) In Dispersal and Correlation, the maximum dispersal rate is 0, and corre-
lation at d=100 is 1. The first parameter means that there is no dispersal
among the populations, and the second means that environmental
fluctuations of the populations are fully correlated. Click the two "View”
buttons to see the two functions: the dispersal function is zero for all dis-
tances, and the correlation function is one.

(3) There are no lines among the populations in the Metapopuiation map
displayed in the main window (because there is no dispersal).

Apain view the Extinction/Decline risk (do not change the scales). If
you've changed any of the input parameters, the program will give a
warning; in this case load the file again. You will notice that this meta-
population has a higher extinction risk than the single large population, and
the risk curve is above the risk curve of 1LARGEMP. Again, record the risk of
falling below 5 individuals.

As you have noticed from your inspection of the input screens, the
growth rates of the five populations are correlated, and there is no dispersal
among the populations. Hence this metapopulation represents the worst
combination of these two factors: the populations will become extinct at
about the same time, and there will be no chance of recolonization. This
results in a much higher eatinction risk compared to the single large popula-
tion, even though the total population sizes are the same.
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To see a visual demonstration of the effect of correlation, start the simu-
lation by selecting Run from the Simulation menu. The program will show
the spatial structure of the metapopulation, updated after every time step. If
the map is changing too fast, increment the counter on the top of the window
to change the simulation delay.

At each time step, the abundance of the five populations is used to
updale the map. The shading in each population represents how "full” the
patchis, i.e., how close the population is to the carrying capacity of the patch,
Notice that when one patch is completely full, the others are more likely
have a large population than be extinct. This is because of the high correla-
tion among population growth rates. However, this is not always the case;
you may notice that sometimes a population becomes’ extinct while athers
are still extant. This is because demographic stochasticity introduces vatia-
tion that is independent for each papulation.

You can dick the left-most button on top of the window to tumn off the
map and complete the simulation faster; or you can press (<) to terminate
the simulation (the program will stop running the simulation after the cur-
rent replication is completed). Close the simulation window.

If you hurn off demographic stochasticity (by clearing its box in General
informatlen), the population sizes will becore fully correlated. However,
turning off demographic stochasticily also decreases the risk of extinction, so
you will notice fewer “empty” patches during the simulation than you did
with demographic stochasticity tutned on.

Step 3. Independent environments; no dispersal

The file 55MU4AMF contains 4 similar model, but the populations are
independent: their growth rates have zero correlations. (The filename sum-
marizes "5 small; uncorrelated; isolated"). You can check this by opening this
file and selecting Dispersal and Correlation under the Model menu. The
correlation coefficient (at d = 100) is zere. Click the "View" buttons to see the
dispersal and correlation graphs. Other parameters of this model are the
same a5 in the previous file.

View the extinction risk curve, and record the risk of falling below 5
individuals. The lower extinclion risk 15 a result of the independence of
environmental fluctuations, which cause fewer of the populations to become
extinct 2t the same time than with the carrelated fluctuations in the pravigus
model.

Now run the simulation to observe the effect of independent Huctua-
tions. You will notice that the sizes of the five populations (represented by
the density of shading in the population circle) change independently; when
one or two populations have high densities, others may have medium or low
densities, or even be extinct. Notice that there are no lines (that represent
dispersal) among the five populations. Thus the decrease in extinction rate
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occurred even though the extinct patches did not have a chance to be recalo-
nized from extant populations. (You can terminate the simulation by
pressing (EsJ, and return to the main menu by pressing any key after the end
of the simulation.)

Step 4. Dispersal; uncorrelated environments

To see the effect of dispersal in decreasing extinction risks, open the file
55M-UDMP. This file contains 2 model of the same metapopulation as the
previous model, but with a moderate rate of dispersal among the popula-
tions. {The filename summarizes "5 small; uncorrelated; with dispersal”).
Open this file, and select Dispereal and Correlation. Note that the maximum
dispersal rate (the y-intercept} is now 1.0. Click the "View” button for dis-
persal to see the dispersal-distance function, which gives the proportion of
dispersers as a function of the distance between the source and target
populations. The distances among the populations in this modef range from
10 to 20 (which you can calculate from the coordinates). The dispersal-
distance function gives dispersal rates ranging from 0.007 tc 0.082 between
any two populations in this model. If you added the rates of dispersal from
one population to all others, you would get about 14 to 18% of the individ-
uals in each population dispersing to the other four populations.

You can also see the rate of dispersal from one population to each other
population. For this, go to Populations screen and select a specific (source)
population (by clicking on the name of the population in the list on the left).
Then click “Display,” and select "Dispersal”. The horizontal line shows the
total rate of dispersal from this population {(which is also displayed numer-
ically at the top of the screen), and the vertical bars show the proportion of
individuais dispersing to each other population.

View the Extinction/Decline risk {without changing the scales), and
record the risk of falling below 5 individuals. When you now run the simu-
lation a line will appear between two populations if, at that ime period,
there is dispersal between those two populations (in either direction). At
some time steps, you may not see a line between some populations; this is
because if the size of a population gets very small, the number of emigrants
from that population may be rounded-off ta zero. [L, for example, dispersal
rate from ane population to another is 0.05 and the number of individuals in
the source population at a particular time step is 9, the number of migrants
for that time step will be 0.05 x 9 =045, and will be truncated to zero. In
addition, when demographic stochasticity is turned on, the number of
migrants is sampled from a binomial distribution (see the section on "Sto-
chasticity" above}.

Step 5. Dispersal; correlated environments
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The last file, 55M-C-D.MP, contains a model of the same metapopulation
as the previous maodel, but in a correlated environment (the filename sum-
marizes 5 small; correlated; with dispersal”). View the extinction risk result,
and recotd the risk of falling below 5 individuals.

Step 6. Summarizing results

Combine all the risk results you have recorded into the table below.
Compare the risks of falling below 5 individuals with the five models. Does a
single large population have a lower or higher risk than several small pop-
ulations?

Risk of falling batow 5 individuals
with the single population model:
Malapopulalion | Risk with no dispersal |  Risk with dispersal Reduction in risk )
models: due to dispersal
55M-C-I.mP SSM~C-D. MP
Full correlation
SEM-U-T . HD SSM-U-0,MP
No correlalion

Step 7. Effect of dispersal in reducing extinction risks

To see how dispersal effects extinction risks, subtract the risk in models
with dispersal from the risk in models without dispersal. There are two
models without dispersal and two with dispersal, so you calculate the effect
of dispersal in reducing risks in two different ways. One of these assumes
full correlation, and the other assumes no correlation. Compare the effec-
tiveness of dispersal in preventing extinctions under these two assumptions,
Explain the difference (see Section 6.2.4).

Exercise 6.2: Habitat Loss

As we mentioned in Section £.3.3, an important factor in applying the meta-
population concepts to conservation decisions is the change in patch sizes
over lime. With RAMAS EcoLab you can simulate the change in the carrying
capacity of 2 population if the population has density-dependent population
growth.

Step 1. To observe this effect, first load 1LARGEMP, the single population
model, and select the Extinction/Decline screen from the Results menu.
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Step 2. Select Populations from the Model menu, and change the
parameter Temperaltrend in K to -3. Click "Apply,” then "Display” and
select Habitat change. This graph shows the change in the carrying capacity
over the duration of the simulation. The carrying capacity is decreasing by 3
at each time step. Close the window and click "Cancel” (twice). Run a simu-
lation, Notice that the circle representing the population gets smaller at each
time step. The size of the circle is proportional to the carrying capacity.

Step 3. If you want to complete the simulation faster, click the text button
(fist button from left on top of the window) to turn off the map. After the end
of the simulation close the simulation window, and select Extinction/Decline
under the Results menu. How did the risk curve change? What is the risk of
falling below 5 individuals? How does this risk compare with the risk of
falling below 5 individuals when the model did not include any habitat Joss.

Step 4. Select Trajectory summaery to see the predicted decline in the
population size over the next 30 years. You can run a similar simulation with
one of the metapopulation models.

The effect of habilat loss will depend, among other things, on the number
of populations for which you specified a negative change in carrying
capacity, and at the rate of loss specified with the value of the
Temporal trend In K parameter. This parameter can also have a positive
value representing an increase in habiiat. To see a model with both
increasing and decreasing patches, load METAPOPEMP, and run a simulation.

Exercise 6.3: Designing Reserves for the Spotted Owl

This exercise concerns the metapopulation dynamics of the California
spotted owl (see Section 6.2.2). The model is based on one of the models used
by LaHaye et al. (1994) to explore the effects of spatial factors on this meta-
population.

Step 1. Start RAMAS Ecolab, select "Multiple population models,” and
load the file OWL.MP. This file contains a metapopulation madel of the Cal-
ifornia Spotted Owl discussed above.

Step 2 The model predicts a fast decline of this metapopulation. For this
exercise, we will assume that the reason for the decline is a decrease in hab-
itat quality in recent years. We will also assurne that it is possible to improve
the habitat quality but that it costs a lot of money. How mach it costs
depends on the size of the habitat to be improved. As you see on the map,
each population has a different size. The cost of habitat improvement for a
population is 51,000 multiplied by the carrying capacity (K} of the popula-
tion. For example, improving the habitat in the first population {N.
Monterey} would cost $100,000. Y our job is to decide in which populations to
improve the habitat. You have a total of $300,000 to spend. Habitat improve-
ment in any patch results in an increase in the growth rate from 0.827 to 1.0L
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Step 3. Select General Information, set the number of years to 20, and
number of replications to 1,000 (if your computer is very slow, you can use a
smaller number such as 300 or 500), and run a simulation. The simulation
may run faster if you tum off the display of the map. Save the file with a new
name.

Step 4. Then select as many populations as you can with your $500,000,
and increase the growth rates of the selected populations to 1.01. Keep the
other populations in the model, and leave their growth rates as they are. The
sum of the carrying capacities of the populations you selected should rot
exceed 500. Then save the file under a different name, and run a simulation.
After the simulation is over, save the file again; investigate and record the
resulls. ’

Step 5. Your plan of habitat improvement will prebably not prevent the
decline of the metapopulation, but it can slow it down so as to gain some
more time for further conservation actions {or perhaps for raising more
money to improve more habital). So, your eriteria for success should not be
whether the average size of the metapopulation is increasing or decreasing,
Instead, find a probabilistic measure of whether your plan Is successful or
not. For example, you can use the risk of falling below 100 individuals as
your measure. Compare this result for the two simulations {in steps 3 and 4
above). How much did the result improve?

Step 6. Now select different combinations of populations io improve
(again, the sum of the carrying capacities of the populations with growth
rate equal to 1.01 cannot exceed 500). Run more simulations and compare the
resuits.

Step 7. Describe which populations you selected in each case and how
you made your selection of populations. Random selection is acceptable.
Other criteria may include: few largest populations, many small popula-
tHons, most geographicaily spread subset of populations, all populations in
the north, o7 south or the cenler, all populations away from the shore, ete.

Step 8. Describe which selection was the most successful. If two or more
selections give similar risks of falling below 100 owls, compare them with
respect o the risk of falling below 260 owls.

NOTES:

Given the parameters and assumptions of the model, there is probably a
single best solution to this exercise. However, the number of combinations is
quite large, and you are not expected to try all pussible subsets. If this were a
real case, then you'd probably want to cover all possible aptions before you
spend your half-a-million dollars.
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When you find out that a particular combination gives much better
results than others, do not be tempted to generalize. The point of this exer-
cise is that when populations are distributed in space, where they are makes
a difference. But the rule of selection that is best will probably be different in
eachcase.

6.5 Further reading

Askins, R. A. 1995. Hostile landscapes and the decline of migratory song-
birds. Sciznes 267:1955-1957.

Gilpin, M. E. 1987. Spatial structure and population vulnerability. In Viable
Populations for Conservation, MLE. Sculé (Ed.), pp 126-139 Cambridge
University Press.

Hanski, I. 1989. Metapopulation dynamics: does it help ta have more of the
same? Trends in Ecology and Evolution 4113-114.

Harrisor, S, 1991, Local extinction in a metapopulation context: an empirical
evaluation. Biological Journal of the Linnean Society 42.73-88.

Simberloff, D., J. A. Farr, J. Cox, 2. W. Mehlman. 1992. Movement corridors:
conservation bargains or poor investments? Comservalion Bislogy
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Chapter 7
Population Viability Analysis

7.1 Introduction

So far, we have dealt with topics that are general in population ecclogy. In
this and the next chapter, we will concentrate on two specific areas where the
princples of population ecology may be applied. One specific area lo apply
the methods and concepls discussed in previous chapters is population
viability analysis {frequently abbreviated to PVA). Population viability anal-
ysis 15 a process of identifying the threats faced by a species and evalualing
the likelihood that the species will persist for a given time into the fulure
(Shaffer 1981, 1587, 1950; Gilpin and Soulé 1986; Boyce 1992). The process of
PVA is closely related to determining the minimum viable population
(MVP), which is defined as the minimum number of individuals that ensures
a population’s persisience. As we have demonstrated in previous chapters
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and will discuss below, the size of a population is only one of the character-
istics that determine the chances of persistence; thus PVA can be thought of
a3 a generalization of the MVD concept.

Population viability analysis is often oriented towards the management
of rage and threatened species; by applying the principies of population
ecology, PYA seeks o improve the species’ chances of survival. Threatened
speries management has two broad objectives. The short-term objective is to
minimize the risk of extinction. The longer-term objective is to promote con-
ditions in which species retain their potential for evolutionary change
without intensive management. Within this context, PYA may be used to
address three aspects of threatenied species management (Possingham et al.
1993):

(1) Planning research and data collection. PVA may reveal that population
viability is insensitive to particular parameters. Research rnay be guided
by targeting factors that may have an important effect on extinction
probabilities,

{2) Assessing vulnerabifity. PVA may be used to estimate the relative vulner-
ability of species to extinction. Together with cultural priorities,
economic imperatives, and taxonomic uniqueness, these results may be
used to set policies and priorities for allocating scarce conservation
Tesources.

(3} Ranking management options. PYA may be used to predicl the likely
responses of species to reintfoduction, captive breeding, prescribed
burning, weed control, habitat rehabilitation, or different designs for
nature reserves or corridor networks,

You have already applied principles and methods of population ecology
to these aspects of PVA. For example, in Exercise 2.4, you analyzed the sen-
sitivity of Muskox population viability to the parameters of a simple model,
In Exercise 5.3, you compared the effects of two conservation measures on
the viability of sea turtles, and in Exercise 6.3, you tried to find the reserve
design option that maximizes the viability of a California spotted owl meta-
population. In this chapter, we will discuss population viability analysis in
more detail, beginning with a review of extinctions.

7.2 Extinction

Population viability analysis deals with one aspect of population dynamics,
namely the decline and extinction of populations. It is therefore relevant to
review briefly what we know about extincton so that we understand the
motivation behind PVA’s methads and concepts,
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7.2.1 Extinction in Geological Time

More than 99% of species that have ever existed are now extinct, and most
species have a lifetime of around 1 to 12 million years. Many of the species
that existed in the past were not eliminated in the sense that we think of
extinction today. Rather, natural selection and mutation have essentially
transformed many species, a process known as phyletic evolution (or evolu-
tion within a single lineage, without speciation). In addition, there have been
a number of events in the geological past in which substantial proportions of
the biota then existing were lost. These are termed mass extinction events.
The most severe extinction event for marine families occurred 245 mya (mil-
lion years ago) during the late Permian period, at which time mare than half
of the families of marine animals and tetrapods and nearly half of the
number of fish families were lost. About 95% of all species were lost. The late
Permian event is generally accepted to have occurred over a period of 5-8
million years, and appears to have been associated with global physical
changes including climate change and volcanic activity.

The most recent mass extinction, which marks the boundary between the
Cretaceous and Tertiary periods 65 mya, is the best documented. There is
some evidence that it was associated with an extra-terrestrial impact
although the cause remains controversial. The late Cretaceous event resulted
in a decline of about 15% of marine families and 40% of tetrapod families in
the fossil record. The loss of plant species was unusually high compared to
other mass extinction events. More than 70% of all species were lost.

Another interesting type of information from the fossil record concerns
length of time each species existed. The lifetimes of species {i.e., times to
extinction after the initial radiation} are usually distributed asymmetrically;
they are strongly skewed to the right (Figure 7.1) with most species per-
sisting for time periods less than the average within any one taxon, and a few
species persisting for much longer times.

In this kind of statistical distribution, the median time to extinction (the
time at which half the species within & taxon have become extinct} is less
than the average time to extinction. In the fossil record, the average rate of
loas of species globally (both by species extinction in the usual sense of the
word, and by phyletic evolution) has been of the order of 1 species per year.
This estimate was first made by Charles Lyell and several more recent esti-
mates have resulted in approximately the same number,
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Percent of species
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Duration (milllon years)

Figure 7.1. The lime 10 extinction of species in planktonlc foraminifera
during the Paleogene radiation (after Levinton and Ginzburg 1984),

7.2.2 Current Extinction Rates

Most recorded extinctions over the last few hundred years are from mam-
mals, birds, and terrestrial snails because the taxonomy of these groups is
relatively complete. For most other veriebrates and almost all other
invertebrates there is no information on extinction rates in recent history.
The main difficulty is that most taxa have not been described or named. The
vast majority of even the described species are not monitered, and species
may be locally or globally eliminated without gur kmowledge of the event.
Only named species are recorded as extinct. Species are presumed to be
extinct when a specific search has not located them, when they have not been
recorded for severat decades, or when expert opinion suggests they have
been eliminated. These rules strongly suggest that our knowledge of extinc-
fion rates, even in reiatively weil known groups, will tend to underestimate
the true rate. Nevertheless, there have been a total of about 490 animal
extinclions recorded globally since 1600 (WCMC 1992; see Figure 7.2 and
Table 7.1).

There has been a preponderance of extinctions on islands compared to
rates on continents. For example, 75% of recorded animal extinctions since
1600 (about 370 extinctions out of 430) have been of species inhabiting
islands, even though islands support a small fraction of the number of
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Figure 7.2. The number of recorded animal extinctions in recent his-
tory (after Jenkins 1892). The values represent the rumbar of
extinctions recorded within the 30-year period up 10 the date labeling
the class.

animal species found on continents. The apparent decline in extinctions in
the last 30 years to 1990 (Figure 7.2) is at least partly dus to the fact that there
is a time lag between extinction events and their detection and recording. A
number of species are likely to have become extinct recently without ye!
having been recorded as such. It is also possible that conservation efforts
over the last 30 years have slowed the rate of extinctions. Attention usually is
focused on high-profile species (such as mammals and birds) and many
recent recovery efforts have been successful, at least in the short term.

There is little doubt that current extinction rates are considerably higher
than those observed globally over the last 50 million years. Some simple cal-
culations serve to illustrate the poini Assume an average lifespan for a
species of about 4 million years and a total of about 10 million species. If an
average species lives for 4 million years, we may assume it has an average
probability of extinction of 174,000,000 per year. Multiplying this number
with the total number of species (10 million) gives the rate of 2.5 species per
year. Thus, we should expect an average of between 2 and 3 extincton
events per year. Various people have estimated the background rafe of
extinction in geological time to be between 1 and 5 species globally per year,
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Table 7.1,  Species in major plant and animal taxa that are known to
have become extinct since 1600 or are currently listed as threatened by
TUCN.

Taxon No. of No. of Total number %
extinct threatened  of recorded extinct
species  species  species {x1000)

All animals 485 3565 1400 0.04
Molluscs 191 354 100 02
Crustaceans 4 126 40 0.01
Insects 61 873 1000 0.006
Vertebrales 229 2212 47 05
Fish 29 452 24 01
Amphibians 2 50 3 0.1
Reptiles 23 167 & 04
Birds 116 1029 9.5 i
Mammals 59 505 45 i
All plants 584 2137 240 0.2
Gymnosperms 2 242 0.8 0.3
Dicotyledons 120 17474 190 0.06
Monocotyledons 462 4421 52 09

After Seith et al. {1593),

so the approximation seems reascnable. Extinctions have been recorded over
the last 400 years with some degree of reliability. With the background
extinction rate of 5/year, we should expect about 2,000 extinctions in 400
years. Assuming the total number of species is 10 million, and that the
extinction rates are no higher than the background rate, we can calculate the
expected number of extinctions for various taxonomic groups (Table 7.2).
For example, among 9,500 birds, we would expect about 2 extinctions in 400
years (9,500/10,000,000.2000 = 1.9), whereas the observed number of extinc-
Hons is 116. The table was limited to three taxa, mammals, birds and
molluscs, for which there is good data.

Obviously, looking at Table 7.2, we have observed many more extinc-
tions than expected, if the simple assumptions embuodied in the calculations
are correct. The calculations for the expected number assume that the current
extinction rate is approximately the same as the background rate of extinc-
tion in geological time (between 1 and 5 species globally per year), that
extinctions oocur with more or less equal frequency among different taxa,
and that there are 10 million extant species. 1t is worth noting that many
uncertainties in the number of observed extinctions suggest that these values
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Table72. Observed number of extinctions globally in the last 400 years
{from Table7.1) and predicted number of extinctions in the same period,
assuming a total of 10 million species and that the current rates are equal to
background rates in geological time.

Taxan Numberof Expecled number of Expected number of Observed

spocies  extinctions ¥ back- extinclions if back- number of

{(x1000)  ground rats = 1fyear ground rate = Siyear extinclions
Mammals 4.5 <1 1 59
Birds 9.5 <1 2 116
Malluses 100 4 20 . 191

are tikely to be underestimales; there is no doubt that we will not have
naticed the loss of at least some taxa, even among the best studied groups.
The result would be an even greater disparity between the observed and
predicled number of extinctions, were they to be corrected.

There are two explanations for the disparity. Either extinctions in the last
400 years have occurred almost exclusively in the three taxa for which we
have good data, namely mammals, birds, and molluscs. Or, the current
extinction rate is at least two ordets of magnitude higher than background.
Other evidence for elevated extinction rates was examined by Smith and
colleagues in 1993. They found that any taxonomic group or geographic
region that is poorly studied will appear lo be in good health because
extinctions are difficult to observe and known extinctions will be few. For
example, almost zll the vascular plant extinctions recorded in Africa have
been recorded in South Africa. However, it is difficult to know just how
mugch of the difference between countries is because of different taxonamic
and monitoring effort, and how much is due to the impact of developed
economies on their environment. Records from the Indonesian island of
Sulawesi indicated that the Caerulean butterfly {Eutrichomyias rowleyi) had
not been seen for several decades, there were no recent records for marny of
the endemic species of the fish family Adrianichtyidae, and at least seven
endemic bird species had not been observed for more than a decade. Yet
none of these species were recorded in international threatened species lists.
Onty one bird species is listed in international data bases as extinct on the
Solomon Islands, but Diamond and colleagues reported that 12 species have
no definite records since 1953 and islanders report that sevefal of these have
been eliminated by cats. Similarly, thete are no recorded extinctions of fishes
on the Malay Peninsula, but only 122 out of a total of 266 previously
described species of freshwater fish were found over a four-year period.
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Even if we make the very conservative assumption there have been no
unobserved extinctions of mammals, birds, or molluscs in the last 400 years,
current rates in these three groups are still substantially sbove background.
We are likely to be in the midst of an mass extinction event of a magnitude
matched only by five other such events in geological time.

Given the kinds of uncertainties described above, it is unlikely that we
can estimate the rate of species extinctions accurately. Different attempts to
estimate the rate have resulted in quite similar values, butit is not possible to
know how independent they are of one another. Only a very small propor-
tion of recorded extinction events since 1600 are from continental tropical
forest ecosystems. Most recent projections for future species loss take into
account expected loss of tropical forest. Such estimates are uncertain mostly
because the necesgary information on numbers of species, population sizes,
distribution, and the kinds of impacts are themsel ves uncertain.

7.2.3 The Causes of Extinction

The loss of the last few individuals of a species, while regrettable, is of less
interest than establishing the causes that lead the spedes to become so
reduced in the first place. In very small populations, it is likely that demo-
graphic and genetic processes play a major role in determining the fate of a
species, together with environmental variation and other stochastic and
deterministic factors. It is clear in many instances that the direct, ultimate
cause of population decline has been the activities of humans. These activi-
ties include:

habitat destruction and fragmentation

overexploitation (overharvesting)

pollution

introduction of exotic species (that frequently become competitors or

predatars of native species)

global climate change

The ecology of certain species makes them moze vulnerable to extinction
(Pimm et al. 1988; Pimm 1991). Species that are locally rare, geographically
restricted, or limited to a narrow niche may be prone to decline. Species that
are variable within their range, or are varigble in time, may likewise be sus-
ceptible to global, permanent reductions in population size. Short-lived
species (with a short generation time) may have a higher risk of extinction
per year, although they may have simiiar per-generation extinction risks as
longer-ived species. Species with slower growth rates may take longer to
recaver from population reductions.
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In addition to these general characteristics, there are several properties
that may make a species espedally susceptible tc human impacts.

Habitat overlgp; Species may be threatened because they are tied to the
same types of habitat that are preferred by people. The biota of relatively
accessible areas with fertile soils and benign climates are subjected to agri-
cultural and wrban development Similarly, the biota of coastlines, major
rivers, and streams are subject to waste disposal, urban development, and
the impacts of transportation. The consequences of human use of freshwater
systems are especially important in arid environments such as Australia,

Harvesting: Species that are palatable or otherwise valuablé to humans
are susceptible. The most spectacular examples of animal species’ declines
and extinctions usually involve at least some harvesting-pressure. Whenever
species are harvested at levels above the maximum sustained yield, the spe-
cies will be driven to extinction by systematic (deterministic) pressure, quite
apart from increased risks that result from chance events. Species inhabiting
small oceanic islands have been relatively susceptible to hunting pressure.

Home range requirements: Animals with extensive home ranges frequently
occur at low densities, and they are likely to be susceptible to the changes in
human dominated landscapes, incduding reduction in the area of available
habitat and fragmentation of the vemainder into a large number of refatively
small patches (see Chapter 6).

Limited adaptability and resilience: If a species has limited dispersal capa-
bilities, limited reproductive capacity, or narrow and inflexible habitat
requirements, then it is unlikely to be capable of rapid recovery from
disturbance and is likely to be relatively prone to extinction in human modi-
fied landscapes.

None of these characteristics are perfect predictors of a species’ vulner-
ability to extinction Species with similar ecclogical characteristics may
survive for very different lengths of time. This is because extinction risks
depend on all these genera! characteristics, as well as several others that are
specific fo particular populations and lendscapes. We analyzed many of
these in previous chapters: densily dependence, age and sex distribution of
individuals within a population, correlation of environmental variation, dis-
persal barriers, and habitat corridors are some of the factors that interact
with species-spedific factors. Population viability analysis can be described
as the use of models Lo combine all relevant factors in the evaluation of
extinction risks. )

Given that you have built a reasonable model and estimated extinction
risks of a species, how do you interpret the results? If your model predicted
a 10% risk of extinction in 100 years, is this bad, or is it acceptable? Some
scientists believe that the interpretation of results at this level is a political
process that requires criteria imposed by society rather than by the scientific
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Even with a set of universally accepted categories of threat, assigning
species to categaries based on their biology and demography remains a dif-
Heult sk, especially for species about which we have little information. In
addition to the above risk-based criteria for threat categories, Mace and
Lande {1991) proposed a set of criteria based on population size, subdivision,
variability, and recent declines. Which type of criteria should be used for
assigning a particular species to threat categories depends on which type of
criteria is mare reliable, which in tum depends on what is known about the
species. When quantilative information about a species is available, then
population viability analysis provides a reliable tool for using the risk-based
criteria.

7.3 Components of population viability analysis

There is no single recipe to follow when doing a PV A, because each case is
different in so many respects. In this section, we will discuss some of the
main components that a PVA might have. Not all PYAs will have all these
components, and some will have others that are not discussed here,

7.3.1 Identification of the Question and
Estimation of Parameters

Any scientific inquiry starts with a question, and population viability anal-
¥5is is no exception. Although the question or problem to be addressed
might seem to be obvious, it is nevertheless important to state it explicitly.
This is because the question is likely to change in the course of a PVA. Ini-
tially, the question might be very general, such as "Ts this species threatened,
and if so, why?" The less we know about the species, the more general the
questions will be. At this step (Step T in Figure 7.4) a FVA should concen-
trate on the identification of factors (including natural factors and human
impacts) that are important in dynamics of the specific populations under
study, 2s well as conservation and management cptions. The methods to be
used for this depend on the specific case at hand, and might include statis-
tical analysis of historical data, comparison of populations that are declining
with those that are stable, and correlating recent changes in the environment
{climatic or habitat changes, introduced species, changing harvest patterns,
etc.) with changes in the species.

After the available information about the ecology of the species and its
recent history is collated and reviewed, the questions are likely to become
more specific. Examples of such questions include:

What is the chance of recovery of the Spotted Owl from its current threat-
ened status?
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Step V;
* Coltate existing data
* Identify problem
* List oplions
l
Slep 2: Stap 3: Step 4
Determine (or madify} Estimate (of refine) Build {or improve) model -
mode! stichure parameters v
T T {
Step 10: Step 8: Step 5:
Evaluats the data from Perform 2 sansitivity Assess extinction risks
moniloring analysis and recovery chances
) )
Slep 9: Step §: Step 7:
Monitor the species implement the man- Rank options; select the
{long-temm) agemeni plan optirmal managemeni plan

Figure 7.4. Componants of a population viability analysis.

What is the risk of extinction of the Florida Panther in the next 50 years?
[s it better to prohibit hunting or to provide mare habitat for elephants?

Is captive breeding and reintroduction to natural habitat patches a viable
strategy for conserving Black-footed Ferrets? If so, is it better to reintro-
duce 100 Black-footed Ferrets to one habitat patch or 50 each o two

habitat patches?

Would translocation of Hetmeted Honeyeaters from their current popula-
tions to empty habitat patches minimize the extinction risk?

Is it better to preserve one large fragment of old-growth forest, or several
smaller fragments of the same total area?

Is adding a hahitat patch o the reserve system better than enhancing hab-
itat corridors to increase dispersal among existing patches?
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We will discuss the components of PVA with a hypothetical example based
on the metapopulation dynamics of the California Gnatcatcher {Polioptila c.
californica), which is a threatened bird species. The California Gnatcatcher
has declined due to extensive agricultural and urban development of coastal
sage scrub, the species’ primary habitat type in southern California and
northwestern Baja California {Atwood 1993). Tt was listed as threatened
under the UJ5. Endangered Species Act in 1993. For our hypothetical
example, let's evaluate the effectiveness of a specific conservation measure.
This might be, for example, increasing the amount of suitable habitat by
removing exotic (introduced) species of plants. 80, we want to know how
much effort should be spent to increase the persistence chance of the species
over the next 50 years, and where (in which habitat patches) these efforis
should be concentrated,

The identification of the problem and the specific management opticas
determine the model structure to use (Step 2 in Figure 7.4). The most appro-
priate model structure for a population viability anslysis depends on the
availability of data, the essential features of the ecology of the species or
population, and the kinds of questions that the managers of the population
need to answer.

In our case, the question concerned which habitat palches to imprave,
and the available data showed that the species lives in several habitat
patches. These suggest a metapopulation approach. The question also sug-
gests that we need to know how the parameters of the model will change
with improved habitat. Let’s assume that improved habitat will both
increase the growth rate of the population, and its carrying capacity.

The next step is to estimate the model parameters with field studies (and
sometimes experiments). The kind of parameters that need to be estimated
will depend on the model structute, and the type of data already available,
In gur example, we need to first determine the geographic configuration of
habitat patches (Figure 7.5) and their camrying capacities. We aiso need to
lnow the growth rate and its variation, the correlation of environmental
fiuctuations and the rate of dispersal among populations. In addition, we
need to find a way to relate the amount of management effort {e.g., the aren
from which the introduced plants are removed) to improvements in the
population parameters (growth rate and carrying capacity),

For most PVA studies, this is the limiting step, because data are often
insuffident. However, if a decision will be made no matter what, it is better if
the decision-maker has some input fram a PVA, even if the data are not per-
fect. If a parameter is not known very well, then a range of numbers can be
used for that parameter instead of a single number, For example, if the
average dispersal distance of California Gnatcatchers is about 3 km, but is
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Figure 7.5. The spatial structure of a Califomia Gnatcatcher {Pofiop-
tila c. californica) melapopulation In Orange County, based on the
distribution of suitable habitat (after Akcakaya and Atwood 1887).

not known accurately, we can use a range of 2 km 1o 4 km, These ranges ¢can
be used in a sensitivity analysis (see below), similar to the one you did in
Exercise 2.4 (in Chapter 2).

When there is not enough data for a particular rare or threatened specics,
some studies use data from a more cormmon {thus better studied) species in
the same genus or family. In some cases this may be reasonable, but enly if
the "borrowed” data are limited to general life history characteristics, such as
whether to use age or stage structure. It does not make sense if the data
include vital rates or numerical values of any other parameter. If the two
species were so similar that you could use vital rates from one species to
mode! the other, it is unlikely that one would be rare or threatened and the
other one common.
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7.3.2 Modeling, Risk Assessment, Sensitivity Analysis

Building a model combines the existing information into predictions about
the persistence of species under different assumptions of envirormental
conditions and under different conservation and management options (Steps
4 and 5 in Figure 7.4). When building a model, it is important to keep a list of
assumptions made. Models that lock very similar may have different
assumptions. Suppose, for example, that a model uses an observed distribu-
tion of individuals among age classes that happens to be close to the stable
age distribution (Chapter4). Ancther model assumes a stable age
distribution. Although the resultis the same, it is still important to remember
that the first model’s age distribution was based on data, and the second’s on
an assumption,

The structure of the modal and the questions addressed usually deter-
mine haw the results will be presented. In most cases, the model will include
random variation (stochasticity), which means that the results must be
presented in probabilistic terms, ie., in terms of risks, probabilities, or likeli-
hoods. For example, the risk curves that we have been using in previous
chapters provide a convenient way of presenting results of a simulation.
Often, the model must be run many times, with different combinations of the
low and high values of each parameter to make sure that all uncertainty in
parameter values is accounted for. This provides a way to measure the sen-
sitivity of results to each parameter. Sensitivity analysis (Step 6 in Figure 7.4)
i3 useful for determining which parameters need to be estimated more
carefully. If, for example, the risk of declire is very different with the low
value and high value of adult survival rate {Figuce 7.6}, then the results are
sensitive to this parameter, and we can conclude that future field studies
should concentrate on adult survival rate in order to estimate it more accu-
rately. This feedback from modeling to field work is represented by an arrow
from Step 6 to Step 3 in Figure 7.4.

7.3.3 Cost-benefit Analysis

When simulations include those with different management options, sensi-
kivity analysis also gives information about the effectiveness of these options.
For example, if we identified 3 patches where habitat for the California
Gnateatcher could be improved by human intervention, we could simulate
the effect of improving habitat at each of these patches, plus at each pair of
them, plus at all three, This would give us 7 alternative management actions,
in addition to the option of no action. We could then rank them in order of
increasing effectiveness. For this example, we might expect that the larger
the area where habitat is improved, the lower the extinction risk of the gnat-
catchers. The obvious choice is to improve the habitat in all three patches. In
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Figure 7.6. Sensttivity of the risk of decline of the Califomia Gnatcatcher
melapopulation to adult survival (S,). The curves show the probability of
falling below the threshold within the next 20 years with iow and high esti
mates of 5,. The verdical line shows the largest dilfsrence between the two
rigk curves (based on Akgakaya and Alwood 1887).

reality the choices are much less ocbvious, because improving all three
patches may cost more than what is available for Califomia Gnatcatcher
habitzt management; this means we need to consider the costs as well, We
could rank the 8 options with respect to both their benefit {reduction in risk
of extinction) and with respect to their cast (Figure 7.7).

It is important to note that, in this graph, the cost of each management
opton (in units of currency) and its benefit {in units of risk) are in different
axes. If, instead of analyzing the effect of habitat management on a threat-
ened species, we were aralyzing the expected return from different
investments, both cost (investment) and benefit (expected return) could be
expressed in monetary units {after perhaps some modification to account for
uncertainties, inflation, etc.). We could then divide the benefit by the cost for
each investment option and find the option with the highest benefit:cost
ratio. This approach might also be applicable in the management of natural
respurces where the extinction of the resource s nat likely (we will discuss
such cases further in the next chapter). We cannot do this in the present case,
because it is not possible to put a monetary value on the existence {or extinc-
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Figure 7.7. Risk of extinction of a hypothetical metapopuiation with no
mapagemsnt ("no action® cplion}, and under 7 management oplions
{which involve improving the habitat in one, two, or all three of the
threa habitat patches, A, B, and (). The options are in order of
increasing cost from left to right.

tion) of a species, much as it is not possible to put a monetary value on
human life. Although there are attempts to do just that, it is cbviously a
matter of value judgment, and each person will make the judgment in a dif-
ferent way. The way we used the benefit and cost information in Figure 7.7
(by keeping the units separate) sidesteps this problem of subjectivity by
deferring it (as we shall discuss below).

A cost-benefit plot such as Figure 7.7 can be used in two different ways.
First, the maximum amount of money that couid be spent might be fixed
(represented by the vertical dotted line}. In this case the analysis could be
used to select the oplion that gives the fowest risk. Conversely, the risk level
that is targeted might be fixed {represented by the horizontal lines that cor-
respond to TUCN's risk-based criteria). In this case, the analysis could be
used to select the least costly option that meets the target The target might
be, for example, to move the species from the "endangered” category to
“lower risk” category. In either case, the resulls of modeling are used to select
the oplimal management plan (Step 7 in Figure 7.4), under the particular set
of conditions.
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Different types of management might be represented by different curves,
For example, we might also have the option of decreasing the risk faced by
the gnatcatchers by reducing the cowbird populations that parasitize their
nests, As we discussed in the previous chapter, cowbirds lay their eggs in the
nests of other birds, which then raise cowbirds instead of their own young. If
we had the option of removing cowbirds from a number of paichey, we
would end up with a different cost-benefit curve. These curves might inter-
sect, which means that the best management option (habitat improvement,
cowbird removal, or a combination) might differ depending on the .total
amount of resources available for management. We will explore this further
in the exercises.

As you might have noticed, the selection of the management option car-
ries subjective value judgments, even though we tried to avoid them.
Somebody still must decide how much money to spend to reduce the risk
faced by gnatcatchers (as opposed to other species, or, say, as opposed to
improving water quality for human consumption). Or, somebody has to
decide what the target risk level will be. However, these questions areclearly
outside the scope of PVA, ur any other scientific and technical analysis. Pop-
ulation viability analysis can be used to inform the decision-makers,
politicians, and the public about the consequences of various actions and
nonactions, but cannot (and should not) be used alone to make these societal
decisions.

7.3.4 Implementation, Monitoring, Evaluation

With the selection of the best course of action under a given set of conditions
{Step 7 Figure 7.4), the function of modeling is completed, but only lempo-
rarily. The next step is the implementation of the plan (Step 8}. It is important
that the field studies continue during and after the implementation to
monitor the species (Step 9). The results of monitoring can give valuable
information about the response of the species to management, as well as
provide more data to refine model parameters and improve the model
{5tep 10). For example, we might discover, upan evaluation of demographic
data after the implementation of the plan, that gnatcatcher vital rates
increase faster than predicted in response to removal of cowbirds, but the
carrying capacity responds slower than expected to the improvement of the
habikat. Such a finding would definitely require medifying the model,
refining its parameters, and re-estimating the extinction risks under different
management options.
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7.4 The limits of population viability analysis

Managing risks for natural populations is concerned with allocating
resources to wildtife conservation. These resources are scarce because com-
mitment of resources to conservation results in economic trade-offs to the
rest of soclety. If our decisions are emotive, we face the possibility of
inefAciency in using resources with the consequent loss of species that might
ctherwise have been avoided. The best way to address this problem is to
apply methods that result in quantitative evaluation of risks for natural pop-
ulations. We can use these results to underpin management decisions.

Thus we might, by consensus, define an acceptable level of risk for the
extinction of species. We could then use this benchmark to help allocate con-
servation resources. An assessment of the risks faced by species will tell us if
they are above or below the acceptable level of risk and if the risks are too
high, we will manage the population in such a way as to reduce the risks.

As we discussed above, decisions involving “an acceptable level of risk"
or "benchmark risk” are outside the scope of PV A. Population viability anal-
ysis can, for example, inform the public about the risk faced by the northern
spotted owl if the logging of old-growth forests continues, versus the risk if
the logging is stopped. But if cannot be used to compare the trade-off
between the long-term persistence of a species and the loss of logging jobs,
ot to compare the responsibilities of the soclety to those who locse logging
jobs versus those laid off by an airline, telephone or computer company.
However, other methods (related to modeling harvested populations) we
explored in previous chapters might be used to explore whether the logging
jobs weuld be lost even with continued logging, abeit 5 or 10 years later. We
will further explore decisions involving the management of natural
resources in the next chapter.

Mark Shaffer, in a thesis published in 1951 that is one of the foundations
of modern conservation biology, distinguished between "systematic pres-
sure” and “stochastic perturbation™ as causes of pepulation extinction.
Graham Caughley in 1994 differentiated between the “small-population
paradigm” dealing with stochastic influences on small populations, and the
"declining-population paradigm” dealing with the (largely deterministic)
ecological causes and cures of population decline. He suggested that the
principal contribution of the small-population paradigm is the theoretical
underpinning it provides to conservation biology, even though the theory
bears tenuous relevance to the problem of aiding a species in trouble,

This claim has been used to suggest that population viability analysis is
limited to modeling stochastic influences on small populations, and ipnores
the ecological causes of most systematic declines by assumning constant or
stationary conditions. Mark Boyce in 1992 noted that the distinction between
deterministic and stochastic processes s artificial because all ecological pro-
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cesses are stochastic. Both processes can and should be included in models.
The processes of systematic pressure, thought of as "deterministic,” can be
modeled in the stachastic models we have developed in previous chapters,
with a growth rate that is less than 1.0, or a carrying capacity that is declining
in time, or both.

Obviously models can and do incorporate deterministic decline, human
caused factors, external influences and the effects of habitat loss. The chal-
lenge that population ecologists take when they build a model is to express
all these effects in terms of the viability of the species, expressed for example
as the risk of extinction. The set of ecological factors that can be included in a
maodel is limited only by data and by one’s imagination. 1f an ecologist has
ideas concerming the forces that govern the chances of persistence of a pop-
ulation, then they can and should be included in the model, irrespective of
their origin, and irrespective of their deterministic or etachastic nature
{Akgakaya and Burgman 1%5).

As Caughley {1594) correctly pointed out, no modeling effort by itself
can determine why a population is declining or why it has declined in the
past. For modeling to be successiul in evaluating optiens for management of
speches, it must be part of a larger process of PVA, which must incorporate
other methods, including study of natural history, field observations and
experiments, analysis of historical and current data, and long-term moni-
toring. Any model entails assumptions about the ecology of a species. A
model may assurne that some or all of the mechanisms generating historical
data remain unchanged in the future, If the model structure is incorrect or
inappropriate for the species in question, serious errors in prediction are
likely. Errors, together with uncertainties, are magnified into the futute with
each time step, so usually only a few time intervals can be predicted with
any cerlainty. The omission of an important process such as loss of habitat,
competifion, or predation from introduced species, impacts of disease or
parasites, or the impacts of rare catastrophic events, may substantially affect
what is bestto do to manage a population to avoid extinction. The ecology of
species and the role of management should be, in the words of Mark Boyce
{1992). the nuts and belts of modeling exercises.

Of course, such considerations raise the issue of data availability. Data
deficiencies plague atterpts at building models aimed at solving real-world
problems. Even the simpiest models require more parameters than are usu-
ally available. On the other hard, frequently we need to incorporate a
multitude of factors (related to, for example, the behavior of and future
changes in human populations and their effects on habitat). We will never
have a "complete” data set for any species. However, incomplete information
does not mean that meaningful results are impossible to obtain. For there is
very significant value in building a model for its own sake. Tt clarifies
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assumplions, inlegrates knowledge from all available sources, and forces us
to be explicit and rigorous in our reasoning. It allows us to identify, through
sensitivity analyses, which model structures and parameters matter, and
which do not. it resutts in a set of logical statements that are internally corn-
sistent, and it atlows us to explore the consequences of what we believe to be
true, even in the absence of relevant, complete data. The onty rule is that
people who use a model (whether computer-implemented or not) should be
aware of its assumpkions and limitations, and communicate these logether
with the results.

The human population makes itself felt Targety through the destruction
of habitat of other specles. The consequent decrease in natural population
sizes adds to the other factors thal tend to drive species to extinction such as
competition, predation, disease, extreme environmentat conditions, and the
deleterious effects of inbreeding in small populations. Risk assessment and
TV A are essential if we are to allocate scarce resources to conservation and
wildlife management as efficiently as possibte, thereby minimizing the
number of species that witl become extinct.

7.5 Exercises

Exercise 7.1: Habitat Management for Gnatcatchers

In this exercise, you wilt analyze the effectiveness of a management option
for the California Gnateatcher metapopulation we discussed in this chapter.
The exercise is based on a model that is simplified from Akqakaya and
Atwood (1997); it does not inctude several features of the original model,
such as stage structure, catastrophes (fires and harsh winters), density-
dependent dispersai, and Allee effects. The exercise is meant only as a
demonstration of the concepts and methods explored in this chapter.

Step 1. Start RAMAS EcoLab, select the "Multiple populations” program,
and open the file CalGnat MP. Inspect the parameters for cach population
and the map of the metapopulation. Notice that most of the gnatcatchers are
in two large patches, #5 and #10. Run the model. The simulation may run
faster if you tumn off the display of the map. If you have a very slow com-
puler, you can stop at 300 or 500 reptications.

Save the modet and results {you can use the same filename). tnvestigate
the results and record the risk of falling to 100 individuals within the next 50
years.

It might be difficutt to read the precise vatue of the risk from the screen
plot. Do the following to record this number precisely:
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Click the "show numbers” button (the second button from left on top of
the window), and scroll down the window to where you see "100" in the first
column. Record the probability that corresponds to this threshotd, level. If
100" is not in this table, then click the third button on top of the window
("scale”). You will see a window wilh various plotting parameters (the exact
numbers may be differeat in your simulation).

Title: Extinction/Dacline
& Autoscate (checkad)
X-Axis Labal; Threshold
Minimum: 4]
Maximum: 762
Y-Axis Label: Probabliity
Minimum: 0.00
Maximum; 1.00

First, uncheck the box next to "Autescale” by dicking on it. (This makes
the program use the values entered in this screen instead of automatically
rescaling the axes.) Second, change the maximum value of the x-axis to the
threshold {in this case, 100). Third, click OK.

Seroll down the table. The last line of the table will give the threshold
(100), and the probability of reaching or exceeding that threshold. Record
this probability (risk of falling to 100 individuals). This is the risk without
any management.

Step 2. California Gnatcatcher has declined cue to the loss of coastal sage
scrub, its primary habitat type in southem California. As we discussed in the
previous chapter, habitat loss usually results in discontinuities in the distri-
bution of the remaining habitat. Often, one of the consequences of this
fragmentation is increased edge effects. In this exercise, we will assume that
increased edge effects cause increased parasitism of gnatcatcher nests by
cowbirds (see Section 6.1.2), which causes a decrease in gnatcatcher popula-
tion growth rate. The management option we will explore in this exercise is
based on the possibility of increasing growth rate by the removal of
cowbirds. How much increase in growth rate can be achieved depends on
the amount of effort, which in turn determines the funds necessary for this
management project. We will assume that the management effort is forused
on the two largest patches, and the cost of the management program to
achieve three levels of increase in growth rate in these populations is given
by Table 7.3 below.
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For each of the three options, sstimate the risk of falling to 100 individ-
uals within the next 50 years. To do this for each option,
(1) Siart with the model you saved in the previous step.
{2) Select Populations from the Model menu.
{3) In the list on the left of the window, click on "Pop 5."
{4) Increase its growth rale (see table below).
(5) Select population 10, and increase its growth rate,
{6) Save the model under a different filename.
(7) Run the model and save the model again, this time with results,
{8) Estimate the risk of a decline to 100 individuals (see Step 1).
(9) Enter the risk in the table below.

Table7.3. Cost of each management action and its effect on
prowth rates

Option  Growth rates of Cost Risk
pop.5and 10 ($1000)
{no action) 0.98 J
A 101 100
B 1.04 200
C 1.07 300

Step 3. Based on your estimates in the previous step, which of these three
options would you recommend:

{a) if the target of the management plan is to decrease the risk to less than or
equal to 0.6 {i.e., 60%) with minimum cost?

{b} if the target of the management{ plan is to decrease the risk to less than or
equal to 8.37

{c) if the target of the management plan is to decrease the risk to less than or
equal to 0.17

Exercise 7.2. Comparing Management Options

In this exercise, we will use the gnatcatcher model we used above to com-
pare the results of the previous exercise with those for another type of
management. We will assume that this management plan divides the
available resources between two types of management activities. First, it
involves habitat improvement, which results in an increase in carTying
capacities every year. We will model this using the "Temporal trend in K"
parameter in the Populatiens screen (click the "Help” button for information
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on this parameter}. Second, it involves cowbird removal as above, but only
in years of high cowhird densities. The strategy is based on the assumption
that the average growth rate is most effectively increased by preventing the
lowest growth rates. Becuase it does not change all growth rates, this
strategy cannot increase the average growth rate as much as the previous
type of management, but it can also decrease the standard deviation of the
growth rate, We will model this by increasing R and decreasing the standard
deviation of R in Populations, All three types of changes are again restricted
to the two largest papulations. Table 7.4 gives the cost of this management
plan at three levels of effort. "

Table 7.4. Cost of each management action and its effect on

dynamics of population 5 and 10.
Changes in parameters Cost
Option of populaticn 5 and 10 (x$1C00) Risk

Growth Standard Temporal
rate (R} devialion trendinK

of R
D 1.00 0.30 2% of K 100
E 1.0 0.28 I of K 200
F 1.02 0.26 4% of K 300

Step 1. For each of the three options, estimate the risk of falling to 100
individuals within the next 50 years. Te do this for each option,
(1) Start with the model in CalGnat MP.
{?) Select Populations.
{3) Select (highlight) population 5.
{#) Increase its growth rate, decrease the standard deviation of R, and calcu-
late and enter 2%, 3%, or 4% (see table above) of its carrying capacity for the
parameter "Temporal trend in K" {e.g., for option D, calculate 2% of the
carrying capacity, and type that number; don’t type "0.02" or "2%").
{5} Select population 10, and make the corresponding changes (for "Tem-
poral trend in X," use the same percentage, which should give a different
number).
{6) Save the model under a different filename.
{7) Run the model, and save again, this time with results.
{8) Eestimate the risk of a decline to 100 individuals (see Step 1).
(9) Enter the risk in the table above,
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Step 2 Use the following graph to plot the cost and the estimated risk for
each of the 6 options (including the three options from the previous exer-
cise}, Connect the options A, B, and C with a solid ling, and connect options
D, E, and F with a dotted line.
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Step 3. Considering all 6 options, which would you recommend:

{a) if the target of the management plan is to decrease the risk to less than or
equal to 0.6 {i.e., 60%) with minimum cost?

(b) if the target of the management plan is to decrease the risk to less than or
equal to 0.3?

(c) if the target of the management pian is to decrease the risk to less than or
equal to 0.1?

(d) if there is only $100,000 available for the management of gnatcatchers?
(e} if there is only $300,000 available for the managemeni of gnatcatchers?

Exercise 7.3: Habitat Loss and Fragmentation

In this exercise, we will explore various ways the effects of habitat loss and
fragmentation can be modeled in a PYA. The two-population metapopula-



Exercises 239

tion depicted in the left figure ("before”) is fragmented by the construction of
a road and becomes a three-population metapopulation {right figure,
“after”).

AFTER

Step 1. Start RAMAS Ecolab, select the “Multiple populations” program,
and open the file 2-Pop.MP. Inspect the input parameters (under the Model
menu) and the map of the metapopulation. Run a simulation, and record the
tisk of declining to 20 individuals (4% of total initial abundance). Save the
file.

Step 2. Open the file 3-Pop MP. Compare the input parameters and the
map of the metapopulation to those of 2-Fop MP. What are the differences?
Run a simulation, and record the risk of declining to 20 individuals. Save the
file.

Step 3. In the model in 3-Pop.MP, the sum of the initial abundances of
the two new fragments is the same as belore the fragmentation. The sum of
their carrying capacities is also the same as before. However, this is not very

_realistic. The road construction does not just make two populations out of
one population, it also reduces available habitat. Model the habitat loss as a
20% reduction in the carrying capacity and the initial abundance ol the two
fragments. Run a simulation, and record the risk of declining to 20 individ-
uals. Save the model in a new file (i.e., use "Save As").

Step 4. Fragmentation can also cause a reduction in survival and fecun-
dity of populations, because of edge effects. Model these as a reduction in
population growth rate from 1.04 to 1.00 for the two fragments. Run a
simulation, and record the risk of declining to 20 individuals. Save the model
in a new file (i.e., use "Save As").
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Step 5. What i3 the total increase in the risk of decline to 20 individuals,
when all the factors are incorporated? How different is this result from a
comparion based only on the number of populations? Whai other factors
that we did not consider might be involved? How could these be incorpo-
rated into a PVA?

7.6 Further reading

Boyce, M. 8. 1992. Population viability analysis. Armmual Review of Ecology and
Systematics 23:481-506.

Caughley, G. 1994. Directions in conservation biolagy. Journal of Animal
Ecology 63:215-244.

Shaffer, M. L. 1981, Minimum population sizes for species conservation.
Bioscience 31:131-134.

+ Shaffer, M. L. 1990. Population viability analysis. Conservation Biology 4:

39-40.



Chapter 8
Decision-making and Natural

Resource Management

8.1 Introduction

This chapter, like the previous one, deals with aspects of applied population
ecology that benefit from the application of population modeling and risk
assessment. Our focus here is the role of uncertainty in environmental
decision-making, and the managemen! of natural resources. Population

241
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ecology is coming to terms with the fact that uncertainty and natural vari-
ability place a veil over all of cur predictions. Some of this uncertainty is
reducible and some is not, either because of practical constraints or because
the source of the uncertainty is such that it js inherently unremovable. The
community of people who make day-to-day decisions about wildlife and
natural resource management are, by the nature of the environment in which
they work, involved in risk assessment and risk management. In_this
chapter, we discuss_how variability and uncertainty mav affect decisions
about environunental impacts and the management ¢ of natural resources, and

the importance of dealing w1t‘n economlc and smal factors in making nat-

8.2 Detecting impact

In this section, we consider issues related to the detection of environmental
impacts. These issues have a slightly different focus than the modeling
approach of the earlier chapters. Nevertheless, these issues have important
implications for many problems addressed by applied ecologists. For
example, if we want to model the viability of a species under a particular
human activity, we need to know if the survival rates, fecundities, dispersal
rates, or other model parameters are affected by this activity. This is done by
analyzing data from impacted and nonimpacted areas and looking for dif-
ferences. Such analyses often involve testing hypotheses. When an
explanation for a phenomenon is proposed, a study is designed to test its
veracity. For example, suppose that the cause of low egg count {a measure of
fertility) in a fish population is thought to be pollution from a factory. A
study designed to test this hypothesis might involve sampling fish from
polluted and unpolluted rivers and counting their eggs. Suppose the mean
egg count is lower in the poliuted river. One possibility is that this difference
is due to chance. These data are likely to show variation due to individual
differences, so there will be some overlap between the measurements from
the two rivers. The higher the variation {(compared to difference between the
mearns) the less reliable will be our conclusions. Thus, we might get two dif-
ferent means just by chance. We call this possibility the "null hypothesis.”
The other possibility is that pollution actually lowers fertility, and fish in
polluted rivers have lower fertility. We call this explanation the “alternative
hypothesis "

Because uncontrolled variation is present in the natural world, we apply
an arbitraty eriterion for such tests. If the chance of observing a result as
exireme or more extreme than the results of the experiment is less than 5%,
we accept that the results are "unlikely" to be the product of chance alone. In
such cases, we are prepared to accept that the explanation {the alternative
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hypothesis) is true, and take a risk of up to 5% that the explanation is
actyally wrong. For examp!le, the above study may conclude that there is less
than 5% chance that the difference is due to chance, and not due to potlution.
By considering this result to be "significant’ in a statistical sense (ie.,
accepting the hypothesis that fertility is lower in the polluted river), we are
accepling a 5% risk of making the wrong conclusion.

Thus, one time in 20, we will accept the alternative hypothesis even
though it is false, because one time in 20 the results we observe will be
extreme by chance alone (this is called a Type 1 error). We could make the
acceptance criterion more stringent, say, 1% or 0.1%. The reason that we are
prepared to accept 5% is that we don’t want to throw the baby out with the
bathwater. If we set the acceptance level at 0.1%, we would reject many
explanations that are in fact correct. Natural variation masks the effect of the
explanation so that it is often difficult to substantiate something at small
probabilities. For example, we may assume that fertility is not lower in the
polluted river, even though it actually is. This kind of mistake is called a
Type 1l error (Table 8.1). The "power” of an experiment to detect a given
impact is inversely related to the probability of committing a Type I error;
the more powerful the test, the less likely it is to erroneously conclude that
there is no impact, when there actually is.

Table 8.1. Typeland Il errors in an environmental impact assessment.
State of the world

Impact No impact

Significant correct Typel
Result impact detected errar

of test  No significant Type Il correct
impact error

Decisjons about the management, regulation, and conservation of pop-
ulations frequently are based on statistical tests. For example, we test the
hypothesis that the effluent from a factory has a detrimental impact on a fish
population, or that imber harvesting adversely effects the survival rates in a
bird population. If we accept the explanation (that there is an impact asso-
ciated with the industry), it may result in the closure of the factory and a loss
of jobs, or a change to more expensive harvesting practices with consequent
costs for individua! operators. If the conclusion was wrong (a Type [ error),
the curtzilment of these productive activities may have been unwarranted.
The local economic and soctal hardship that follows such decisions may have
been avoided. On the other hand, we may reject the explanation and con-
clude that there ks no impact. Life would go on and there may even be tacit
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approval for further development in the form of factory enlargement or
more extensive harvesting. If this conclusion was wrong {a Type I error),
there will be environmental degradation before the impact is detected.

In_questions of environmental management, failure to reject the null
hypothesis (no impact) is sometimes treated as synonymous with the con-
clusion that there has been no impact. If we fail to detect an impact, it may be
that we haven't Erfonneglﬁghg appropriate experiments or did nat have
sufficient sample sizes. The result will be a Typell error. Such errors may
involve biologieally important outcomes that lead to things such as the col-
lapse of a fishery or a substantial reduction in the natural distribution of a
species that depends on old growth forest. Any erroneous conclusion is
cause for concern, but traditional approaches to slatistical inference concetn
themselves almost exclusively with Type I error rates.

The problem with the traditional approach is that it leads to a kind of
blinkered view of environmental management. If we fail to see a ,problem

we ccnclude that there s mo Eroblem The burden of pmof lies with regu-

an mterest in protecting the ¢ envronment @ ‘a result the rate pf
development and environmental impact may largely be determined by the
availability of resources that are devoted to the detection of environmental
problems, If there are more resources, larger studies _'sﬂy_bg conducted and
more impacls detected. If resources are low, smaller sample sizes and insuf-
ficient monitoring will lead to fewer detections. An industry that undertakes
ils own monitoring studies {and there are many that do) will experience
relatively few impediments to development if it does not allocate sufficient
resources to assure a sound experimental protocol.

If an impact is detected, it is also relevant to ask if the impact is impor-
fant. On the one hand, a statistically significant effect may pe ecologically
unimportant. In the above example, if the decrease in fertility due to
pollution is small and the dynamics of the population are density-
dependent, it may have no important consequences for either expected
population sizes, or the risks of decline or inarease in the population. On the
other hand, a seemingly small effect may have important consequences for
long-term viabilily. For example, a small decrease in the survival rate of
breeding birds in a harvested forest may substantially increase the risk of
extinction.

8.2.1 Power, Importance, and Significance: An Example

Consider the following example in which a government agency is charged
with ensuring sustainable use of a natural forest. Sustainability is not clearly
defined, but there are a few things that the public view as essential compo-
nents of sustainability. One of these s the maintenance of representative
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populations of fauna that depend on the forest. A question is raised by a
conservation group <oncerning the impact of harvesting on a threatened
arboreal mammal. The industry suggests that it will modify its harvesting
practices to accommaodate the species. It plans to retain structural forest ele-
ments in a pattern and at a scale that match what is known about the niche
requirernents of the species, The government agency chooses to performn an
experiment in which five areas are harvested using the modified technigues,
and five areas are left untouched. Each area includes the territory of a single
pair and each pair produces an average of one offspring per year, There are
no direct estimates of survival rates but based on their body size and
ecology, the animals are unlikely to live longer than 20 years. The investi-
gator retumns the following year and counts the number of offspring
produced by the 10 pairs of animals. There is no statistically significant
difference between the average numbers of offspring per territory in the
harvested and unharvested areas. The investigator concludes that the
experiment demonstrates that the new harvesting techniques are compatible
with the conservation of the species in managed, harvested forests.

Is there anything amiss? By choosing to express the outcome as a "dem-
onstration” of compatibility, the agency has assumed the mantle of the
conventional approach to statistical inference. No impact was detected,
therefore, there is no impact. If your job was to decide whether to permit
harvesting in areas that are suitable habitat for the species, could you con-
clude that the modified harvesting techimiques pose no substantial threat to
the species? We can return to models as simple as those developed in
Chapters 1 and 2 to answer this question. If we take the available informa-
tion, we can assume that the fecundity is 1 offspring per pair and the initial
population size is 5. We will ignore survival as the study is phrased in terms
of fecundities, although we could assumne survival is about 0.95. Figure 8.1 is
the probability distribution of the number of offspring from 5 lterritories,
assuming no adult deaths and na environmental variation.

The medel accounts only for demographic uncertainty in the fecundity
rate and ignores all other forms of uncertainty that may contribute to exper-
imental noise and experimental error. Nevertheless, there is a 4% random
chanee that five pairs will produce a total of none or one offspring. There isa
12% chance that they will produce a total of fewer than 3 offspring. These
probabilities are in the absence of any impact. Assuming that the forest har-
vesting activities affect ordy the mean fecundity rate, the study is likely to
report a significant difference between the controls (the areas not harvesled)
and the treatments {the harvested areas) only if the five pairs in the treated
areas produce a total of fewer than 2 offspring (because the probability of
this event is 4%, which is just below the traditional significance level of 5%).
If this happened, it would be considered "unlikely” to be the result of chance
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Figure B.1. The probabillties of different lotal numbers of offspring
from a population of five pairs of animals, assuming a mean of { aff-
spring per pair sampled from a Paisson distribution.

alone, and we could, according to traditional protocol, accept the altemmative
hypothesis that the harvesting had affected fecundity. Otherwise, conven-
tion dictates that we should accept the nuil hypothesis.

The five pairs in the treated areas are likely to produce a tolal of none or
one offspring, only if their mean fecundity is reduced a lot. In other words,
the test is capabie of detecting only the most extreme impacts. Even if the
fecundity in the treated population were reduced by half, it is unlikely that
the test would detect the impact. But we have seen in many of the models
above that a 50% reduction in fecundity may have very important conse-
quences for the expected population size and the chances of decline of a
population.

Of course, if we had unlimited funds, we might increase the sample size
in both the treatments and the controls, thereby improving the power of the
test. Given a very large sample, the test may be adequate to detect very small
changes in mean fecundity. The detection of a statistically significant impact
would net imply a biclogically important impact. A reduction in the mean
fecundity of, say, 1%, may have no discernable impact on expected poputa-
tions or chances of decline. Such an impact may be worth the rewards that
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flow from harvesting the timber, even in terms of nonutilitarian values. For
example, royalties from timber harvesting may fund a program lo eradicate
a feral predator, more than outweighing the detrimental impacts of har-
vesting. Thus, a solution to the problem outlined zbove is complex. Tt
involves consideration of the practicalities of increasing sample sizes,
collecting further information, and weighing the costs of potential impacts
on a threatened species against the costs of deferred access to a commercial
resource. These have ecological, economic, social, and political ramifications.

Methods have been suggested that allow the joint consideration of Type 1

and Type 1T errors (see, for example, Bernstein and Zalinski 1983, Mapstone
1995). In doing so, we may spec}.fy the maximum impact that we are pre-

pared to tolerate. This would, in_turn, determine the experimental and
monitoring effort necessary to determine if there is an impact. The details of
such approaches are beyond the scope of this baok. Howeve, if such appli-
cations are to be made, it will be essential to develop ecological models that
encapsulate the dynarmcs “of pe populahons so that the limits of acceptable

impact may be established.

8.2.2 The Precautionary Principle

The above example emphasizes the reed for a balanced approach to envi-
ronmental management that accommeodates the needs of society and the
potential for damage to the environment. The notion of the cautious use of
the envirorunent is not a recent phenomenon. The precautionary principle
was first defined and applied in West German environmental legislabion in
the late 1960s (WCMC 1992). Generally, it may be defined as "Where there
are threats of serious or irreversible environmental damage, lack of full
scientific certainty should not be used as a reason for postponing measures
to ptevent environmental degradation” (IGAE 1992). The principle implies a
shift in the onus of proof from regulators and managers to developers pro-
posing an action that may have an adverse impact on the environment, to
demonstrate that the impact is absent, negligible, or worthwhile. _

Some commentaries have suggested that obtaining proof that propusals
would cause no damage is logically impossible, and that even the most
ardent regulatory authority would be unlikely to make such a totally unat-
tainable demand on developers. Almost all commentaries on sustzinable
environmental use agree that good management practices raise our chances
of coping with unforeseen environmental threats and enhance our ability to
maintain and improve the quality of existing environmental resources. The
idea of the precautionary principle is not that proof be provided that the_re_ is
no damnge Rather, the intention is to provide sufficient evidence s that any

impacts that do occur are likely to be within acceptable bounds.
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8.3 Managing natural resources

In this section, we discuss various ways in which variability and uncertainty
affect decisions about the management of natural resources—specifically,
the management of harvested living resources. You have aiready dealt with
harvested natural resources in previous chapters. For example, in
Exercise 3.5, you explored the density-dependent effects of harvesting, and
in Exercise 4.4, you simulated management strategies for a Brook Trout
fishery. We begin our discussion with a hypothetical example that follows
one developed by Adam Finkel in 1994.

Extractive reserves have been established in Brazil to promote sustain-
able development and resource conservation. These are natural areas where
the government has granted rights fo resident human populations to harvest
such things as latex and Brazil nuts under established guidelines. Suppose
you corsider buying one hundred hectares of natural forest in Brazil for a
total investment of $50,000, The area is a designated extractive reserve
whezein you are obliged o harvest forest products sustainably (we wili dis-
<uss this requirement later). You wish to hold onto the land for 50 years and
you hope to make a profit. The hundred hectares supports & natural stand of
the commercially valuable palm Iriartea deltoidea, and the stems can be sold
for $10 each. There are 5,000 of these palms on your property. We'll assume
that you will sell all the palms at the end of the 50 years. You also know that
the environment is notoriously variable. While adult plants are mare or less
immune from variations in rainfall, the palms produce abundant seedlings
in wet years. In dry years, the palms are much less likely to produce recruits,
The question is, Is this a wise investment?

8.3.1 Predicting the Outcome

The agent for the sale argues that the natural variation in dimatic conditions
is beneficial for profit. The variation is so high that the growth rate of the
population Is 1 4 in good years and 0.7 in bad years. To simplify matters, let’s
assume there are only ever good or bad years, never any mediocre ones.
Given this amount of variability, the upper 95th percentile for the number of
stems at the end of 50 years is 168,162 (see Finkel 1994). The upper 95th per-
centile is a standard measure, telling you that the true value for the number
of stems is unlikely 1o be higher thar this, and is likely to be somewhat
lower. At $10 per stem, there is a 1 in 20 chance that you could make more
than one and a half mitlion doliars. The investment provides you with the
praspect of becoming relatively wealthy in your retirement. This is espe-
cially attractive when you think that this is not the absolute upper bound.
There is a chance {albeit somewhat smaller] of making even mare money.
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It may be imporfant to obtain a better estimate of the average expecta-
tion. You recall that the mean of a multiplicative process such as population
growth is given by the geometric mean of the individual rates. Thus, taking
the seller's scenario, a good year followed by a bad year will result in an
overall annual growth rate, R =v1.4x0.7=099. On average, you will lose
money on the investment. Each year, the number of palms will fall by an
average of 1%. If this continues for 50 years, and there are 25 good years and
25 bad years, the overall rate of change will be (1.4)® x (0.7)* = 0.603. This is
the median (or, the most likely outcome) of the distribution of 50-year pop-
ulation growth rates. The number of paims at the end of 50 years would be
5000 x 0.603 = 3,015, with a total value of a little over $30,000. Thus the value
of the palms in 50 years time will be almost 40% less than it is today. It would
seem to be madness to spend $50,000 on something that, on average, loses
$20,000.

The agent does not give up, and offers the following argument: "It is true
that half of the probability lies below $30,000 and half lies above $30,000.
However, the point is misleading. The consequences if the number of stems
exceeds $30,000 far outweigh the consequences on the other side of the
median. For example, it is equally Likely that there will be either 30 bad years
or 30 good years out of 50. But the windfall from 30 good years (number of
palms = 96,182) far exceeds the loss il there are 30 bad years {number of
palms = 94). One must weigh the chance of winning over $3960,000 against
the chance of losing $49,000. Both these numbers are egually likely. The cor-
rect way to look at the problem is to calculate the probability-weighted sum
of the costs or benetfits of the possible cutcomes. After one year, there will be
either 3,500 or 7,000 palms. The average of these numbers is 5250; thus the
pepulation is expected to grow on average by 5% per year, How can you
pass up an investment that on average will grow ko 573,000 by the hme you
plan to reap the rewards of the investment, sell up, and retire.”

By this point, you begin to wonder what to make of all these arguments.
Two of them make the investrnent seem a sure winner. The other makes it
seem like a looser.

8.3.2 Explaining the Uncertainty

All that can be said is that the investment is volatile. One can be reasonably
certain that the number of palms on the one hundred hectares will most
likely be between 54 and 168,162 (5th and 95th percentiles; see Finkel 1994).
Beyand that, it is not possible to be certain about anything. The mystifying
and superficially contradictory nature of the various estimates is caused by
the fact thaf the outcomes in the agent’s model are lognormally distributed
(Figure 8.2). When piotted on a logarithmic axis {as in this figure), the log-
normal distribution has a symmetric shape; when plotted on a linear scale it
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would be skewed to the righl. Because of the high variability, and the
skewed shape of the lognormal distribution, point estimates {or single-
number estimates) of the outcome, such as the median, the mean and the
95th percentile, may sound contradictory.

Once the kind of distribution of expected events has been characterized,
il is possible to paint a complete picture of the potential risks and benefils of
a decision. Thus, using Figure 8.1, we could reate a table, or a curve, of the
chances of there being less than a given number of palms. This way of
looking at the problem can be achieved simply by creating a cumulative
probability curve (Figure 83) by summing the values in Figure 8.2, in the
same way that we created risk curves in Chapler 2.

With the two curves representing the probability distributions of pop-
ulation sizes at the end of 50 years, it is clear that all of the information given
by the point estimates is accurate. Your estimate of the average outcome,
3,015 palm slems, is the median of the probability distribution, and it is alzo
the peometric mean. The range of "reasonable certainty” (between 54 and
168,162 stems) is the region between the Sth and 95th percentiles. The arith-
metic mean of the distribution is 57,300, a not unlikely event in the sense that
il is within the region af reasonable certainty.

These curves provide additional information. The cumulative proba-
bility curve tells you that it is more likely than not thal you will not recoup
your $30,000 investment. In fact, the chance of making a loss is about 60% so
the conclusion you reached after looking at the geornetric mean was qualita-
tively correct. The agent’s argument concerning the relalive weights of
different outcomes is also irue. Any outcome in the top 25% of the
distribulion represents gains that at least outweigh the maximum loss of
your $50,000 investment. The charce of doubling your investrnent is greater
than 20%. The chance of a 10-fold increase is better than 5% and the chance of
a 100-fold increase is about 1%.

There are no absolute rights or wrongs in making the decision. The
wisdom of the choice depends on how you, personally, would react to the
different possible outcomes. The question you should ask is, "How should 1
weigh a 60% chance of a loss against a 20% chance of a large gain?* If the
$50,000 is all that is keeping you from the poor house and a life of misery,
then the risk may not be worth it. If, on the other hand, the $50,000 is spare
change, you may view the investment as you would a raffle ticket. The risk,
in that case, might well be worth taking. You have te apply a kind of per-
sonal weighting factor. Costs and benefits, even when they both can be
measured in terms of money, are not linearly related to the value of the
investment. They are relative to your perception of, or the value you give to,
polential losses and returns.
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8.3.3 Model Uncertainty: The Importance of Detail

All of the arpuments presented by the agent were true within the limits of
the model in which there were only good and bad years. The problem was
simplified so that it could accommodate available data (the average and
variability of the growth rake), without making it unnecessarily complex. It
served to inform the discussion about the effect of variability on the expected
number of palms. In Chapter 2 we discussed the notion of model uncer-
tainty, the degree of simplification and the specification of structares that
relate the variable of interest (in this case, the number of palms) to the causal
factors (the weather). Has the simple structure of the agent’s model been
misleading? Could a more detziled model improve your understanding of
the problem?

There are several elements of biological detail that could be added to
provide a degree of realism. You know that the assumption of good and bad
years was made to simplify the discussion. Given that the production and
survival of seedlings is related to the weather, it would be much more real-
istic to sample the variation in survival and fecundity from distributions that
reflect the continuous nature of environmental variation. If the population
were to decline, demographic uncertainty might play a role in the chances of
various outcomes such as the Joss of the entire population. Because the
important component of environmental variation is concentrated on seed-
lings, the age or size structure of the population may be important. In 1993,
Michelle Pinard published the results of her research into the population
ecology of Iriarten deltoidea. Part of this research was a stage-structured
model for the species (Table 8.2). The models you will develop in the exer-
cises of this chapter, and the discussions in the following sections, are based
on Pinard's work, but the scenarias for such things as market prices, levels,
and paiterns of natural variation are developed for illustrative purposes.
This is not an accurate analysis for the species. It is intended only to provide
examples of the ways in which population ecology interacts with decision
making.

Table8.2. Transition matrix for . deltpidea from Altamira, Brazil (after

Pinard 1993).
<05m 055m 5-10m 10-15m 15-20m »>20m

<0.5m 0.794 1] 0 0.195 1.560 2.631
0.5-5m | 0.040 D814 0 o 0 0
5-10m a 0.037 0.896 0 0 0
10-15m | O 0 0.034 0.950 0 0
15-20m | 0 0 4] 0.050 0.940 0
»>20m 0 0 0 0 0.045 0.828
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The average growth rate of 2 population with these parameters is about 0.99,
the same as the average growth rate in the example proposed by the agent. If
we add the extra detail represented in Table 8.2, it allows us to explore some
of the consequences of the assumptions that were made in the preceding
discussion. We know from the simple model that variation may change your
pexception of the investment, particularly if you are not too averse to the risk
of losing your money, and if the chances of z large gain are reasonable. One
may add environmental variation b Pinard's (1993) model by specifying
standard deviations of variatien for the fecundity and survival rates. If the
model is implemented on a computer, it is relatively easy to generate proba-
bility curves for the chances of population increase and population decrease
during the next 50 years. )

A modicum of biclogical intuition tells you that it probably won't be
possible to fit 168,162 palms into 100 hectares. Palms that grow in densities
greater than about 500 per hectare are very likely to compete for soil nutri-
ents and light. This competition will be reflected in increased mortality, a
consequence of self-thinning. Thus, not all of the possible outcomes
suggested by the agent's model (Figure 8.1) are biologically plausible. Fur-
thermore, this is a natural stand, and the palms are not spread evenly over
the area as they would be in a plantation. They occur in chumps where
microsite conditions provide the appropriate niche. Lastly, you know that
trees are likely to self-thin, which can be modeled by a ceiling to the popula-
tior. In the exercises at the end of the chapier, we will build a model that
includes some of these biological details.

8.3.4 Strategies and Contingencies

Adding the biological details will make the model as plausible as it can be
made, given the current state of your knowledge. This model can then be
used instead of the simple {good-or-bad-year) model in evaluating the
investment. When making this evaluation, you can explore three types of
strategies for better managing this resource. These strategies may be used to
improve the prospects for the investment, rather than accept the difficul
choices that result from the scenarios above,

The first strategy concerns decision rules about the liming of the harvest.
In the above discussion, we assumed that you'd harvest the palms at the end
of 50 years. You could, instead, keep track of the number of palms each year,
and decide to sell the population before the 50 years are up. If the population
reaches a high value in 15 years, or 30 years, you could sell and take the
profit early. For this, you specify an upper bound and say that if the popula-
tion reaches this size, you will sell. In doing so, you state that there is a return
on the investment that will satisfy you. You decline the possibility of even
higher profil in return for reducing the chances that the investment will fail.
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If you set the upper limit at, say, 20,000 plants, you are saying that a four-
fold return on your investment is sufficient. The effect of the upper Limit will
be that you have no chance of making more than $200,000. The benefit of
foregoing the opportunity of large profits is that the left hand side of the dis-
tribution, the chance of failure, will be much reduced. Because you are
prepared to take profits early, there are fewer chances that you will fail,

The second type of strategy concerns the amount and distribution of the
harvest. There are many possible harvesting strategies that may be
employed to improve your chances of success. You cculd, for example, sell
all of the palms immediately, This way you guarantee that you will break
even, but you forgo any opportunity of making a profit. Another alternative
is that you might harvest a small number of individuals each year, 1o con-
tribute o running costs and to ensure that you take at least some return from
your investment before the 50 years are up.

If you harvest each year, you also need to decide whether to harvest a
fixed amount ot a proportion every year. We know from earlier chapters that
removal of fixed numbers of individuals generally destabilizes populations
in variable enviroruments, elevating risks of decline out of all propertion with
the number of individuals removed. It is generally a better strategy to
remove a fixed proportion of the population.

The third type of strategy concems the management of the resource to
improve its productivity. You may decide to invest additional capital to
modify the processes to reduce the risk of failure, or to increase the expected
size of the population. Por example, you may invest in seedling stock, artifi-
cially increasing the size of the population at the outset, or in an irrigation
system to water the plants whenever the weather is dry. We will explare
these in the exercises.

The unconditional investment that was explored using the agent's
simple mode! does not allow for making decisions (such as to harvest all
palms before the 50 years are up) in response to the run of chance events.
Nor does it allow the selection of alternative strategies related to harvesting
regimes and additional investments to improve the productivity. In general,
the presence of alternative strategies for management and responses ko con-
tingencies should make the decision about whether to buy or not somewhat
easier. By judicious selection of rules and response mechanisms, it should be
possible to develop a strategy that appeals to almost any investor.

8.4 The economic and ecological contexts of
natural resource management

50 far we dealt with uncertainties arising from the natural variability and
lack of data. There are also other sources of uncertainty that originate from
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the social and economic conditions under which natural resource manage-
ment decisions are made. In this section, we will discuss some of these
factors. For instance, price uncertainty is important. The calculations above
all assume that the palms will maintain the current net worth into the fore-
secable future. Markets for commodities such as timber and omamental
plants are almost as volatile as tropical weather. The chance of increases or
decreases in the relative price of the trees will weigh on any decision. Simi-
lardy, when making medium or Jong term predictions, there are other
implicit assumptions such as the gamble that there will be no political
upheavals that preclude you from accessing the assets when they mature.
The model for the palm trees deals with uncertainty in terms of the
number of stems and ultimately, dollars. Even in such a straightforward sce-
nario, the value of a dollar is not a simple thing. When making resource
management decisions based purely on economic _considerations, current

ma.y be a decision to take the entire p-qpulatl_qg_n_qv.g (assuming remvestm_en;
elsewhere for a higher rate of retum), instead of harvesting on the basis of
sustainable yield. This is probably the reason why open-access systems, such
as the whaling industry, do not operate on a sustainable basis. Rosenberg
and colleagues {1993) suggested that the solution to this problem is to recog-
nize that property rights must be well defined and that rights imply duties
and responsibilities. Several countries including Australia, New Zealand,
Canada, Iceland, and the United States have recognized this problem and
have granted individual quotas in some fisheries.

The value of an investment also depends on your attitude to the chance
of losing your investment versus the chance of making a lot more dollars.
People manage natural populations for many reasons other than their net
market value. When values other than the purely ufilitarian come into play,
the role of uncertainty is magnified by the necessity to equate profit with
other motivations. When Pinard (1993) presented the results of her study of
the palm, she did so from the perspactive of developing procedures for sus-
tainable land use practices. She made the point that the concept of
intergenerational equity is usually part of definitions of sustainability but
that the concept is intractable from a land manager’s perspective. For man-
aged populations such as many of those described in this book,
sustainability is measured in practice in terms of productivity, resource
population stability, and yield maintenance. Pinard measured sustainabilily
through population stability and expected yield continuity, The reserves are
intended also to maintain genetic resources, forest structure, and associated
ecological functions. If it tums out, for example, that harvesting latex, Brazil
nuts, game species, and palms is not viable in the medium term of 50 to 100
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years, the authorities would have to decide if it is worth continuing with the
incentives and controls that make the extractive reserves possible. In making
the decision, relevant factors would include such things as the relative value
of ecological processes, genetic resources, conservation priorities, and alter-
native land use practices such as grazing. Because of the uncertainty in
forecasting the economic value of allernatives and the difficulties inherent in
relating very different values in the same currency, the decision would be
determined largely by political and social forces.

8.4.1 Uncertainty and Sustainability

A collection of papers, published in the journal Ecological Applications in 1993
{vol 3, no 4, pp. 547-589) by Ludwig, Hilborn, Holling and others, discussed
the sustainable management of resources when the future is uncertain.
Uncertainty, for these authors, included environmental stochasticity, and
economic and socizl change. Ludwig made the point that since flows from
natural systems ate limited, a conflict between human “objectives and con-
servation of resources is inevitable, tmless the rates at which humans use the

environment are also limited. The objective of fisheries and forestry
management in the past has been on maximum sustained yield, rather than
on a yield that will ensure conservation of the resource. Fisheries managers
have rarely been able to cc control the amount, dlstribul:lon and technique of
fishing effort, even though ‘such contrals are necessary to achxeve sustainable
yield. There are many examples in which fisheries managers consistently
aliowed higher catch levels’ than indicated by the coriserisiis of scieriific
advice. The temptation to increase y1e1d at ‘the cost of additional risk to fhe
resource is often irresistible.

Ludwu; and colleagues (1993) suggested that the exploitation of irregular
or_fluctuating resources is subject to the ratchet effect. During relatively
stable periods, harvesting rates tend to stabilize at positions that are deter-
mined by biceconomic systems that presume 2 siéady sfaté. A séqueénce of
good years may encourage invesiment in mfrasrructure and capital, In_
sequences of poor years, the industry is likely to appeal to the govemument or
the general population for help. Substantial investments and many jobs are
at stake. Government response typically is direct or indirect subsidies. The

ratchet effect is caused by the lack of mh1b1non an mvestment dunn&good

term outcome lsg 3 ~ heawly subsidized industry thal oveﬁ;gvgg,_tg ‘_Ihe
biological resource on which it depends. There is no tradition of sustainable
management in urban  planning or development. The concept of sustainable
management in agriculture is limited to stocking rates and water supply on

individual farms, more closely retated to maximum sustainable yield than to”
ecologz cally sustainable management.
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A number of general principles were sugpested in all of this discussion of
sustainability and resource use. Human, motivations and responses should
be included as part of the system to be studied and mmgggg* because
human greed and short-sightedness underlie most difficulties in resource
management. Claims of sustainability should be distrusted because past
resource exploitation has seldom been sustainable, and frequently scientific
advice is ignored, Resources should be managed explicitly for uncertainty by
considering a variety of different strategies, favoring actions that are infor-
mative, reversible, and that are robust to uncertainty, and experimenting
with the system and monitoring the results Management strategies should

m_txmpal:ed responses. Such an approach should be interdisciplinary and
combine historical, comparative, and experimental approaches to resource
use. Policies and actions are required that invelve not only social objectives,
but that continue to improve understanding and provide for flexdbility in the
event of surprises. Trial-and-emor is often seen as an integral part of adap-
tive management. Use, monitoring, and the choice of reversible strategies
will enhance cur understanding of, and our ability to manage, natural
systems.

All of the above discussions view management of renewable resources
from the rather myopic context of single species or single, utilitarian values.
Changing human values and social priorities form part of the context for
resource management. Resource sustamablhty cannot be divorced from the

sustainability of human economies, natural communities, and ‘ecosystems.

Sustainability is a moving target, not only because ecosystems change over
time, but also because the economic, social, and political climates in which
decisions are made change.

8.4.2 The Role of Applied Population Ecologists

Wherever there is uncertainty, there will be room for debate. Many decisions
may appear intractable from a scientific point of view, but nevertheless they
may be necessary from a pragmatic point of view. For example, when
making decisions concerning the management of species, it is often neces-
sary to involve expert judgements simply because no quantitative
information is available on which to base decisions. Such judgments
contribute to the priorities that are developed for allocating scarce conserva-
tion resources (IUCN 1995). When the decision affects competing demands
on limited and environmental resources, the question immediately arises:
“Whose experts?” Many natural resource management decisions require
derisions based on forecasts that are inherently uncertain, and as we saw in
Chapter 2, that uncertainiy may take many forms.



258  Chapler § Decision-making and Natural Resource Monagement

There are no easy answers to the question "What is best?” Itis the task of
those involved in applied population ecology to present 25 complete a pic-
ture as possible to those who make decisions. The picture should incorporate
mechanistic understanding, deterministic processes, stochastic variables,
and the ensemble of uncertainties that conkribute to the problem. A full
treatment and careful presentation of the ¢ources and consequerces of
uncertainty can make the search for an ideal solution easier. A mathematical
maode! of a population is an explicit treatment of our understanding of the
deterministic and stochastic mechanisms that affect that population.

The context in which the model is developed has profound consequences
for its utility. Biological intuition is essential for constructing models but it is
not sufficient. Decisions made by biologists without quantitative analysis are
likely to lack rigor and consistency. Population models developed in isola-
tion by a mathematician are likely o be biolopically naive. Decisions based
on realistic models, but made in isolation from bureaucrats, politicians, and
inferest groups are likely to be palitically and socially naive.

The most important feature of applied population biolegy is that it be
relevant to those that have to make decisions. Models are an important com-
ponent in developing understanding and making predictions, and they are
subject to the same caveal Relevance may be delermined simply by
economic constraints. For example, if your task is to manage a plant popula-
tion on a conservation reserve, the process of model development may be
Iimited to a consideration of ecological dynamics and those management
practices that can be brought into play within the Limitations of a small
budget. In other circumstances, the social context may be much more com-
plex. A model of a population that has implications for the availability of
significant societal resources is doomed to failure if it does not include
stakeholders in its development. Irrespective of the abilibes of a biclogist or
a modeler, the model will cither lack the ability to answer the tight ques-
tions, or these who must rely on its output will not have any confidence in it,
or both, If the process of model building is collaborative and iterative, and if
it involves representatives of all stakeholders, it has a chance of being useful.

Many models for natural populations are built in circumstances in which
data and understanding are scarce. The relevance of models for environ-
mental decision making is in the mind of the policy maker, and is not the
realm of the madeler. An ecologist provides a service, a skill, and the end
product is a set of recomumendations that are bounded by assumptions and
uncertainties. It is as important, if not more important, for the ecologist to
communicate those uncertainties and assumptions, as it is lo communicate
the set of predictions. One of the reasons that models, and the people who
build them, fall into distepute is that models of complex or poorly under-
stood systems will often produce different expectations. One of the reasons
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for this is that the bounds and the mechanics of the analysis are colored by
what the mode] builder believes to be important. The fact that different
models of the same natural system may generate different expectations is not
surprising to modelers, but it is a source of frustration to dedsion makers. In
such circumstances, the modelers may well have failed in their task because
the creation of a sense of frustration implies that the sensitivities, limitations,
and assumptions of the models have not been explained.

The use of medels in decision-making should improve communication
and understanding. If they do, the results they produce will be integrated
quite naturally with value judgments and political constraints, to produce
better decisions than could be made in the absence of models. To achieve
these ends, models must be carefully and thoroughly documented, and lim-
itations, sensitivities, and assumptions must be explicitly stated. Modelers
must be sensitive to the needs and limitations of those people who intend to
use them. Educational mechanisms that will allow modelers to develop the
skills and experience necessary to produce useful models should be encour-
aged, as these are matters of professional responsibility.

8.5 Exercises

Exercise 8.1; Statistical Power and Environmental Detection

In this exercise, we assume you have taken an introductory course in statis-
tics (or that your instructor has sufficient patence to teach you the
fundamentals). We assume familiarity with hypothesis testing in general,
and with t-tests and the calculation of standard deviations in particular.

Your rele in this exercise is to monitor fish populations in a coastal man-
agement area and report on impacts of industrial activities. You know
erough about the biology of a fish spedies to have developed a reliable
model that incorporates density dependence. The carrying capacity, K, of the
fish population is determined by the area of seagrass. There are two bays,
one of which is a protected national park. You use this as a control. The other
bay supports port facilities. You know from experience the growth rate, the
survival rate, standard deviation of the growth rate, and the carrying
capacity (K) in both bays in the absence of impacts.

There is a proposal to dredge part of the port to create a new dock, which
will result in the elimination of about 10% of the seagrass in the bay, thereby
reducing the carrying capacity for the fish population by 10%. You have
cnough money to conduct acrurate censuses once each year. if you had five
years of pest-impact, good quality monitoring data, could you be reasonably
confident of detecting the impact of the loss of seagrass, assuming that one in
fact exists? We will use RAMAS Ecolab to help answer this question.
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Step 1. Start the "Multiple Populations” program from the
RAMAS Ecolab shell. Set the number of replications to 1, the duration to 5,
and use demographic stochasticity. Set up two isolated populations. Call one
the Park population and the other the Port population. Set the carrying
capacity in the Park population to K = 10,000 and in the Fort population to
K = 9,000. For both popuiations, set initial abundance equal to K. Specify the
following parameters for both populations:

Growth rate (R): 1.1
Survival rate: 0.5
Standard deviationof 2~ Q.11
Densily dependence type: Scramble

Make sure there is no dispersal or comelation between populations
{However, in order to see both populations on the screen, you may want to
set different coordinates for the two populations). Save your model.

Step 2. Run a single replication of this simulation, Select "Trajectory
sumumary” from the Results menu, and write down the population sizes for
the Park and Port populations from years 1,2, 3,4 and 5. To do this, first click
the "text” button on the toolbar, then advance the population counter to 1
and then to 2 (population = 0 gives the total metapopulation abundance).

Step 3. For each population, calculate the mean (M) and the standard
deviation (5) of the 5 population sizes. Use these four numbers to conduct a
t-test of the differences between mean abundarnces at the two locations. You
should do a one-tailed test because you expect the Port population to be
smaller, on average, than the Park population. The formula for the test is

(Mpa — Mpar)

5, =
‘\J(S&,,,+S§m)a'n

where M, and M, are the average abundances of the Park and Port pop-
ulations pver the first five years of the simulation, 8}, and S, are the

variances in the Park and Port populations, and n is the number of years
{n=5),

Step 4. Compare the value you calculate (#,) against the ¢ vaine of 1.86
{which assumes a Type [ error rate of 5%). If the number resulting from your
calculations is larger than this, standard protocols for hypothesis tests say
that you may conclude that the difference between the average populations
is unlikely to be due to chance. That is, you are free to conclude that thereis a
signiticant difference between the Park and Port populations. If the number
you calculate is less than 1.86, you cannot reject the null hypothasis of no
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difference between the populations. That is, even though there is a wue dif-
ference between the populations, you would have insufficient evidence to be
sure.

In the simulations, you have specified a true difference between the
populations. You may or may not have detected a significant difference
betwecen the two sets of numbers from the two locations, depending on the
vagaries of the environment. If you were to repeat this exercise many times,
you shauld find that, on average, you find a significant difference about 40%
of the time and that you fail to detect a difference about 60% of the time. This
failure rate is the type II errur rate, the probability of failing to detect a true
difference. Thus, even given 5 years of good quality data, a correct model,
and a true decline of 10% in the carrying capacity, the monitotring program
stands a better than even chance of failing to detect the impact. You might
want to extend the length of time from 5 to 50 years, and then recalculate the
test. Power should improve.

Models such as these may be useful in exploring altemative monitoring
programs while exploring our assumptions about the population dynamics
of a species. One way to do this is to calculate the power of a monitoring
program by specifying different kinds of plausible impacts, different sam-
pling designs, and by trying these experiments using a range of alternative
possible models.

Exercise 8.2: Sustainable Catch Revisited

The object of one of the exercises in Chapter 4 was to estimate sustainable
catch for a fishery in the presence of environmental variability. In this exer-
cise, we will develop the issue a little further. Model structure is never
entirely certain, and often there will be more than one plausible model for &
population. The objective of this exercise is to develop a harvest strategy for
a fishery population such that you achieve maximum harvest over 2 20-year
period without taking any important risks of loss of the population (there
will always be some risk the population will be lost, even if there is no
fishing or other impact).

Step 1. Start the "Age and stage structure” program of RAMAS Ecolab.
Open the file called Codl.st. This model represents a stage structured model
for a cod population. There are 10,000 fish in the current population and the
environment has a carrying capacity of 20,000. Only the stage 3 fish can
reproduce {see the Stage Matrix under the Model menu). The population is
regulated by scramble competition, and the maximum growth rale in the
absence of density dependence is 13 (see Density Dependence under the
Model menu). The standard deviation of each parameter is set to equal 10t
of the mean (a modest amount of environmental variation).
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The model is set up to run 1,000 replications of the madel over 20 years.
In this version, there is no harvesting. Run the simulation and examine the
Trajectory Summary and the Extinction/Decline curves under the Results
menu. The population tends to increase towards the carrying capacity of
20,000 and there is only a very small probability that the population will
dexline to fewer than about 9,000 individuals. We will use these results as the
benchrnarks against which to compare other medel predictions.

Step 2. Open the file Cod2.5t. [t is a deterministic simulation for the same
madel, but with a harvest of 400 individuals per year taken from the oldest
stage. If you run the simulation, you will see that this is the sustainable har-
vest from the population, in the absence of environmental varialion.

Now load the file Cod3.st. This {s the same model as in Cod2, except that
the environmental variation present in Codl has been added back into the
model. The total harvest is about 12,500 kg {see Harvest Summary, display
text results, and scroll to the very end of the table). There are two important
qualltative features to the results of this simulation. The first is that the
average population declines (see Trajectory Summary). The second is that
there is about a 10% probability that the population will become extinct.
Quite apart from the ecological consequences of such an event, this repre-
sents a significant economic risk.

Step 3. Repeat this simulation, using fixed harvest amounts of between
200 and 600 individuals per year. This can be done by opening the Manage-
menl and Migration sheel under the Model menu. Plot extinction risk versus
number of individuals harvested. Record the total harvest from each
simulation.

Step 4. Load Cod4.st. This represents a deterministic simulation in which
a proportion, 0.2, of the stage 3 individuals is taken each year {see the Pro-
portion of Individuals field on the Management & Migration sheet under the
Model menu}. These are 2,000 stage 3 individuals in the current population,
80 in the first year of operation, this harvest is the same as the fixed harvest
applied in the file CodZ. Note that this harvest level is sustainable in the
absence of environmental variation.

Step 5. Load Cod5.st. This represents the model in Cod4, with environ-
mental and demographic variation added back in. Note that the total harvest
is close ta 12,500 kg, about the same total harvest as in the case in which a
fixed number of individuals was harvested {in Cod3). The most striking dif-
ference between these results and the strategy involving a fixed harvest
amount is that the mean population does not decline (see Trajectory
Summary) and there is a negligible risk of the loss of the fishery (see Extinc-
tion /Decline}.
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Step 6. Repeat this simulation, using harvest proportions of between 0.1
and 0.6 of the stage 3 individuals per year. This can be done by modifying
the Management & Migration sheet under the Model menu. Plot extinction
risk versus the proportion of individuals harvested. Record the tofal harvest
from each simulation.

Step 7. Piot extinetion risk versus total harvest for both the constant har-
vest and the proportional harvest. Plot both curves on the same graph. What
do these curves tell you about the effectiveness of these two strategies?
Explain why many of the worlds fisheries are still managed using a fixed
harvest amount. What problems might be introduced if the current popula-
tion size was not known exactly, as it is in these simulations?

Exercise 8.3: Sustainable Use

Your goal in this exercise is to implement a harvesting strategy for the palm
population that maximizes the dollar value of the resource over ) years,
provides for continuation of the resource beyond 50 years, and provides a
reasonable level of security of sustainable use, defined as the maintenance of
a population of at least 1,000 individuals for the entire period.

Step 1. Develop a stage-structured model of the palm population. Use
the stage matrix given above in Table 8.2. Specify values for the standard
deviations the same as the means for the three fecundity values, in other
words, a coefficient of variation of 100%. The upper-left element of the
matrix {0.794) is not a fecundity, but the probability that a plant of smallest
size class will remain in that size class the following year. Thus it is a sur-
vival rate, even though it is in the first row. For this element, and all other
survival rates {numbers in other rows), specify the standard deviation as
10% of the mean.

Model the population’s growth as exponential growth to a ceiling of
30,000 plants. Thus, in the density dependence screen, specify ceailing-type
density dependence with the carrying capacity parameter equal to 30,000.
The initial nurnber of plants in each stage is assumed to be as follaws:

Stage 1: 3,000
Stage 2- 1,000
Stage3: 300
Stage4: 300
Stage 5: 300
Stage 6: 100

Do not ignore the constraints, and use demographic stochasticity. After
entering all the parameters, save the model. Run a stochastic simulation for
50 years, with 1,000 replications. When the simulation is finished, save the
model again, this ime with results.
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The "Explosion/Increase” curve reports the chances of crossing an upper
threshold at least once in the next 50 years. Thus, it records the chance that
you will sell before 50 years are up, for different threshold values. Suppose
your strategy is to sell all the palms if the population size exceeds 10,000 any
time in the next 50 years, producing a two-fold retumn on the investment,
What is the probability of this happening? What is the probability of
reaching your target, if your target was a three-fold retumn, or a four-fold
return?

Step 2. Remember that it was a requirement of the scenario that you
manage the population sustainably. Definitions of sustainability vary. In this
case, we shall define it as the requirement that you maintain a population of
no less than 1,000 plants. If the population falls below that level, the land will
default to the government and you will lose your asset. Thus the lower limit
at 1,000 plants becomes an unacceptable lower bound, and judgment of
alternative strategies must include an evalvation of the likelihood that you
will cross it in the forthcoming 50 years,

What is the risk that the population size will fall below 1,000 plants at
least once during the next 50 years?

Considering the probability of a two- or three-fold return, and the prob-
ability of fuiling to maintain 1,000 plants, do you consider this a wise
investment?

Step 3, Suppose that at the beginning you have a further $10,000 in the
bank. You may decide to use this capital to modify the processes to reduce
the risk of failure, or to increase the expected size of the population. One of
the options you have is to invest in seedling stock, artificially increasing the
size of the population at the outset. The cost of obtaining, planting and
caring for a seedling is $1; thus you can increase the initial number of indi-
viduals in stage | by 10,000,

Run another simulation that implements this option. Save the model and
results in a new file. How does this change the answers to the questions in
steps 2 and 37 Remember that this time you have $10,000 less in your bank
account. This means that a four-fold return corresponds to
4 - ($30,000 + $10,000), or $240,000, which means selling the palms once the
population is over 24,000 plants. For this question, assume that your target is
a three-foid, or a four-fold return. A two-fold return (which requires selling
12,000 plants) does not make sense, since we slart with 15,000 plants (5,000
that were already there, plus 10,000 additionel seedlings).

How do the probabilities of three- or four-fold return, and the risk of
failing to maintain 1,000 plants, change? Does this option change your mind
about how wise this investment js?



Further reading 265

Step 4. Another way you can spend your $10,000 is to set up an icrigation
system to water the plants whenever the weather is dry. By doing so, you do
not effect the initial population size, but you increase the mean value of the
fecundities (because watering reduces the chances of mortality of seedlings
during their first year), and also reduce their variability (because there will
be less variation due to extreme drought years).

Load the first file you saved {without the additional 10,000 seedlings).
Increase the three fecundities values by doubling their values, and decrease
the standard deviation of each fecundity to 20% of its mean.

Run another simulation that implements this option. Save the model and
results in a new file. How does this change the answers to the questions in
steps 2 and 3? How do the probabilities of a two-, three- and four-fold
return, and the risk of failing to maintain 1,000 plants, change? Does this
option change your mind about the investment?

8.6 Further reading

Finkel, A. M. 1994. Stepping out of your own shadow: a didactic example of
how facing uncertainty can improve decision-making. Risk Analysis
14:751-76l.

Hilborn, R. 1987. Living with uncertainty in resource management. North
American Journnl of Fisheries Management 7:1-5.

Holling, C. 5. 1983. Investing in research for sustainability. Ecologicel Appli-
cations 3:552~355.

Ludwig, D, Hilborn, R. and Walters, C. 1993. Uncertainty, resource
exploitation, and conservation: lessons from history. Science 260:36.






Appendix:
RAMAS EcoLab Installation and Use

Requirements

The program requires an |BM-compatible computer running Windows 95,
Windows 98, Windows NT 4.0, or later. The program will not-work under
Windows3or 3.1. -

Memory: The computer should have at least 16 megabytes of memory.
More memory would improve performance.

Processor: The program will run on an 80486 processor, although we
recommend a Pentium or faster processor.

Hard disk space: The program requires approximately 2 megabytes of
hard disk space.

Installation

If wout recerved the program on a CD-ROM disc:
You must install the program on the hard disk; you cannot use RAMAS
Ecol.ab from the dise. Put the CD-ROM disc in the CD-ROM drive. The
installation program will start running. If it does not, select "Run” from the
Start menu; type

d:\setup.exe
where "d” is the letter of the CD-ROM drive, and press Enter. Fallow the
instructions on the screen.

¥ you received the program on floppy diskeite(s):
Put the floppy diskette (#1, if there are more than one) in the floppy disk
drive. Select "Run” from the Start menu; type

a:\setup.exe
where "a" is the letter of the floppy disk drive, and press Enter. Follow the
instructions on the screen.

Store the distribution CD or diskette(s) in a safe place in case any of the
program files are accidentally deleted.

RAMAS Ecol.ab will be installed under your computer’s “Program Files”
folder. Double-click on the RAMAS Ecolab icon on your desktop to start the
program. Press D for help.

You can also start RAMAS Fcol.ab from the "RAMAS Ecolab" group
under “Programs” in the Start menu, or by double-clicking on the icons of
associated data Files (5P, 5T, and MP).

267
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You might want to uninstall RAMAS Ecolab when you change com-
puters or upgrade to a newer version of the program. You can do this by
selecting "Uninstall” from the RAMAS EcoLab group under "Programs” in
the Start menu. Note that this will delete all files that came with the program
{including sample fles). If you have made changes to any sample files that
you'd like to keep, first copy them to a folder other than the folder where
you initially installed RAMAS EcoLab (usually C:\Program Files\FcoLab).

Note: Read the file README.TXT for last-minute hints and corrections.

Using the program

See above for installing the program. Double-click on the RAMAS Ecolab
icon on yeur desktop to start a shell program that provides access to all pro-
grams of RAMAS Ecolab. One of these, "Random numbers,” lets you sample
uniform random numbers for an exercise in Chapter 2. It gives a pair of
uniform random numbers every time you click a button. The other choices
are programs that let you build models:

"Population growth" lets you build single population models with no age
or slage structure (i.e., unstructured, or scalar models). These models can
have variability (Chapter 2) or density dependence (Chapter 3).

"Age and stage structure” lets you build single population models with
age or stage structure, such as Leslie matrix models (Chapter 4) and stage
matrix models {Chapter 5). These models can have variability and den-
sity dependence, as well as harvesting.

“Multiple populations” lets you build metapopulation models with spa-
tial structure {Chapter 6). These models can have variability, density
dependence, and migration amaong populations.

The use of these three programs programs is very similar. Each program’s
main window consists of (1) title bar, (2) menu bar, (3) tool bar, (4) model
summary, and (3) status bar.

(1) Title bar: At the top of the window is the title bar with the program name.
On the litle bar, at the upper-right corner of the window, are three buttons
for minimizing, maximizing {or restoring to original size), and closing the
main program window. Clicking the close button will terminate the pro-
gram.

(2) Menu bar: Below the title bar is the menu bar, which includes six menus:

| Fie View Model Gimulation Hesults Help |
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Click on ane of these six words to open the pull-down menu. Alterna-
tively, you can press the Alt key in combination with the underlined letter in
the menu name. For example, pressing will open the Model menu.

File menu is used to open or save model files. View menu is used to set
display options. Selecting each item in the Model menu opens a dialeg box
that includes a group of model parameters. Simulation menu is used to run a
simulation. After running a simulation, selecting each item in the Results
menu displays one type of model result. The entries listed under Model and
Results menus depend on the program. In each program, click "Help” to
learn more about the operation of the program. -

(3) Toolbar: Below the menu bar is the toolbar, which indudes four buttons
that can be used as shortcuts to access the following functions found under
the File menu:

New (start 4 new model; same as pressing (CetN))

Open {open an existing model; same as pressing (€x5))

Save (save the model in a file; same as pressing (QriS))

Exit (clase the program; same as pressing (Altx))

(#) Model summary: The largest part of the main program window contains
a summary of the model. Depending on the program, this surnmary can take
two forms:
text, including Litle and comments (from the General information
dialog), the number of replications, time steps, stages, and popula-
tions.
map of the metapopulation.

(5) Status bar: At the bottom of the main program window is the status bat,
which displays information about what the program is doing, as well as
hints.

You can resize the program window by clicking on the lower-right
corner of the window and dragging.

Some of the selections in the menus of a program (for example "Run") are
procedures, and selecting them will make the program start computing,
Others are dialog boxes for entering input parameters or displaying results.
When you select one of the dialog boxes for input, the program will display a
template on which you can type the values of the various parameters. After
you enter your parameters, click "OK." If you want to leave a dialog box
without malking any changes to the input data, dick "Cancel.” The changes
you have made since you opened the dialog box will be ignored. For help
about input parameters, click "Help™ {or press {l)). The use of these programs
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are explained and demonstrated in the exercise sections of Chapters 2
through 6 (look under "RAMAS EcoLab” in the Index). Below, we discuss
their general features.

Loading input files

In each program, you can load sample files. To do this, select Open from the
File menu (o1, press (Cal0J), type in the filename or select a file by clicking.

Saving models and results

In each program, you can save a model you have created or modified. To do
this, select Save as (to save a model with a different name) or Save (to save
with the same filename) from the File menu. If you have already run the
model, the resulis will also be saved.

Entering data

Within input windows under the Model menu (such as General informa-
tlon), you can type in parameter values, as well as title and comments. In all
subprograms, the number of time steps (duration) and the number of
replications are entered in General Informatlon. Setting replications to O is a
convenient way of making the program run a deterministic simulation, even
if the standard deviation of the growth rate is greater than zero.

When the number of replications is specified as 0, the program assumes a
deterministic simulation and ignores parameters related to stochasticity.
These parameters include the standard deviation matrix for age- or stage-
structured models, and the parameters that are dimmed (not available for
editing) in other input windows.

After editing an input window, click "OK" to accept the changes. (Note:
clicking "Cancel” will close an input window without the changes you have
made in that window.}

Erasing all input data and all results

To erase all input parameters and all results of 2 model, simply start 2 new
madel. You can do this by selecting New fram the File menu.

Using the help facility

The function key [F) provides access to a context-sensitive help facility. You
can press (il or click the "Help" button anytime to get help about a particular
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window. In the help facility, you can get an overview of the help file by
clicking on the "Contents” tab. In the Contents, click on a topic and then click

Running a simulation

After you have loaded a file, or created a model, you can run a simulation by
selecting Run from the Simulation menu (or by pressing (Cui®]). When the
simulation starts, the program will open a Simulation window,

There are several controls on the toolbar at the top of the S:mulabon
window. The first two buttons on the left (right under the word “Simulation”
in the title) allow you to choose the simulation display (what to display
during a simulation). By the default, the program will display trajectories or
the metapopulation map, depending on the program.

For unstructured and age- or stage-structured models (Chapters 1
through 5), the program will display the population trajectory simulated by
each replication. For metapopulation models (Chapter 6), the program will
display a map of the metapopulation and will update the map at every time
5 .
The display of trajectoties or maps may slow down the program. To turn
off the display, click the first button from left on the toolbar. This will display
only lext (title, comments, and other parameters) during a simulation. This
allows the simulation to be completed faster.

For more information, dlick the help button (with a (7)) on the toolbar of
the Simulation window.

When a simutation is completed, you will see "Simulation complete” at
the bottom of the window. Close the Simulation window {click on the (} in
the upper-right corner) to return to the the main window, Once you returmn to
the main window, you cannot go back to the display of individual trajecto-
ries (unless you run the simulation again).

Viewing and printing results

To view or print the results of a simulation, select one of the entries under
the Resujts menuw. This will open a window and display a graph. On top of
the window is a2 series of buttons that

show a plot (display the result graphically, which is the default)

show numbers (display the resultas a numerica! table)

open a window for changing the scale and titles of the graph

save the resuit as a disk file

print the result {plot or text) on the default Windows printer
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copy the result to the clipboard, for pasting into another application
display help for the particular result

For more information, elick the help button (or press (1) and then click on
"Copying, saving and printing results."

When a graph is displayed, the axes may have the letters k, m, or b.
These indicate the multiplication factors:

k: 1,000

m: x 1,000,000

b x1,000,000,000
Thus 2.50k means 2500 and 0.2m means 200,000.

Exiting the program

To exit from one of the subprograms, select ExH from the File menu
(Important: Rememtber to save your results before you exit),

Technical support

User support from Applied Biomathematics is limited to technical aspects of
using the program. Tha RAMAS hormne page has a list of frequently asked
questions, If you want to contact us, please indicate the program and model
you are using, describe the question or difficulty in detail, and if possible,
attach a copy of the input file you were working on.

homepage: htip:/ /www.ramas.com
e-mail: ecolab@ramas.com
address: 100 North Country Road, Setauket, NY 11733 USA.
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Extinction, 214
animal, 217, 218
causes, 220
Cretaceous, 215
cuwrent rates, 216
on islands, 216
Permian, 215
plant, 218
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F1 (help), 270
Fecundity, 111, 113, 130, 138, 166
annual species, 8
estimating, 111, 135
Fertility, 130, 137, 140
Finite rate of increase, 8,121, 131,
166
estimating, 10
Fishery managemendt, 152
Florida Scrub Jay, 47
Fluctuations
age structure, 119
density dependence, 91
environmental, 45, 125
Fragmentation
see Habitat fragmentation
Furbish’s Lousewort, 185

Generation time, 131
Genetic engineering, 22
Geometric mean, 11
Global climate change, 220

Habitat fragmentation, 186, 202, 220
Habitat loss, 186, 220, 233, 234
Habitat management, 229
Harvesting, 14, 248
deciston rules, 253
density dependence, 92, 102
overexploitation, 220, 221
reproductive value, 122
simulation of, 153
Helmeted Honeyeater, 108, 115,
144,191
Help facility, 270
Human population, 16, 28, 30
age structure, 119, 148
carrying capacity, 90
energy use, 19,21
Hypothesis testing, 242

Immigration, 8, 14
Impact
detecting, 242
Inbreeding, 37, 86
Increase
finite rate of, 8,121, 131, 166
instantaneous rate of, 131
Instantancous rate of growth, 131

Interval extinction rick, 35
Island biogeography, 187
IUCN, 222

Jack-in-the-pulpit, 164
Japanese Beetle, 22

Kelp, 183

Lambda, 121

Leslie matrix, 113, 115, 140, 141
Helmeted Honeyeater,.115
projections with, 117
reproductive value, 121
stable age distribution, 119

Life tables, 127,132

Local extinctions, 190

Loggerhead Sea Turtle, 176

Logging, 232

Logistic equation, 95

Long-lived species, 9

Malthus, 20
Mark-recapture, 134
Mass extinction, 215
Maternity, 130, 137, 140
Matrix multiplication, 114, 118, 163
Maximum rate of growth, 82
Measurement error, 36
Metapopulation, 184
Migration, 193
Minimum viable population, 213
Madels, 5, 233, 2538

expornential, 9
Monitoring, 231
Mountain Sheep, 184
Multiple regression, 135
Muskox, 7, 62

Natural resource management, 241,
254

Net reproductive rate, 131

Niche, 2

Null hypothesis, 242

Orchesella cincta, 130
Overharvesting, 220, 221

Paramecium, 82,83, 98
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‘onservation, 35, 176, 199, 201, 205,
214,222,228
onstraints
for Lesbe matrix, 143
for the stage matrix, 166
on vital rates, 166
Contest competition, 76, 84
“orrelation
environmental fluctuations, 191,
20
interaction with dispersal, 197
vital rates, 127
“orridors, 201
Cost-benefit analysis, 228, 231
‘otton-tail rabbit, 21
owbird, 186
~ritical, 223
"ritically endangered, 222
Crowding, 72
“rucifer, 91
Cycles, 91

Deaths, 8
Jemographic stochasticity, 38, 39,
44, 61
fecundites, 125
in age-structured models, 123
in density-dependent models, 99
Jensity-dependent factors, 76
Density dependence
affecting mortality, 72
affecting reproduction, 73
age-structured models, 167
Allee effects, 86, 93
Beverton-Holt function, 84
ceiling model, 85
contest, 76, 84
demographic stochasticity, 99
environmental variation, 94
harvesting, 92, 102
inverse, 86, 93
logistic equation, 95
parameter estimation, 97
recruitment curve, 77
replacement curve, 78, 84, 85
Ricker equation, 80, 95
scramble, 76, 78
self-thinning, 74
stage-structured models, 167

territories, 75
Deterministic sitnulation, 50
Diseases, 90
Dispersal, 193

age-specific, 196

corridors, 201

density-dependent, 195

direction, 194

distance-dependent, 194

interaction with correlation, 197

stage-specific, 196

stepping stone, 196

stachasticity, 196
Doomsday prediction, 18
Doubling time, 12

Edge effects, 186, 187, 203
Eigenvalue, 121
Flasticities, 168, 181
Emigration, 8, 14
Endangered, 222,223
Environmental variation, 45
catastrophes, 53
in age-structured models, 125
in density-dependent models, 94
Erosion, 86
Error
Typel, 243, 244
Typell, 243
Exit, 272
Exolic species, 22, 220
Explesion, 51
Exponential decline, 23
Blue Whale, 25
Exponential growth, §
applicakions, 16
assumptions, 14
doubling time, 12
human population, 16
Tong-lived species, 9
pest populations, 21
Extinction, 214
animal, 217,218
causes, 220
Cretaceous, 215
current rates, 216
on islands, 216
Permian, 215
plant, 218
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estimating, 10
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age structure, 119

density dependence, 91

environmental, 45, 125
Fragmentation

see Habitat fragmentation
Furbish’s Lousewort, 185

Generation time, 131
Genetic engineering, 22
Geometric mean, 11
Global climate change, 220

Habitat fragmentation, 186, 202, 220
Habitat loss, 186, 220, 233, 234
Habitat management, 229
Harvesting, 14, 248
decision rules, 253
density dependence, 92, 102
overexploitation, 220, 221
reproductive value, 122
simulation of, 153
Helmeted Honeyeater, 108, 115,
144, 191
Help facility, 270
Human population, 16, 28, 30
ape struchure, 119, 148
carrying capacity, 90
energy use, 19, 21
Hypothesis testing, 242

Irumigzation, 8, 14
Impact
detecting, 242
Inbreeding, 37, 86
Increase
finite rate of, 8, 121, 131, 166
instantaneous rate of, 131
Instantaneous rate of growth, 131

Interval extinction risk, 35
Island biogeography, 187
IUCHN, 222

Jack-in-the-pulpit, 164
Japanese Beetle, 22

Kelp, 185

Lambda, 121

Leslie matrix, 113, 115, 140, 141
Helmeted Honeyeatar, 115
projections with, 117
reproductive value, 121
stable age distribution, 119

Life tables, 127,132

Local extinctions, 190

Loggerhead Sea Turtle, 176

Logging, 232

Logistic equation, 95

Long-lived species, 9

Malthus, 20
Mark-recapture, 134
Mass extinction, 215
Maternity, 130, 137, 140
Matrix multiplication, 114, 118, 163
Maximum rate of growth, 82
Measurement error, 36
Metapopulation, 184
Migration, 193
Minimum viable population, 213
Models, 5, 233, 258
exponential, 9
Monitoring, 231
Mountain Sheep, 184
Multiple regression, 135
Muskox, 7, 62

Natural resource management, 241,
254

Net reproductive rate, 131

Niche, 2

Null hypothesis, 242

Orchesella cincta, 130
Overharvesting, 220, 221

Paramectum, 82,83, 98
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Parameter estimation
density dependence, 57
fecundity, 111, 113,135,136, 139,
140, 151
Leslie matrix, 140, 141
stage matrix, 173
survival, 133, 134
survival rale, 110, 117
variance, 141, 142
weighted averages, 133

Perch, 4

Plant species
Acacia, 54
Banksia it, 86
Cakile emla, 72
Crucifer, 91
Furbish’s Lousewort, 185
Jack-in-the-pulpit, 164
Kelp, 185
Palm, 248, 252
Speckled Alder, 161
Teasel, 174
White Birch, 75

Poisson distribution
fecundities, 125

Pollution, 220

Population, 2
trajectory, 49

Papulation ceiling, 85

Popuiation growth
continuous time, 26
doubling time, 12
exponential, 8
finite rate of increase, 8, 10, 121,
131, 166

instantaneous rate of increase, 131

Porulation viability analysis, 213,
22

components, 224

limits, 232
Power, 243, 244
Precautionary principle, 247
Predator saturation, 84

Quasi-extinction, 44, 51
Quit, 272

Rainfall, 46, 47

RAMAS Ecolab, 62, 267
age structure, 143
Allee effects, 88
constant harvest, 154
constraints, 166
correlation, 205
deleting input data, 270
density dependence, 98, 168
deterministic simulation, 63, 144
dispersal, 204
entering data, 270
erasing input and results, 270
exit, 272
extinction/decline, 64
final age distribution, 146
harvest, 153
help facility, 270
installation, 267
loading files, 270
map, 204
metapopulation models, 203
probabilities, 67
proportional harvest, 153
random numbers, 268
running simulaticns, 271
saving files, 270
sensitivity analysis, 67
standard deviation matrix, 147
stochastic dispersal, 196
stochastic simulation, 64
technical support, 272
irajectory summary, 63
using, 268
view/print results, 271
Random numbers, 268
Rate of growth
maximurm, 82
Rate of increase, 8, 121, 131, 166
Recclonization, 193
Recruitment, 80
Recruitment curve, 77, 80
Regression, 135
Reintroduction, 200
reproductive value, 122
Replacement curve, 77,78, 84, 85
Replication, 50, 59, 63, 144
Reproduction, 166
Reproductive value, 121
Reserve design, 201
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Ricker equation, 80, 95
Risk, 35

Risk assessment, 35, 228
Risk curve, 44, 51, 64

Sample files
California Gnatcatcher, 234
California Spotted Owl, 193, 210
human population, 148
Sand Shrimp, 3
Scramble competition, 76, 78
Sea Turtle, 176
Seed survival, 72
Self-thinning, 74, 253
Sengitjvity analysis, 56, 67, 168, 178,
228
deterministic, 168, 151
management options, 170
planning research, 168
whole-model, 171
Sex ratio, 38, 113
Shrew, 56
Significance, 243, 244
Silver-studded Butterfly, 192
SLOSS, 201
Spatial heterogeneity, 53, 185
Species extinction risk, 190
Speckled Alder, 161
Spotted Owl, 94, 178, 193, 210
Spreadsheet, 151
Stable age distribution, 119, 121
Stage-structured model, 158
assumptions, 158
based on size, 159
constraints, 166
density dependence, 167
diagram, 160
finite rate of increase, 166
Jack-in-the-pulpit, 164
reproductive value, 166
residence time, 165
Sea Turtle, 176
Speckled Alder, 161, 166

stable distribution, 165

Teasel, 174
Standard deviation, 39, 126, 150, 179
Standard error, 179
Starling, 21
Starting the program, 268
Static life table, 133

ing stone, 196

g;gpcgasﬁc simulation, 50
Stochasticity, 34 ,
Survival rate, 109, 111, 117, 134,166

weighted averages, 133
Survivorship schedule, 128
Sustainability, 244, 256
Systematic pressure, 34, 221, 232

Teasel, 174

Technical support, 272
Terminal extinction risk, 35
Territoriality, 75, 77, 83
Threat categaries, 222
Threshold, 35

Time to extinction, 59
Trajectory, 49

Transition rate, 164
Translocation, 13, 200

Uncertainty, 36, 241, 249, 256
model, 55, 252
parameter, 54

Uninstall, 268

Using RAMAS EcoLab, 268

Variability, 33, 37, 45, 49, 4

see also Environmental variation
Variance, 39

components, 141

sums and products, 142
Vulnerable, 222, 223

Weighted average, 133
White Birch, 75
Worsening returns, 76



