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Preface to the Third Edition

In this Third Edition, I have added a new chapter (Chapter 8) that introduces
St‘udtanls. to the Markov model of ecological succession. This model provides
a satisfying framework for understanding how communities change through
tfme, and can be related to earlier verbal descriptions of facilitation, inhibi-
tion, and tolerance. Students first learned about matrix multiplication in the
context of the Leslie matrix in Chapter 3; little additional effort is needed to
apply this machinery to the Markov model of succession. Chapter 8 also pro-
vides more balance between population and community ecology, and a bit
more coverage of plants, which some readers had requested in the first two
editions.

As always, the challenge for students is to learn to think quantitatively
about populations and communities. The Primer conveys the basic concepts
and equations that underlie much of modern ecology. But this “paper-and-
pencil” approach is only the first step. Words and mathematical equations
are tricky, elusive things, with many nuanced levels of meaning. I think that
a true understanding of these equations can only come from programming
them as computer models. Computer programming requires that every detail
of the model be made explicit and clear; there is no room for ambiguity or
fuzziness in programming. Hilborn and Mangel’s (1997) text illustrates the
power of this approach for ecologists who are trying to confront the models
with real data. ‘

Learning to program, however, requires the same intellectual cqmnuﬁnf:nt
as learning to speak a foreign language, and there is not enough time during
an introductory ecology course. But help is here. The.rese Donovan a_nd
Charles Welden have written a new text, called Exercises i Ecology, Evolution,
and Behavior: Programming Population Models angMSimulatwns with Spre'adsheets.
Their book teaches students how to use Excel ~ spreadsheets to'bulld all.of
the models in this book, as well as many other models in population genetics
and evolution. It bridges the gap between ecology student and computer pro-
grammer, allowing students to “go under the hood” and see how the equa-
tions work without having to struggle with the syntix of 2 aﬁ;ltrclguwe?lfsorg
puter language. It is a perfect companion to this book (an

for quantitative ecologists).
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Preface to the Second Edition

Authors are always tempted to add new material to a book when they get
3}: nihtﬂorl;?j‘:o write a second edition: However, adding new models and equa-
e bk mop:ll;llr:er would sub.vert its purpose, which is to concisely explain
o encountered in population and community ecology. In this
second o_adltlon, 1 have added no new material, but 1 have included a com-
prehensnye glossary and a short appendix on differential equations.

Mc_)re importantly, 1 have improved the original text, corrected errors, and
clarified the explanations. 1 am grateful to all the students and instructors
who road-tested the primer and gave me their feedback. In particular, I thank
Peter Bayley, Stewart Berlocher, Carol Boggs, and Sharon Strauss for sharing
with me the detailed responses of their students. Tony Pakes educated me
about the subtleties of stochastic growth equations, and Steve Jenkins and
Juan Martinez-Gémez independently caught an insidious error in the equa-
tion for reproductive value.

Each chapter benefited from detailed reviews by a number of colleagues,
including Hal Caswell, Rob Colwell, Andy Dobson, Lev Ginzburg, Bob Holt,
Mark Lomolino, Bob May, Janice Moore, Mary Price, Bob Ricklefs, Joe Schall,
Peter Stiling, Nick Waser, and Guiyan Yan. Chapter 5 owes a special debt to
Rob Colwell. The organization of this chapter, the restatement of the compet-
itive exclusion principle, and the “milkshake analogy” were all taken from
my undergraduate lecture notes from Colwell’s community ecology course
at the University of California, Berkeley (winter, 1980). Shahid Naeem creat-
ed original artwork for the frontispiece and chapter headings, and Neil
Buckley corrected my grammar and vigilantly caught the proofing errors.
Andy Sinauer and his staff transformed my text and rough drawings into a
polished product. As always, 1 thank Maryanne for her continued love and
support.

One final point. The primer has now been adopted by many colleges and
universities for basic and advanced ecology courses. However, some instruc-

j i ial was
told me that, although they enjoyed the primer, the material wa
rance : urse 1 am biased, but 1 think this atti-

timates their abilities. If the

tors ha
too advanced for their students. Of co e

-changes the students and underes i
A i o they can be readily grasped

models in this primer are presented with care, tr )
by most undergraduates, even those with no previous background in ecology
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and little exposure to mathematics. Enrollment in ecology courses continues
to climb as student awareness of environmental problems increases.
Understanding the ecological principles covered in this primer is an impor-
tant first step toward solving those problems.

February 1998
Burlington, Vermont



Preface to the First Edition

l::::t:’i::z :(C)Orlfe)ﬁ t;ﬁ:ooks The latest ecology texts are well-written and
. y cover all aspects of ecology from population
growth to ecosystem ecology and conservation biology. They present stu-
dents with a balanced mix of theoretical, empirical, and appliedpho ics, sup-
ported b);a vast bibliography of hundreds of literature citations—e\}:ery’thh-npg
f::ln:s tzzc l(t:le:iot?k classics” to the latest c1.'1tting-edge research. All this mate-
kaged in an attractive format, with color photographs, sophisticat-
ed graphics, and eye-pleasing type fonts. The downside is encyclopedic
length and a hefty price tag for the student.

D?spite their n_1assive size, the new texts often fail in helping students with
Fhe single most difficult aspect of ecology courses: understanding mathemat-
ical models. Many texts exclude or dilute the mathematical and quantitative
material, leaving students with a product that has been intellectually gutted.
More traditional texts (and instructors) that do cover mathematical models
also err by assuming the mathematical details are self-evident, glossing over
the derivations, and failing to explicitly and concisely state the assumptions
and predictions of the models.

My own pet peeve is the treatment of the exponential model of population
growth. The exponential model is the basis for most population and commu-
nity models, and is often used to introduce students to concepts such as con-
tinuous versus discrete population growth, population size (N), growth rate
(dN/dt), and per capita growth rate [(1/N)(dN/dt)]. Without a firm under-
standing of these ideas, students cannot grasp more complex models. Yet
most textbooks devote no more than a few pages, or even a few paragraphs,

to the topic of exponential population growth.

THE ORGANIZATION OF THIS BOOK

This primer grew outof my dissatisfaction with existing textbooks and the
fact that I could not relegate mathematical details of the models to “cours.e
readings.” In this book, I have tried to present a concise but detailed exposi-
tion of the most common mathematical models in population and communi-
ty ecology. Each chapter follows the same structured format:

the models from first principles

ntation and Predictions derives ‘
e from. Essential equations are

60 students can see where the equations come
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highlighted, but a number of intermediate algebraic "expre.ssions” are als';)
presented so students can understand how we get from point A to pf)mt X
With the equations in hand, the predictions from the model are explained. I
have relied heavily on graphical approaches, bef:ause they are often more
enlightening than algebraic solutions of the equations. Although most of the
models in this book are continuous differential equations, students do not
need to integrate or differentiate equations to follow this matel-ial. Instead, I
have emphasized the biological interpretation of the variables in the mod(::ls
and how the predictions change when the variables are altered. The material
in this section of each chapter is covered in some form in nearly every intro-
ductory ecology course.

Model Assumptions lists the mathematical and biological assumptions
behind the equations. This material is usually covered in most textbooks, but
is often scattered or buried in the text.

Model Variations explains related models that can usually be derived by
relaxing one or more of the critical assumptions. In this section, I have intro-
duced topics that are suitable for advanced and graduate-level courses,
including models of environmental and demographic stochasticity, stage-
structured population growth, nonlinear predator—prey isoclines, intraguild
predation, and passive sampling.

Empirical Examples includes two or three field studies that illustrate the util-
ity of the models. The examples are restricted to field studies that actually
measure parameters that are relevant to the models, although in many cases
I was hard-pressed to find good examples. Often, the studies in which the
models fail to predict patterns in nature are more enlightening than the
apparent successes.

Problems' give stgdmts the chance to work with the equations and under-
sFand@eanehavmr by plugging in some numbers, The exercises are highly
simplified story. problems,” but they teach students how to apply the model



the equauons and examples. New terms are introduced m boldiace type and

ghly in the Glossary. The Appendix provid i
¢ h es a brief
explanation of how (and why) differential equations are useg in ecology. "
THE CONTENT OF THIS BOOK

gatﬁi:—;;:: er models for single species, and Chapters 5-7 cover models
developed carefus]fe(;zs' Ir.l Cha;.)tef L, the model of exponential growth is
mental and demoy :l it Pl‘mc'lp.les. Advanced topics include environ-
model is develo egl'ap 9 Stochasmlty' In Chapte}' 2, the logistic growth
ing density do P 9 as an ex_ten51on of the exponeghal model by incorporat-

i randt}’ P‘:‘in ence in birth and death rates. Discrete growth with chaos,

2:1;1 ! om and periodic variation in catrying capacity are also described.
pter 3 CO"Ier.S exponential growth for age-structured populations.
Advanced topics include the derivation of the Euler equation, reproductive
value, and stage-structured matrix models.

Chapter 4 reflects my own interests in metapopulation models. These
models relax the unrealistic assumption of no migration of individuals and
represent the simplest equations for open populations. There is a close anal-
ogy between the births and deaths of individuals in a local population and
the colonization and extinction of populations in a metapopulation. There is
also an important conceptual link between single-species metapopulation
models and the MacArthur-Wilson model of island biogeography, which is
developed in Chapter 7. Although metapopulation models are only just
beginning to appear in textbooks, they are an important tool for studying
population dynamics in a fragmented landscape, and may have applications
in conservation biology.

Chapters 5 and 6 present the standard two-species competition and pre-
dation models, and include some more complex variations with nonlinear
isoclines. Chapter 5 develops a model of intraguild predation, in which
species function simultaneously as predators and competitors. Chapter 6
includes a discussion of host—parasite models and briefly addresses the prob-
Iem of population cycles. Both chapters stress the use of t.he state-space dia-
gram as an important graphical tool for ecological modelmg.. Chapter 7 pre-
sents the MacArthur-Wilson equilibrium model as one possible explanation
for the species—area relationship. Habitat diversity and the passive sampling
model are also offered as alternative hypotheses.

PRECEDENTS FOR THIS BOOK

This book was inspired by two earlier ecology texts. The first was A Primer Zf
Population Biology by E. O. Wilson and W. H. Bossert. This remarkable boc? 3
first published in 1971, has been used by thox.xsands of students. Ivts co?c;ff
prose, modest size, and quantitative problems introduced a generation of sf
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dents to mathematical approaches in ecology and popula,tlon gen.etlcs,hThe-
second was Theoretical Ecology, edited by R. M. May. May's overview chap
ters provided a concise framework for Chapters 1,2, 5, and 6 of this primer,
which cover much of the same material in a greatly ea':-panded fom'l,

At the risk of overstating the obvious, this primer is not a sv..lbstltute for a
full-length ecology text. Because of its brevity, it completely ignores many
important topics in ecology that are not amenable to treatment w1th.51mp.19
mathematical models. I hope that its concise format and modest price will
justify its use as a supplementary text. If this primer helps smdenfs to under-
stand the development, application, and limitations of mathematical models
in ecology, then I will have been successful.

SOME THOUGHTS FOR THE INSTRUCTOR
I designed this primer with two sorts of courses in mind. First, the primer
can serve as a supplementary text for large, introductory undergraduate
courses. The material covered in “Model Presentation and Predictions” and
“Model Assumptions” assumes that students have had only a single semester
of calculus, and have probably forgotten most of what they learned. In my
large introductory course at the University of Vermont (> 100 students), I
teach all the basic material in Chapters 1, 2, 3, 5, 6, and 7. Although I do not
teach the equations from Chapter 4, I do cover basic principles of metapopu-
lations and some empirical examples. The unstarred problem sets in all the
chapters are appropriate for an introductory course.

I also use the primer in my community ecology course (< 25 students),
which is taught to advanced undergraduates and beginning graduate stu-
dents. In this course, I treat the introductory material as a concise review, and
spend more time developing the material in “Model Variations.” This
ad\{anced material assumes a minimal grasp of calculus, and an exposure to
basic statistical concepts of probability, means, and variances. A knowledge of
matrix algebra is helpful, but not essential, for the advanced material in
Ehafter 3. Both the unstarred and starred problems are appropriate at this

vel.
WhI\(/)[y rl;cg)e ais that t:l:: primer will be useful to two types of.instructors. Those
o lelzm l'ers ﬂ?utaél i-ldhve apRroach, asldo, may use ﬂ:le primer as a template
or that build ecological models from first principles. Problem-solv-

g is essential for such a course, and most of the problems at the end of each
chapter work well as exam questions.

FO?:::; uz‘ztlrlt;t:s!rst ]flnay r.mt wish to devote so muc}} Iecture time to models.
Tesin e detally o’f ; h:g nge; may se.rve as a l-uto.naI to allow students to
wish to place more em I}?ac;i o otli.ln the"dOWn- - thl‘s o potmuctors might
o gl pethaps el Lm]zn ates tll:n e model assun.\phons and empirical exam-

4 e problem sets entirely.
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Ecology textbooks continue to increase in size and cost, making it difficult
to justify a supplemental text. However, as good as the standard textbooks
are, none of them treats the mathematical models with the care and detail
they deserve. I hope A Primer of Ecology makes your teaching easier and helps
your students to better understand ecological models. For me, this has always
been the most challenging and rewarding part of teaching ecology.

February 28th, 1994
5°33’20” N, 87° 02’ 35" W
Cocos Island, Costa Rica



To the Student

The most common question beginning ecology students ask me is, “Why do
we have to use so much mathematics to study ecology?” Many studgnts
enroll in my ecology course expecting to hear about whales, global warming,
and the destruction of tropical rain forests. Instead they are confronted with
exponential growth, doubling times, and per capita rates of increase. The two
lists of topics are not unrelated. But before we can begin to solve complex
environmental problems, we have to understand the basics. Just as a mechan-
ical engineer must learn the principles of physics to build a dam, a conserva-
tion biologist must learn the principles of ecology to save a species.

The science of ecology is the study of distribution and abundance. In other
words, we are interested in predicting where organisms occur (distribution),
and the sizes of their populations (abundance). Ecological studies rely on mea-
surements of distribution and abundance in nature, so we need the tools of
mathematics and statistics to summarize and interpret these measurements.

But why do we need the mathematical models? One answer is that we
need models because nature is so complex. We could spend a lifetime mea-
suring different components of distribution and abundance and still not have
a very clear understanding of ecology. The mathematical models act as sim-
plified road maps, giving us some direction and idea of exactly what things
we should be trying to measure in nature.

The models also generate testable predictions. By trying to verify or refute
these predictions, we will make much faster progress in understanding
nature than if we try to go out and measure everything without a plan. The
models highlight the distinction between the patterns we see in nature and
the different mechanisms that might cause those patterns.

There are two dangers inherent in the use of mathematical models in ecol-
ogy. The first danger is that we build models that are too complex. When this
_happens, the models may contain many variables that we can never measure
In nature, and the mathematical solutions may be too complex. Consequently,
the most useful ecological models are often the simplest ones, and these have
been emphasized throughout this primer.

The second danger is that we for
tations of nature. However logical
nature must follow its rules. Byc
model, we may be able to pinpo;

get that the models are abstract represen-
a model might appear, nothing says that
arefully focusing on the assumptions of the
int the places where it departs from reality. As
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you will see from the examples in this primer, the models often tell us more
about nature when their predictions do not match our field observations.

The purpose of this primer is to de-mystify the mathematical models used
in ecology. Many of the equations in this primer can also be found in your
textbook. However, your textbook may provide little or no explanation for
where these equations come from, whereas the primer develops them step
by step. I hope this primer will help you to understand the mathematical
models and to appreciate their strengths and limitations.






CHAPTER 1

Exponential
Population
Growth




Model Presentation and Predictions

ELEMENTS OF POPULATION GROWTH

A population is a group of plants, animals, or other ?rg?n‘ismsl, all Ofst:;e 5:‘;“:
species, that live together and reproduce. Just as an individua gm‘:'r ) 4 i w
ing weight, a population grows by ga.mmg.mdlw.duals. What con! To ls p ]; :
lation growth? In this chapter, we will build a 51mPle mathemaflca model
that predicts population size. In later chapters, we will flesh out this model by
including resource limitation (Chapter 2), age structure (Chapter C?), and
migration (Chapter 4). We will also introduce other players: populations of
competitors (Chapter 5) and predators (Chapter 6) that can control grov.vth.
But for now, we will concentrate on a single population and its growth in a
simple environment.

The variable N will be used to indicate the size of the population. Because
population size changes with time, we will use the subscript ¢ to indicate the
point in time we are talking about. Thus, N is the number of individuals in
the population at time t. By convention, we use ¢ = 0 to indicate the starting
point. For example, suppose we census a population of tarantulas and count
500 spiders at the beginning of our study. We revisit the population in one year
and count 800 spiders. Thus, Ny = 500 and N; = 800.

The units of ¢, in contrast to their numerical values, depend on the organ-
ism we are studying. For rapidly growing populations of bacteria or proto-
204, t might conveniently be measured in minutes. For long-lived sea turtles
or bristlecone pines, t would be measured in years or decades. Whatever
units we use, we are interested in predicting the future population size (Ni41)
based on its current size (Ny).

The biological details of population growth vary tremendously among dif-
ferent species, and even among different populations within the same
species. The factors that cause a tarantula population to increase from 500 to
800 spiders will be very different from the factors that cause an endangered
condor population to decrease from 10 to 8 birds. Fortunately, all changes in
Population size can be classified into just four categories. Populations in-
crease because of births and decrease because of deaths. Population size also
f:ha{xges if individuals move between sites. Populations increase when new
1nd1v1dual_s arr.ive (immigration) and decrease when resident individuals
depart (emigration).

These four factors operate at diffe
depend on current population size,
stand births and deaths,
trast, emigration and

rent spatial scales. Births and deaths
as we will explain in a moment. To under-
hs, we need to study only the target population. By con-
Immigration depend on the movement of individuals. If



we want to describe these processes, we must k j
several interconnected populations. R kol it et e bt

Any combination of. tl}e four factors will change population size. For our

;a&)anhﬂa e)fung]e, the @ﬁal population of 500 spiders might have produced

new splderlm_gs t.iunng the year and lost 100 adult spiders to death, with
no movement of .mdwiduals. Alternatively, there might have been 50 births
fmd 50 deaths, with 300 residents leaving (emigration) and 600 spiders arriv-
ing from other populations (immigration). Either scenario leads to an increase
of 300 spiders.

These. four factors can be incorporated into a mathematical expression for
population growth. In this expression, B represents the number of births, D is
the number of deaths, I is the number of new immigrants entering the popu-
lation, and E is the number of emigrants leaving the population between time
tandt+1:

N;y1 =Ny +B-D+I-E Expression 1.1

Expression 1.1 says that population size in the next time period (N;.1) equals
the current population size (Ny) plus births (B) and immigrants (I), minus
deaths (D) and emigrants (E). We are interested in the change in population
size (AN), which is simply the difference in population size between last time
and this time. We get this by subtracting N; from both sides of Expression 1.1:

Niy1—-Ni=N;—=Ny+B-D+I-E Expression 1.2
AN=B-D+I-E Expression 1.3

To simplify things, we will assume that our population is closed; in other
words, there is no movement of individuals between population sites. This
assumption is often not true in nature, but it is mathematically convenient
and it allows us to focus on the details of local population growth. In Chapter
4, we will examine some models that allow for movement of individuals
between patches. If the population is closed, both I and E equal zero, and we
do not need to consider them further:
AN =B-D Expression 1.4

ulation growth is continuous. This means that
i i i is infini 1. As a consequence, popu-

the time step in Expression 1.1 is infinitely sma . :

lation growfh can be described by a smooth curve. This a'ssumptlfm allOV{VS'

us to model population’ growth rate (dN/ dt) with a continuous 'dufferent;\a

equation (see Appendix). Thus, population growth is descrnl?ed as ; ef

change in population size (dN) that occurs during a very small interval o

time (dt):

We will also assume that pop



% =B-D Expression 1.5
Now we will focus on B and D. Because this is 4 contipuous differential equa-
tion, B and D now represent respectively the birth and death rates, the num-
ber of births and deaths during a very short time interval. What factors con-
trol birth and death rates? The birth rate will certainly depend on population
size. For example, a population of 1000 warblers will produce many more
eggs over a short time interval than a population of (.)nly 25 b.ll'dS: If each
individual produces the same number of offspring during that time interval,
the birth rate (B) in the population will be directly proportional to popula-
tion size. Let b (lowercase!) denote the instantaneous birth rate. The units of b
are number of births per individual per unit time [births/(individual « time)].
Because of these units, note that b is a rate that is measured per capita, or per
individual. Over a short time interval, the number of births in the population
is the product of the instantaneous birth rate and the population size:

B=bN Expression 1.6

Similarly, we can define an instantaneous death rate d, with units being num-
ber of deaths per individual per unit time [deaths/(individual  time)]. Of
course, an individual either dies or it doesn’t, but this rate is measured for a
continuously growing population over a short time interval. Again, the prod-
uct of the instantaneous death rate and the population size gives the popula-
tion death rate:*

D=dN Expression 1.7

These simple functions will not always apply in the real world. In some cases,
the birth rate may not depend on the current population size. For example, in
some plant populations, seeds remain dormant in the soil for many years in a
seed bank. Consequently, the number of emergent seedlings (births) may
reflect the structure of the plant population many years ago. A model for such
a population would include a time lag because the current growth rate actu-
ally depends on population size at a much earlier time.

Expressions 1.6 and 1.7 also imply that b and d are constant. No matter
how large the population gets, individuals have the same per capita birth and
death fates! But in the real world, birth and death rates may be affected by
crowding: the larger the population, the lower the per capita birth rate and

R —
Note that dN in the numerator of the expression for continuous population growth (dN/dt) is

not the same as dN in Expression 1.7. In Expressi i
7. sion 1.7, dN is the i
death rate (d) and the current population sipze (N). e productof the netentaneous



::]l;e higher the per capita death rate. We will explore this sort of density-
o pendent model in QMPFer 2. For now, we will develop our model assum-
sugb : ;:unt.]s;anltz per capita birth rate (b) and a constant per capita death rate (d)

xpressions 1.6 7i i i -
pubst givesgus: p and 1.7 into Expression 1.5 and rearranging the

aN
T (b - d)N Expression 1.8

e o e o e e e Sometines

) e Malthusian parameter after the
Reverend Thomas Robert Malthus (1766-1834). In his famous “Essay on the
Principle of Population” (1798), Malthus argued that food supply could never
ke.ep pace with human population growth, and that human suffering and
misery were an inevitable consequence.

The value of r determines whether a population increases exponentially (r
> 0), remains constant in size (r = 0), or declines to extinction (r < 0). The units
of r are individuals per individual per unit time [individuals/(individual »
time)]. Thus, » measures the per capita rate of population increase over a
short time interval. That rate is simply the difference between b and d, the
instantaneous birth and death rates. Because 7 is an instantaneous rate, we
can change its units by simple division. For example, because there are 24
hours in a day, an r of 24 individuals/(individual - day) is equivalent to an r
of 1 individual/(individual « hour). Substituting r back into Expression 1.8,
we arrive at our first model of population growth:

AN =N Equation 1.1

dt

Equation 1.1 is a simple model of exponential population growth. It says Fhat
the population growth rate (N/dt) is proportional to r and tha‘t populations
only increase when the instantaneous birth rate (b) exceeds the mstantar_mous
death rate (d), so that 7 > 0. If 7 is positive, population gr_owth continues
unchecked and is proportional to N: the larger the population, the faster its
rate of increase.

When will our model population not grow? A population will neither
increase nor decrease when the population growth rate'etjluals zero (dN/dt =
0). For Equation 1.1, there are only two cases when tl.us is true. 'l."he first is
when N = 0. Because of migration, population growth in nature will not n;ci
essarily stop when the population reach.es zero. But in our S“’:flﬁle mohit:s
immigration is not allowed, so the population .wﬂl sfop growing if it ever e
the “floor” of zero individuals. The populatlon'wﬂl' also s;og grﬂ:)wut‘\egs i
should equal zero. In other words, if the per capita birth and death ra
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exactly balanced, the population will neither increase nor decr’ease in size. In
all other cases, the population will either increase exponentially (r > 0) or

decline to extinction (r < 0).

PROJECTING POPULATION SIZE

Equation 1.1 is written as a differential equation. It t.ells us t}\e popt.lla.ﬁon
growth rate, but not the population size. Howeve.r, if Equation 1.1 is inte-
grated (following the rules of calculus; see Appendix), the result can be used
to project, or predict, population size:

N; = Nge" Equation 1.2

N is the initial population size, N} is the population size at time £, and eis a
constant, the base of the natural logarithm (e = 2.718). Knowing the starting
population size and the intrinsic rate of increase, we can use Equation 1.2 to
forecast population size at some later time. Equation 1.2 is similar to the for-
mula used by banks to calculate compound interest on a savings account.

Figure 1.1a illustrates some population trajectories that were calculated
from Equation 1.2 for five different values of r. In Figure 1.1b, these same data
are shown on a semilogarithmic plot, in which the y axis is the natural loga-
rithm (base e) of population size. This transformation converts an exponential
growth curve to a straight line. The slope of this line is r.

These graphs show that when 7 > 0, populations increase exponentially,
and that the larger the value of 7, the faster the rate of increase. When r < 0,
populations decline exponentially. Mathematically, such populations never
truly reach zero, but when the population reaches a projected size of less than
one individual, extinction has occurred (by definition).

CALCULATING DOUBLING TIME

One important feature of a population (or a savings account) that is growing
exponentially is a constant doubling time. In other words, no matter how
larse or small the population, it will always double in size after a fixed time
period. We can derive an equation for this doubling time, tdoubles by noting

that, if the population has doubled in size, it is twice as large as the initial
population size:

N tgouble = 2O Expression 1.9

ubstif g bac quation 1. an
mto wves €
Substituting back into E 1.2 give Xpression in terms of initial

= Noe™
2No=Noe"double Expression 1.10
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Figure 1.1 (a) Trajectories of exponential population growth, calculated from a start-
ing population size of 100 individuals. The estimated r of —0.003034 [individuals /
(individual « year)] corresponds to the projection for the grizzly bear (Ursus arctos
horribilis) population of Yellowstone National Park (see Figure 1.6). (b) Exponential
growth curves plotted on a semilogarithmic graph. The same data are used as in (a),
but the y axis (population size) shows the natural logarithm (base ¢) of population
size. In this type of graph, an exponential curve becomes a straight line; the slope of

that line is r, the intrinsic rate of increase.
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Table 1.1 Estimates of r and doubling times for different organisms.
Common r lindividuals / l?oubling
Species name (individual * day)] time

T phage Virus 300.0 3 rvninutes
Escherichia coli Bacterium 58.7 17 minutes
Paramecium caudatum Protozoan 1.54 10.5 hours
Hydra Hydra 0.34 2 days
Tribotium castaneum Flour beetle 0.101 6.9 days
Rattus norvegicus Brown rat 0.0148 46.8 days
Bos taurus Domestic cow 0.001 1.9 years
Avicennia marina Mangrove 0.00055 3.5 years
Nothofagus fusca Southern beech 0.000075 25.3 years

From Fenchel (1974).

Dividing through by N eliminates it from both sides of the equation:

2 = ¢'tdouble Expression 1.11
Taking the natural logarithm of both sides gives:

In(2) =rtdouble Expression 1.12
Expression 1.12 can be rearranged to solve for doubling time:

In(2)

% Equation 1.3

tdouble =

Thus the larger r is, the shorter the doubling time. Table 1.1 gives some esti-
mated values of r (with their corresponding doubling times) for different
species of plants and animals. Among species, r varies considerably, and
much of this variation is related to body size: small-bodied organisms grow
faster and have larger rates of population increase than large-bodied organ-
isms. For example, bacteria and protozoa can reproduce by asexual fission
every few minutes and have high population growth rates. Larger organisms,
such as primates, have delayed reproduction and long generation times,
which lead to low values of 7. Corresponding doubling times range from
minutes for viruses to decades for beech trees.

Note, however, that even “slow-growing” populations eventually will
reach astronomical sizes if they increase exponentially. Table 1.2 projects the
future population size for a hypothetical herd of 50 Vermont cows [r = 0.365



Table 1.2 Xponen; owth of a herd o e, withr = cows/(cow e year
ponential 8T € f 50 cattly s W1 5 s/ (. year)
E et th of a herd 50 th 0.36! (S

Year Herd size

0 50.0

1 72.0

2 103.8

3 1495

4 2153

5 310.1
10 19237
50 4.2x10°
100 3.6x107
150 3.0x 105
200 25x10%

Population sizes calculated from Equation 1.2.

ct?ws/ (cow « year)]. After 150 years of exponential growth, the model pre-
dicts a herd of 3 x 10% cattle, the weight of which would exceed that of the
planet earth!

Model Assumptions

What are the assumptions of Equation 1.1? In other words, what is the under-
lying biology of a population that is growing exponentially? This is a critical
question that must be asked for any mathematical model we construct. The
predictions of a mathematical model depend on its underlying assumptions. If
certain assumptions are violated, or changed, the predictions of the model will
also change. Other assumptions may be less critical to the predictions of the
model; the model is robust to violations of these assumptions. We make the
following assumptions for a population growing according to Equation 1.1:

v No l or E. The populatfgn is “closed;” changes in population size depend
only on local births and deaths. We made this simplifying assumption
in Expression 1.4, so that we could model the growth of a single popu-
lation without having to keep track of organisms moving between pop-
ulations. In Chapter 4, we will relax this assumption and !)ui]d some
simple models in which there is migration between populations.



v Constant b and d. If a population is going to grow with constant birth
and death rates, an unlimited supply of space, food and other resources
must be available. Otherwise, the birth rate wilk-decrease and/or the
death rate will increase as resources are depleted. Constant birth and
death rates also imply that b and 4 do not change randomly through
time. Later in this chapter, we will incorporate variable birth and death
rates in the model to see how the predictions are affected.

v No genetic structure. Equation 1.1 implies that all the individuals in the
population have the same birth and death rates, so there cannot be any
underlying genetic variation in the population for these traits. If there is
genetic variation, the genetic structure of the population must be con-
stant through time. In this case, r represents an average of the instanta-
neous rate of increase for the different genotypes in the population.

v No age or size structure. Similarly, there are no differences in b and d
among individuals due to their age or body size. Thus, we are model-
ing a sexless, parthenogenetic population in which individuals are
immediately reproductive when they are born. A growing population of
bacteria or protozoa most closely approximates this situation. In Chapter
3, we will relax this assumption and examine a model of exponential
growth in which individuals have different birth and death rates as they
age. If there are differences among ages, the population must have a sta-
ble age structure (see Chapter 3); in this case, r is an average calculated
across the different age classes.

v Continuous growth with no time lags. Because our model is written as a
simple differential equation, it assumes that individuals are being born
and dying continuously, and that the rate of increase changes instantly
as a function of current population size. Later in this chapter, we will
re}ax the assumption of continuous growth and examine a model with
filscmfe generations. In Chapter 2, we will explore models with time lags
in V.Vth.h population growth depends not on current population size bué
on its size at some time in the past. '

The most impo'rta.nt assumption on this list is that of constant p and d,
which implies uplmuted Tesources for population growth. Only if resources



model form the cornerstone of population biolo,

1 ; ¥ p gy? Although no populati
can increase forever without limit, all populations have the ;‘;entiflo fltjn- ex;:ac::-1

) al model recognizes the multiplicati
pOpul?thn growth and the positive feedg:ack that givef ti)ahlrlitr;zt:smﬂ?:
pot];:ntlal to increase at an accelerating rate. F
xponential population growth is also a key feature of in’

(1809-1882) theory of natural selection. Darwii read M;tli:‘;rﬁitg\ag 312;
recognized that the surplus of offspring resulting from exponential growth
would allow natural selection to operate and bring about evolutionary
change. Finally, although no population can increase forever, resources may
!:;e temporarily unlimited so that populations go through phases of exponential
increase. Outbreaks of insect pests, invasions of “weedy” plant species, and
the plight of overcrowded human populations are compelling evidence of the
power of exponential population growth.

Model Variations

CONTINUOUS VERSUS DISCRETE POPULATION GROWTH

We will now explore some variations on our exponential growth model. For
many organisms, time does not really behave as a continuous variable. For
example, in seasonal environments, many insects and annual desert plants
reproduce only once, then die; the offspring that survive form the basis for
next year’s population. If birth and death rates are constant (as in the expo-
nential model), then the population will increase or decrease by the same fac-
tor each year. This population has non-overlapping generations and is mod-
eled with a discrete difference equation rather than a continuous differential
equation. Suppose the population increases (or decreases) each yearby a con-
stant proportion r,, the discrete growth factor. Thus, if the population
increased annually by 36%, 7z = 0.36. The population size next year would be:

Npy1=Np+1N; Expression 1.13

Combining terms gives:

Npaa = Ni(1+74) Expression 1.14

Let1 +ry=A, the ﬁnife rate of increase. Then:

Nipy = AN; Expression 1.15



the proportional change in pop-
A is the ratio of the population
e current time

A is always a positive number that measures
ulation size from one year to the next. Thus, s '
size during the next time period to the popule'mon. size 'for th
period (Ny41/Ny). After two years, the population size will be:

N, = AN, = A(ANg)=A2Ng Expression 1.16

Notice that the “output” of Expression 1.15 (Np.1) forms the ”ingut" (Np 'for
the calculation in the next time step. The general solution to this recursion
equation after ¢ years is:

Ny= AN, Equation 1.4

Equation 1.4 is analogous to Equation 1.2, which we used to project popula-
tion size in the continuous model. What does population growth look like
with the discrete model? The answer depends on the precise timing of birth
and death events. Imagine that births are pulsed each spring and that deaths
occur continuously throughout the year. The population growth curve will
resemble a jagged saw blade, with a sharp vertical increase from births each
spring, followed by a gradual decrease from deaths during the rest of the
year. In spite of this decrease, the overall curve will rise exponentially,
because annual births exceed annual deaths (Figure 1.2). The size of each
“tooth” in the growth curve will increase year after year because the same
fractional increase will add more individuals to a large population than to a
small one. For example, if & = 1.2, the population increases by 20% each year.

18,000 -
16,000
14,000
12,000
10,000

8000

6000

Population size (N}

0 2 4 6 3 o L
Time (t)

Figure 1.2 Discrete population i i
are 1 growth. In this exa; 2
beginning of the year, and deaths occur conﬁnuougll)}: e ik i st
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If the population size is 100, it will i i

population size is 1000, it will mcm;zzrs;sfog};:\zgrﬁ ;::ryear. But when the
msi:gpg]s: Vft:vrep:,s\‘:ll:ﬁ}?: reprodu;‘ed twice a year, as is the case for some

r . ve a “tooth” on the graph every si

time step between reproductive periods becomeg: s}l:ortere:ny; ls’;\;nr?;mtf\elfe?;
on. the graph will be closer and closer together. Finally, if the time st’ep is infi-
n.\te.ly small, the curve is no longer jagged but is smooth, and we have arrived
again at the continuous model of exponential growth (Equation 1.2). The con-
tinuous rpodel essentially “connects the dots” of time in the discre.te model.
".['h(.e ?onbnuous model is equivalent to a discrete difference equation with an
mﬁI\.ltely small time step. Thus, we can use the rules of calculus to solve for
the limit of (1 + r4) and show that:

e Equation 1.5
We can express Equation 1.5 in equivalent logarithmic form as:
r=In(2) Equation 1.6

where In is the natural logarithm (base ¢). This relationship between r and 4
also establishes the following numerical equivalents:

r>0e1>1 Expression 1.17
r=0eA1=1 Expression 1.18
r<0e0<A<l Expression 1.19

Because A is a ratio of population sizes, itis a dimensionless number with no
units. However, 4 is associated with the particular time step of the equation
and cannot be changed by a simple scaling. For example, ad of 12 measured
with a yearly time step is not equivalent toa 2 of 0.1 measured witha mc?nth-
ly time step. A4 of 1.2 yields a 20% annual increase, whereas a1 of 0.'1 yields
a 90% monthly decrease! If you need to change the time step ft?r A, first con-
vert A to 7 using Equation 1.6. Then scale 7 to the appropriate time \'mlts and
convert back to 2 with Equation 1.5. In this example, A = 1.2 18 eq\nvaler}t to
r=0.18232 individuals/ (individual * year). Dividing by .12 (months) gives
r=0.01519 individuals/ (individual « month). From Fquatxon 15,A= 1.01?3,
with a monthly time step- As a check on this calculation, we can use Equation

1.4 to show that, after 12 months:



N, =(1.0153)*Ng Expression 1.20
N,; =12N, Expression 1.21
=1

This calculation demonstrates that A = 1.0153 for a monthly time step 15
ivalent to A = 1.2 for a yearly time step. '

qun summary, the predictions of the discrete and continuous models of

exponential population growth are qualitatively similar to one another. In

Chapter 2, we will see that discrete models behave very differently when we

incorporate resource limitation.

ENVIRONMENTAL STOCHASTICITY

Equation 12 is entirely deterministic. If we know No, 7 and t, we can calcu-
late the predicted population size to the last decimal place. If we star.ted over
with the same set of conditions, the population would grow to precisely the
same size. In such a deterministic model, the outcome is determined solely
by the inputs, and nothing is left to chance.

Deterministic models represent an idealized view of a simple, orderly
world. But the real world tends to be complex and uncertain. Think of public
transportation. Does any commuter ever expect their bus or train to arrive at
precisely the time indicated in the printed schedule? At least in American cities,
buses are delayed, trains break down, and subways travel at irregular speeds,
all of which introduce uncertainty (and anxiety) into the daily commute.

Could we incorporate all of the complex sources of variation into a public
transportation model? Not very easily. But we could measure, each day, the
arrival time of our bus. After many commuting days, we could calculate two
numbers that would help us to estimate the uncertainty. The first number is
the average or mean arrival time of the bus. If we use the variable x to indi-
cate the time the bus arrives, the mean is depicted as X. Approximately half of
all buses will arrive later than ¥ and half will arrive earlier. The second num-
ber we could calculate is the variance in arrival times (62). The variance mea-
sures the variability or uncertainty associated with the mean. If the variance
is small, then we know that most days the bus will arrive within, say, two
minutes of the mean. But if the variance is large, the arrival time of the bus on
any given morning could be as much as 20 minutes earlier o 20 minutes later
than %. Obviously, our “commuting strategy” will be affected by both the
mean and the variance of x.

How can we incorporate this type of uncertainty into an exponenti
B_TOWth model? Suppqse that the instantaneous rate otfyincrease is n]; lon;‘::lraal
good times, the bi.rtl% rate is miactl: k 20 times for population growth. During

g arger than the death rate, and the popula-
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ti ; : :
d:: ﬂc\a::l tl::ll-:a:\e Z;pldlyl.lDurmg bad times, the difference between birth and
¢ uch smaller, or perhaps even negative, so that the i
increases slowly, or even decreases, for a short ti eri L e
! Ly, or ¢ s 1t time period. Without specify-
u:g cT‘ll of the biological causes of good and bad years, we can still demllf)ya
2 S(; oc.as:::i m(_):l}:al of gopulaﬁon growth in a varying environment. Variability
iated with good and bad years for populati i , i

ronmental stochasticity. y Population growths known as envi

I..magu?e that a population is growing exponentially with a meanr () and a
variance in r (6 2). We will use this i ion si
e H will use model to predict the mean population size at

e t (N) and the variance in population size (o,z\,l). Make sure you understand
the Fllﬁe@oe between these two averages and the two variances: the average and
variance in 7 are used to predict the average and variance in N.

The derivation of this model is beyond the scope of this primer, but the
rfesu.lts are straightforward. First, the average population size for a popula-
tion growing with environmental stochasticity is:

N, = Nge" Equation 1.7

This is no different from the deterministic model (Equation 1.2) except that
we use the average r to predict the average N;. However, like the “average
family” with 2.1 children, Ni may not be a very accurate descriptor of any
particular population. Figure 1.3 shows a computer simulation of a popula-
tion growing with environmental stochasticity. Although the population
achieves exponential increase in the long run, it fluctuates considerably from
one time period to the next. The variance in population size at time £ is given
by (May 1974a):

o'%\“ = NZe*" (e";t - 1) Equation 1.8

Other mathematical expressions for this variance are possible, depending on
precisely how the model is formulated.” Equation 1.8 tells us sevelral things
about the variance of the population. First, population varance increases
with time. Like stock-market projections or weather forecasts, the further

fechni ing 7' i ; is a “white noise” distri-
i , we are replacin{ rin Bquation 1.2 byr+ o7W,, where Wpisa “wi

e o2 stoch ic Elifferential equation, which unfortunately does not hﬂz:iw;e a .
ique i the Ito solution to this prob-
unique solution. I have followed May (1974?), who presents ! utior ob-
lemt‘,1 Biologically, the Ito solution is appropriate because it arises asa d\ff.usu;nlgpg‘r:)e)am?;d
tion to a discrete ‘model of geometric random growth, similar to Expression 1.15.

readers should consult May (1973, 1974a) and Roughgarden (1979) for more details.
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Figure 1.3 Exponential growth with environmental stochashcﬁy: el
thge insta:\tane%us rate of increase fluctuates randomly through time. Here No = 20;
r =0.05; 67 = 0.0001.

into the future we try to predict population size, the more uncertain our esti-
mate. Consequently, the population growth curve resembles a funnel that
flares out with increasing time (Figure 1.3). Second, the variance of N is pro-
portional to both the mean and variance of r. Populations that are growing
rapidly, or have a variable r, fluctuate more than slow-growing populations
or those with a relatively constant r. Finally, if the variance of r is zero,
Equation 1.8 collapses to zero—there is no variance in Ny, so we have
returned to the deterministic model.

There is a limit to how much the population can vary in size and still per-
sist. If N fluctuates too violently, the population may “crash” to zero. This can
happen even if 7 is large enough to ensure rapid growth for the “average”
population. Extinction from environmental stochasticity will almost certainty
happen if the variance in r is greater than twice the average of r (May 1974a):

02>2F Equation 1.9

In our deterministic model, the population increased exponentially as long
as r was greater than zero. With environmental stochasticity, the average pop-
ulation size also increases exponentially as a function of 7. However, if the
variance in r is too large, there is a measurable risk of population extinction.

DEMOGRAPHIC STOCHASTICITY

Environfnental stochasticity is not the only source of variability that can affect
populations. Even if 7 is constant, populations may still fluctuate because of
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demographic stochasticity. D i icity ari
most organisms reprodltlr:e tﬁ'renn(\’sg:l?i?::’ tdoizlc.l::tzctlzj:r'lses, . e b
eggs or‘ 3, but not 2.6! Some clonal plants and corals C:.I-’la:; OS(:ZIICh oy
mentation and asexual buddi i pieces” of ind v
e 2 dding, and in that sense, "pieces” of individuals
may contri u.te to population increase (see Chapter 3). But for
isms, population growth is an integer process. . it o
Seelf t;:ve Lv.ete to follow a population over a short period of time, we would
at. irths and deaths are not perfectly continuous, but instead occur
sequentna].ly. Suppose that the birth rate is twice as larg; as the death rate
This means that a birth would be twice as likely to occur in the sequence as a;
death. In a perfectly deterministic world, the sequence of births and deaths
v'«'(?uld look like this: ...BBDBBDBBDBBD.... But with demographic stochas-
ticity, we might see : ...BBBDDBDBBBBD.... By chance, we may hit a run of
four b.Lrths in a row before seeing a death in the population. This demo-
graphic stochastici.ty is analogous to genetic drift, in which allele frequencies
c.hfmge randomly in small populations.” In a model of demographic stochas-
tlfa;y, tl'(;edprobability of a birth or a death depends on the relative magnitudes
of band d:

b

P(birth) = T

Equation 1.10

P(death) = (Ti?} Equation 1.11

Suppose that, for a chimpanzee population, b = 0.55 births/ (individual ¢
year) and that d = 0.50 deaths/(individual » year). This yields an of 0.05
individuals/(individual « year), with a corresponding doubling time of
13.86 years (Equation 1.3). From Equations 1.10 and 1.11, the probability of
birth is [0.55/(0.55 + 0.50)] = 0.524, and the probability of death is

R -

*As in the analysis of environmental stochasticity, the equations depend on the particular bio-
logical details of the model. One formulation for demographic stochasticity is that individuals
in a population live and die independently of one another for random durations. L_ifetimes
have an exponential distribution with a mean of 1/(b + d). At the end of its life, an mc!iyidual
either replicates itself with probability b/(b + d) (Equation 1.10) or it dies with probability
d/(b + d) (Equation 1.11). The independence of individual births and deaths leads to Equation
1.15, which gives the overall probability of population extinction. o

An alternative formulation for demographic stochasticity is that change in population size
is described by a matrix (Markov) transition model. In this case, the population persists with
N individuals for a time that has an exponential distribution with a n_\e.an of 1/N(b + d). A} the
end of this time, the population either increases to N +1 with.pmbabzhry b/(b + d) (Equation
1.10) or it decreases to N -1 with probablh'ty d/(b + d) (Equation 1.11). Interested readers

should consult losifescu and Tautu (1973) for more details.
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[0.50/(0.55 + 0.50)] = 0.476. Note that these probabilities must add to 1.0,
because the only “events” that can occur in this population are births or
deaths. Because a birth is more likely than a death, the chimpanzee popu-
lation will, on average, increase. However, population size can no longer
be projected precisely; by chance, there could be a run of births or a run of
deaths in the population. Figure 1.4 shows a computer simulation of four
populations that each began with 20 individuals and grew with stochastic
births and deaths. Two of these populations actually declined below Ny,
even though r was greater than zero.

As in our analysis of environmental stochasticity, we are interested in the
average population size and its variance. The average population size at time
t is again given by:

N, = Nge™ Equation 1.12

35,—

Population size (N)

0
OW

N 50
Population births and deaths

Figure 1.4 Computer simulation of i

ig ; population growth wi i
‘t,lic‘;t‘z;lE.acfela}:t))Pugson track starts with an N of glt-) indiv‘;guthal:e;inggot;gl;licr&“sm?s- i- *
) are%denﬂ?al, t;OO.OSfO t::;t;\; l/ﬂ(aiggll'_lvidual * year). Althou.gh Zhe. starting c/o(r:?itij}-
tion size by the end of the simulation, N ost: ié}f;r':um}’ed;[;liiiibdow S 5 o

the number of sequential Population events (births and deas ﬂ']‘sﬁ)f absolute time, but



ual, the population will not incre,
n . : . as
and the variance in Population size at time  is (Pielou 1969): R

2 _on :
ON, =2N,bt Equation 1.13

If b and d are not equal, use the following:

No(b+d)e" (e - 1)

Ny >

S

Equation 1.14

és m the model of environmental stochasticity, the variance in population
Size increases with time, and there is a risk of extinction even for populations
with positive 7. Demographic stochasticity is especially important at small
population sizes because it doesn’t take very many sequential deaths to drive
a small population to extinction. Consequently, the probability of extinction
depends not only on the relative sizes of b and d, but also on the initial pop-
ulation size. This probability of extinction is:

No
P(extinction) = (% ] Equation 1.15

For the chimpanzee example, if there were 50 chimps initially, the chance of
extinction would be (0.50/0.55) = 0.009 = 0.9%. However, if the initial pop-
ulation size were only 10 chimps, the chance of extinction would be
(0.50/0.55)1° = 0.386 = 38.6%.

Equations 1.13 and 1.14 also show that demographic stochasticity depends
not only on the difference between b and d, but on the absolute sizes of b and
d. Populations with high birth and death rates will be more variable than pop-
ulations with low rates. Thus, a population with b = 1.45 and d = 1.40 will fluc-
tuate more than a population with b = 0.55 and 4 = 0.50. In both populations, r
= 0.05, but in the first, there is a much faster turnover of individuals, and thus
a much greater chance for a run of several consecutive births or deaths.

To summarize, the average population size in stochastic models of expo-
nential growth is the same as in the deterministic model we originally
derived. In a stochastic world, populations can fluctuate because of changes
in the environment that affect the intrinsic rate of increase (environmental
stochasticity) and because of random birth and death sequences (demo-
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graphic stochasticity). For both types of variability, a Pop'ula.tion canfﬂuct:a;:
so much that extinction is likely, even if the average lfltnnsnc rate of incr aof
is positive. Demographic stochasticity is much more important as a cause
extinction at small population sizes than at large.

Empirical Examples

PHEASANTS OF PROTECTION ISLAND

Humans have introduced many species into new environments, both inten-
tionally and accidentally. Some of these introductions have hjlmed out to be
interesting ecological experiments. For example, in 1937, eight pheasants
(Phasianus colchicus torquatus) were introduced onto Protection Island off the
coast of Washington State (Lack 1967). The island had abundant food re-
sources and no foxes or other bird predators. The island was too far from the
mainland for pheasants to fly to it, so migration did not influence population
size. From 1937 to 1942, the population increased to almost 2000 birds (Figure
1.5a,b). The curve shows a jagged increase that is similar to our discrete
model of population growth. This increase reflects the fact that pheasant
chicks hatch in the spring, and mortality continues throughout the year.

The initial population of eight birds had increased to 30 by the beginning
of 1938. If we assume that resources were not limiting growth at this time, we
can estimate A as (30/8) = 3.75, with a corresponding 7 of In(3.75) = 1.3217
pheasants/(pheasant « year). We can use this estimate to predict population
size from the exponential growth model, and compare it to the actual size of
the pheasant population each year. The initial predictions of this model were
reasonably accurate, but after 1940, the model overestimated population size.
By 1942, the population had grown to 1898 birds, whereas the model predic-
tion was three times larger (5933 birds). This difference probably reflects
quleﬁC'n of food resources on the island by the increasing pheasant popula-
tion. Unfortunately, this interesting ecological experiment ended abruptly
when the US. Army set up a training camp for World War I on the island,
and promptly ate the pheasants!

GRIZZLY BEARS OF YELLOWSTONE NATIONAL PARK

The grizzly bear (Ursus arctos horribilis) was once widespread throughout
most of North America. Today, its range in the lower 48 states consists of only
snx.f-ragmented Populations in the northwest, some of which have fewer than
'10 individuals. Yellowstone National Park Supports one of the largest remain-
ing popu{ations, which fluctuates markedly from year to year (Figure 1.6)
The ngzly bear population data obviously do not conform to a si1:11 'le
exponential growth model, but they can be described by a more compllgex
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Figure 1.5 Growth of pheasant (Phasianus colchicus torquatus) population introduced
to Protection Island. The thin line shows the hypothetical exponential growth curve,
with 7 = 1.3217 individuals / (individual « year); the thick line shows the observed
population size. For comparison, population sizes are plotted on a linear scale in (a)
and a logarithmic scale in (b). Note that the logarithmic scale is base 10, not base e.
(Data from Lack 1967.)
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exponential model that incorporates environmental stochasticity (Dennis et
al. 1991). The estimate of r that emerged from this model is -0.003034
bears/(bear « year), suggesting that the population will decline slowly in the
long run. However, the variance for this estimate was relatively large, so we
should not be surprised to see periods of population increase. Based on this
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Fipure 1.6 Population size of grizzly bears (Ursus arctos horribilis) in Ye_ .
Ngﬁonal I’arkl.:’These data were used to construct a model of exponential population

owth that incorporates environmental stochasticity. The estimate of 7 from
rgnrodel was —0.003034 individuals / (individual year). (From Dennis et al. 1991)

model, the prognosis for the Yellowstone grizzly bear population is not good.
The model forecasts that the population is certain to drop below 10 individ-
uals, at which point extinction is almost guaranteed. However, because r is
close to zero and its variance is large, the estimated time to extinction is 200
years. Thus, the model suggests that it is unlikely the grizzly bear population
is in immediate danger of extinction, but that the population is likely to reach
a dangerously small size in the long run.

This projection assumes that background variability in b and d will con-
tinue in the future. Thus, the model does not incorporate catastrophic events,
such as the 1988 Yellowstone fire, or future changes in human activity and
management strategy, such as the 1970-1971 closure of the park garbage
dumps, an important food source for the bears. Because this model is one of
exponential population growth in a stochastic environment, it does not incor-
porate resource limitation, which might lead to different predictions (see
Chapter 2). Finally, the predictions of the model will change as additional
data from yearly censuses become available. Increasingly, conservation biol-
ogists and park managers are using quantitative population models to esti-
mate the risk of extinction for endangered species. Many of these models are

based on the principles of exponential population growth that we have devel-
oped in this chapter.
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Problems

11

1.2.

1.3.

14.

*1.5.

In 1993, when the first edition of this book was written, the world's
human population was expected to double in size in approximately 50
years. Assuming population growth is continuous, calculate r for the
human population. If the population size in 1993 was 5.4 billion, what
was the projected population size for the year 2000?

The future is here! On August 2, 2000 the best estimate of the world Ppop-
ulation size was 6.087 billion—a bit higher than that projected by the
model in 1993. To find out the current estimate of the world population
size, visit this website maintained by the U.S. Census Bureau:

http:/ /www.census.gov/main/www/popclock.html

This website has a “real-time clock” that shows the estimated world and
U.S. population sizes. What is today’s date for you, reader, and how large
is the human population now?

You are studying a population of beetles of size 3000. During a one-
month period, you record 400 births and 150 deaths in this population.
Estimate r and project the population size in 6 months.

For five consecutive days, you measure the size of a growing population
of flatworms as 100, 158, 315, 398, and 794 individuals. Plot the logarithm
(base e) of population size to estimate 7.

A population of annual grasses increases in size by 12% every year. What
is the approximate doubling time?

You are studying an endangered population of orchids, for which b =
0.0021 births/(individual + year) and d = 0.0020 deaths / (individualn-
year). The current population size is 50 plants. A new shopping mall is
planned that will eliminate part of the orchid habitat and reduce the pop-
ulation to 30 plants. Estimate the effect of the proposed development on
the probability of extinction.

* Advanced problem
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Model Presentation and Predictions

we assumed (unrealistically) that resources for population
growth were unlimited. Consequently, the per capita bi.rth an‘d death rates, b
and d, remained constant. We did explore some models in which b and d fluc-
tuated through time (environmental stochasticity), but those fluctu.ahons
were density-independent; in other words, birth and death rates did not
depend on the size of the population. In this chapter, we assume t.hat
resources for growth and reproduction are limited. As a consequence, birth
and death rates depend on population size. To derive this rnore.complex
logistic growth model, we will start with the familiar grow th equation:

In Chapter 1,

d—;\lf =(’-d)N Expression 2.1

but now we will modify & and d so they are density-dependent and reflect
crowding.

DENSITY DEPENDENCE

In the face of increased crowding, we expect the per capita birth rate to
decrease because less food and fewer resources are available for organisms to
use for reproduction. The simplest formula for a decreasing birth rate is a
straight line (see Figure 2.1):

b'=b-aN Expression 2.2

In this expression, N is population size, b’ is the per capita birth rate, and b
and a are constants. From Expression 2.2, the larger N is, the lower the birth
rate. On the other hand, if N is close to zero, the birth rate is close to b. The
constant b is the birth rate that would be achieved under ideal (uncrowded)
conditions, whereas b’ is the actual birth rate, which is reduced by crowding.
Thus, b has the same interpretation as in the original exponential growth
model: it is the instantaneous per capita birth rate when resources are unkim-
ited. The constant a measures the strength of density dependence. The larger
a is, the more sharply the birth rate drops with each individual added to the
population. If there is no density dependence, then a = 0, and the birth rate
equals b, regardless of population size. Thus, the exponential growth model is
a special case of the logistic model in which there are no crowding effects on
ﬂqeLII)irth rate (2 = 0) or on the death rate (c = 0).
sing similar reasoning, we can modify the death rate to reflect densi

: ty

3:::{(3;1:\::& In this case, we expect the death rate to increase as the popula-

d'=d+cN Expression 2.3



Again, the constant d is the death rate when the population size is close to
zero, and the population is growing (almost) exponentially. The constant ¢
measures the increase in the death rate from density dependence.

Expressions 2.2 and 2.3 are the simplest mathematical descriptions of the
effects of crowding on birth and death rates. In real populations, the func-
tions may be more complex. For example, b’ and d’ may not decline in a linear
fashion; instead, there may be no change in b’ or d’ until a critical threshold
density is reached. Some animals can reproduce, hunt, care for their off-
spring, or avoid predators more efficiently in groups than they can by them-
selves. For these populations, b’ may actually increase and d’ decrease as the
population grows. This Allee effect (Allee et al. 1949) is usually important
when the population is small, and may generate a critical minimum popula-
tion size, below which extinction occurs (see Problem 2.3). But as the popu-
lation grows, we expect negative density effects to appear as resources are
depleted.

Note that both birth and death rates are density-dependent in this model.
But it might be that only the death rate is affected by population size, and the
birth rate remains density-independent, or vice versa. Fortunately, the algebra
of this case works out exactly the same (see Problem 2.5). As long as either
the birth rate or the death rate shows a density-dependent effect, we arrive
at the logistic model.

Now we substitute Expressions 2.2 and 2.3 back into 2.1:

% =[(b-aN)-(d+cN)N Expression 2.4
After rearranging the terms:
%:[(b—d)—(cHC)N]N Expression 2.5

Next, we multiply Expression 2.5 by [(b—d)/ (b - d)]..Thjs term.equals 1.0, so
it does not change the results, but allows us to simplify further:

% = I:%—:%:l[(b —d)—(a+c)N|N Expression 2.6

aN _ [(b— d)] [g',__l "g) - %g__l *';)N] N Expression 2.7
dt - - pression
Treating (b — d) as 7, we have:

dN _ n[1-@*9 ] Expression 2.8
Br=m-Ga" P



CARRYING CAPACITY . )
Because 4, ¢, b, and d are all constants in Expression 2.8, we can define a new

constant K:

b-d) - ion 2.9
K= ((a 79 Expression
The constant K is used for more than just mathemat"ical conven.ieflce. It has ;
ready biological interpretation as the carrying capacity of the e'nv1ronment.
represents the maximum population size that can be sup.por‘te.d; it encompassgs
many potentially limiting resources, including the avz.u.labl.hty of space, food,
and shelter. In our model, these resources are depleted mcrementall}.r as c‘row.d-
ing increases. Because K represents maximum sustainable populz.mon size, its
units are numbers of individuals. Substituting K back into Expression 2.8 gives:

dN _ N[ 1- \ \\ Equation 2.1

dt

=

Equation 2.1 is the logistic growth equation, which was introduced to ecolo-
gy in 1838 by P--F. Verhulst (1804-1849). It is the simplest equation describ-
ing population growth in a resource-limited environment, and it forms the
basis for many models in ecology.

The logistic growth equation looks like the equation for exponential
growth (rN) multiplied by an additional term in parentheses (1 — N/K). The
term in parentheses represents the unused portion of the carrying capacity.
As an analogy, think of the carrying capacity as a square frame that will hold
a limited number of flat tiles, which are the individuals. If the population
should ever exceed the carrying capacity, there would be more tiles than
could fit in the frame. The unused portion of the carrying capacity is the per-
centage of the area of the frame that is empty (Krebs 1985).

For example, suppose K = 100 and N = 7. The unused portion of the carry-
ing capacity is [1 - (7/100)] = 0.93. The population is relatively uncrowded
and is growing at 93% of the growth rate of an exponentially increasing pop-
ulation [rN(0.93)]. In contrast, if the population is close to K (N = 98), the
unused carrying capacity of the environment is small: [1 - (98, 100)] = 0.02.
Consequently, the population grows very slowly, at 2% of the exponential
growth rate [rN(0.02)]. Finally, if the population should ever exceed carrying
capacity (N > K), the term in Parentheses becomes Negative, which means -
that the groth rate is less than zero, and the population declines towards
K. Thus, den'sﬂy-dependent birth and death rates Provide an effective brake
On exponential population growth,
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Figure 2.1 Density-dependent birth and death rates in the logi tic model

I ] . The graph
!llustrates how tl:le per capita rates of birth and death cha.nge?az a function of crg;wl:i-
ing. The population reaches a stable equilibrium (N = K) at the intersection of the
curves, where birth and death rates are equal.

When will the population stop growing? As in the exponential model, the
rate of population growth (dN/dt) is zero when either r or N equals zero. But in
the logistic model, the population will also stop growing when N = K. This is
illustrated in Figure 2.1, which shows the density-dependent birth and death
functions in the same graph. The two curves intersect at the point N = K and
form a stable equilibrium. The equilibrium is stable because no matter what the
starting size of the population, it will move towards K. If N is less than K, we
are at a point to the left of the intersection of the birth and death curves. In this
region of the graph, the birth rate exceeds the death rate, so the population will
increase. If we are to the right of the intersection point, the death rate is higher
than the birth rate, and the population will decline (see Appendix).

As with the exponential growth model, we can use the rules of calculus to
integrate the growth equation and express population size as a function of

time:

R O N
al's H[(K*Nn)/Nn]F»”

Equation 2.2

From Equation 2.2, the graph of N versus time for logistic grpwt!w isa chax.'-
acteristic S-shaped curve (Figure 2.2). When the population is small, it
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Figure 2.2 Logistic growth curve. The graph of N versus time increases in a charac-

teristic S-shaped fashion when the population begins below carrying capacity. )
Above carryi]:lg capacity, the curve drops rapidly to the equilibrium point. In this
example, K= 100, and the starting population size is 5 or 200.

increases rapidly, at a rate slightly less than that predicted by the exponen-
tial model. The population grows at its highest rate when N = K/2 (the steep-
est point on the curve), and then growth decreases as the population
approaches K (Figure 2.3a). This is in contrast to the exponential model, in
which the population growth rate increases linearly with population size
(Figure 2.3b). In the logistic model, if the population should begin above K,
Equation 2.1 takes on a negative value, and N will decline towards carrying
capacity.

Regardless of the initial number of individuals (No), a population growing
according to the logistic model will quickly reach a fixed carrying capacity,
which is determined solely by K. However, the time it takes to reach that

equilibrium is proportional to r; faster-growing populations reach K more
quickly.

Model Assumptions

Because the logistic model is derived from the exponential model, it shares
the assumptions of no time lags, migration, genetic variation, or age stryc-
ture in the population. But resources are limited in the logistic model, so we
make two additiona) assumptions:
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(a)

dN
dt

Population size (N)

(b)

AN
at

Population size (N)

Figure 23 Population growth rate (dN/dt) as a function of population size.
(a) Logistic growth. (b) Exponential growth.

v Constant carrying capacity. In order to achieve the S-shaped logistic
growth curve, we must assume that K is a constant: resource availability
does not vary through time. Later in this chapter, we will relax this
assumption.

v Linear density dependence. The logistic model assumes that each indi-
vidual added to the population causes an incremental decrease in the
per capita rate of population growth. This is illustrated in Figure 2.4a,
which shows the per capita population growth rate (1/N)(dN/dt) as a
function of population size. This per capita rate is at its maximum value
of (b —d) = r when N is close to zero, then declines linearly to zero when
N reaches K. If N exceeds K, the per capita growth rate becomes nega-
tive. Although b and d are constants, the actual birth and death rates (b’
and d’) now change as a function of population size (Expressions 2.2 and
2.3). In contrast, the corresponding graph for the exponential growth
model is a horizontal line because the per capita growth rate is indepen-
dent of population size (Figure 2.4b).



@

(F)@)

Population size (N)

®)

()&

Population size N

Figure 2.4 Per capita growth rates (1/ N)(dN/dt) as a function of population size.
(a) Logistic growth. (b) Exponential growth.

Model Variations

TIME LAGS

The logistic growth model assumes that when another individual is added
to the population, the per capita growth rate decreases immediately. But in
many populations there may be time lags in the density-dependent response.
For example, if a population of gulls increases in size in the fall, density
dependence may not be expressed until the following spring, when females
lay eggs. In a tropical rain forest, density-dependent mortality of mahogany
trees (Swietenia mahogani) may occur in the seedling stage, but density-depen-
dent reproduction may not occur until 50 years later, when the trees first
begin to flower. Individuals do not immediately adjust their growth and
reproduction when resources change, and these delays can affect population
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important time lags in population growth.

How can time lags be incorporated into our mode]? Suppose there is a

time lag of length t between the change in ion si
] opulati i
population growth rate. Conseq oo ot rate of v e olct on

4 ¢ uently, the growth rate of the po ulation at
turfe t (dI.\I/dAt) 1s controlled by its size at time ¢ — 1 in the past (Is,,f)). Incz:pg-
rating this time lag into the logistic growth equation gives:

N _ Ni_z)
W»JN(P KI \

Equation 2.3

The behavior of this delay differential equation depends on two factors: (1)
the.len.gt.h of the time lag 1, and (2) the “response time” of the population,
which is inversely proportional to r (May 1976). Populations with fast growth
rates have short response times (1/r).

The ratio of the time lag 7 to the response time (1/7), or r1, controls popula-
tion growth. If rtis “small” (0 < rt <0.368), the population increases smooth-
ly to carrying capacity (Figure 2.5a). If 77 is “medium” (0.368 < 7 < 1.570), the
population first overshoots, then undershoots the carrying capacity; these
damped oscillations diminish with time until K is reached (Figure 2.5b). The
exact numerical values for these trajectories are not important. What is impor-
tant is to understand how the behavior of the model changes as r7 is increased.

If rr is “large” (r7 > 1.570) the population enters into a stable limit cycle,
periodically rising and falling about K, but never settling on a single equilib-
rium point (Figure 2.5¢c). The carrying capacity is the midpoint between the
high and low points in the cycle. The cycle is stable because if the population
is perturbed, it will return to these characteristic oscillations. When rt is large,
the time lag is so much longer than the response time that the population
repeatedly overshoots and then undershoots K. The population resembles a
heating system with a faulty thermostat that constantly overheats and then
overcools, never achieving an equilibrium temperature. . )

Cyclic populations are characterized by their amplitude and period (Figure
2.5¢). The amplitude is the difference between the maximum and the aver-
age population size. It is measured on the y axis of the gTaph of Nvs. ¢, and its
units are number of individuals. The larger the amplitude, the greater th.e
population fluctuations. 1 the amplitude is too.large, the populat:lon I.nay hit
the “floor” of zero and go extinct. The period is the amount of time it t.akfas
for one complete population cycle to occur. It is measured on t.he x axis, in
units of time. The longer the period, the greater the amount of time between

population peaks.
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Figure 2.5 Logistic growth curves with a time lag. The behavior of the model
depends on r7, the product of the intrinsic rate of increase and the time lag. (a)
“Small” rt behaves like the model with no time lag. (b) “Medium” r7 generates
dampened oscillations and convergence on carrying capacity. (c) “Large” r7 gener-
ates a stable limit cycle and does not converge on the carrying capacity.

In a logistic model with a time lag, the amplitude of the cycle increases
with increasing values of 7. This makes intuitive sense—if the population is
growing very rapidly, or if the time lag is very long, the population will gréat-
ly overshoot K before it begins a phase of decline.
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] The period of the cycle is always about 41, regardless of the intrinsic rate of
Increase. Thus, a Populaﬁon with a time lag of one year can be expecteg too
;each 2 peak density every four years. Why should the period of the cycle be

our times as long as the lag? When the population reaches K, it will continue
to increase for a length of time 1 before starting to decrease, The distance from
Kto th_e population peak is about one-quarter of the cycle, so the length of
the entire cycle is approximately 4t. This result may explain the observation
that many populations of mammals in seasonal, high-latitude environments

cycle with peaks every three or four years (May 1976; see Chapter 6).
DISCRETE POPULATION GROWTH

We will now explore a model in which population growth is discrete rather
than continuous. A discrete version of the logistic equation is:
Niy =N, *’}ii\"‘r[’ ]*“\rf’ :

Equation 2.4

This discrete growth logistic equation is analogous to the continuous model
(Equation 2.1) in the same way that Equation 1.4 was analogous to the orig-
inal exponential model (Equation 1.2). Note that the growth rate is the dis-
crete growth factor 7,, described in Chapter 1.

A discrete population growth model has a built-in time lag of length 1.0.
The population size at one time step in the future (N,,,) depends on the cur-
rent population size (N,). In the last section, we saw that the product 77 con-
trols the dynamics when a time lag is present. For the discrete model, the lag
is of length 1.0, so the dynamics depend solely on 7,.

If 7, is not large, the behavior of this discrete equation is similar to that of its
continuous cousin. At “small” 7, (r, < 2.000), the population approaches K with
damped oscillations (Figure 2.6a). At “less small” r, (2.000 < 7, < 2.449), the pop-
ulation enters into a stable two-point limit cycle. This is similar to the continuous
model, except that the population rises and falls to sharp “points,” rather than
following a smooth curve. The points in the discrete model correspond to peaks
and valleys of the cycle (Figure 2.6b). Between an 7, of 2.449 and an r, of 2.570,
the population grows with more complex limit cycles. For example, a four—pomt
limit cycle has two distinct peaks and two distinct valleys befo¥e it starts to
repeat. The number of points in the limit cycle increases geor.netnca]ly 24,8
16, 32, 64, etc.) as the value of 7, is increased in this interval (Figure 2.6c).

But if 7, is larger than 2.570, the limit cycles break down, and ifhe poptg.clia-
tion grows in a complex, nonrepeating pattern known as chaos (F%gure 2[:;0 ).
Mathematical models of chaos are important l.l'l many areas of science, from
the description of turbulent flow to the prediction of major weather patterns.
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| s;g::l:f 3 .6(3?’1’25 be}l\la”vxor of the discrete logistic growth curve is determined by the
4 mall” r, ggnergtgs damped oscillations (ra=1.9). (b) “Less small” r,
generates a stable two-point limit cydle (r, = 2.4). (c) “Medium” r, generates a more

complex four-point limit cycle (r; =2.5). (d) “Large” r t i
fluctuations that appears tond ] o =)2.B().) Be” 7, generates a chaotic pattern of

POpul.ation biologists were among the first to appreciate that simple discrete
€quations may generate complex patterns (May 1974b). What is interesting
about chaos is that seemingly random fluctuations in population size can
emerge from a model that is entirely deterministic. Indeed, the track of a
chaotic population may be so complex that it is difficult to distinguish from
the track of a stochastic population.

However, chaos does not mean stochastic, or random, change. The fluctu-
ations in a chaotic population have nothing to do with chance or random-
ness. Once the parameters of the model are specified (K, r,, and N), the same
erratic population track will be produced each time we run the model. The
source of these erratic fluctuations is the density-dependent feedback of the
logistic equation, combined with the built-in time lag of the discrete model. A
characteristic of a chaotic population is sensitivity to initial conditions. If we
alter the starting conditions, say, by changing the initial population size (N),
the populations will diverge more and more as time goes on (Figure 2.7).

In contrast, a truly stochastic population fluctuates because one or more
of its parameters (7, or K) changes with each time step. In a stochastic model,
if we alter the starting population slightly, but retain the same pattern of vari-
ation in 7; or K, the two population tracks will be slightly different, but the_y
will not diverge as in Figure 2.7. In the next section we explore stochastic
models in which the carrying capacity varies with time.
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RANDOM VARIATION IN CARRYING CAPACITY
In our analysis of environmental stochasticity (Cha 1), \
resources were unlimited, but that 7 varied randomly with time. For the log}s-
tic model, we will now assume that  is fixed, but that the carrying capacity
varies randomly with time. Random variation in K'means that the maximum
population size that the environment can support changes unprfedlctably
with time. How does this variation in resources affect the behavior of the
logistic model? There are several mathematical approaches to the problem
(May 1973; Roughgarden 1979), none of which yields a simple answer.
When r varied randomly in our exponential model, we found that the
average population size was the same as in the deterministic model (N: =
Nee™). So, you might reason that the average population size in the logistic
model should approximate the average carrying capacity (K). But this is not
the case. Instead, N will always be less than K. Why should this be so? When
a population is above K, it declines faster than a population that is increas-
ing from a corresponding level below K (see Problem 2.4). This asymmetry is
reflected in Figure 2.2, which shows that the population tracks above and
below carrying capacity are not mirror images of one another. If the carrying
capacity is described by its mean (K) and variance (6%) , a rough approxima-
tion to the average population size is (May 1974a):

pter 1), we assumed that

PRt}

= o

N Equation 2.5

J

Thus, the more variable the environment, the smaller the average population
size. The pattern of population fluctuations also depends on r (Levins 1969).
Populations with large r are very sensitive to changes in K, and they will tend
to track these fluctuations quite closely. Consequently, the average popula-
tion size will be only slightly less than the average carrying capacity. In con-
trast, populations with small 7 are relatively sluggish and will not exhibit

large increases or decreases (Figure 2.8); N will be somewhat smaller than
for populations with large r.

PERIODIC VARIATION IN CARRYING CAPACITY

I.:lsltea.d of ra@om ﬂ\fch.xations in carrying capacity, suppose K varies repeat-

ih Y, ut1 a cyclic fashion. Cyclic fluctuations in catrying capacity probably
aracterize many populations in seasonal tem t i

described with a cosine function (May 1976): pereteatitudes, and can be

Ky =k +k; [cos(2rt /c)] Equation 2.6
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Figure 2.8 Logistic population growth with random variation in carryi i
> 1 ing capacity.
Note that the population with the larger growth rate (r = 0.50) hack‘.;rz,hegﬂucgualgns

in carrying capacity, whereas the population with the small growth rate (r = 0.10) is
less variable and does not respond as quickly to fluctuations in resources.

Here, K; is the carrying capacity at time t, kq is the mean carrying capacity, k,
is the amplitude of the cycle, and c is the length of the cycle. As t increases,
the cosine term in parentheses varies cyclically from -1 to 1. Thus, during a
single cycle of length c, the carrying capacity of the environment varies from
a minimum of ky—k; to a maximum of k; + k;.

How does this cyclic variation in carrying capacity affect population
growth? The length of the carrying capacity cycle functions as a kind of time
lag, so once again, the behavior of the model depends on rc. If rc is small
(<< 1.0), the population tends to “average” the fluctuations in the environ-
ment and persists at roughly:

N =k -k Equation 2.7

Thus, if rc is small, N is less than K, and the reduction is greater when the
amplitude of the cycle is large; both patterns are similar to the results for a
population in which K varies stochastically. If rc is large (>> 1.0), the popu-
Jation tends to track the fluctuations in the environment:

N, = ko +kq cos(2rt /c) Equation 2.8

although at a value slightly less than the actual carrying capacity (Figure 2.9).

In conclusion, both stochastic and periodic variation in carrying capacity
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Figure 2.9 Logistic growth with periodic variation in the carrying capacity. The car-
rying capacity of the environment varies according to a cosine function. As with
random variation, the population with the large growth rate (r = 10) tends to track
the variation (a), and the population with the small growth rate (r = 0.2) tends to
average it (b). The dashed line indicates K. (From May 1976.)

reduce populations, and the more variable the environment, the lower the
average population size. In a variable environment, populations with large r,
such as most insects, may be expected to track variation in carrying capacity,
whereas populations with small 7, such as large mammals, may be expected
to average the environmental variation and remain relatively constant.



Empirical Examples

SONG SPARROWS OF MANDARTE ISLAND

Mandarte Island is a rocky, 6-hectare island off the coast of British Columbia.
The island is home to a population of song sparrows (Melospiza melodia) that
has been studied for many decades (Smith et al. 1991). On average, only one
new female migrant joins this population each year, so most of the changes in
population size are due to local births and deaths. Over the past 30 years, the
population has varied between 4 and 72 breeding females and between 9 and
100 breeding males. The sparrow population of Mandarte Island does not
conform to a simple logistic growth model; population size is variable and
there have been periods of increase followed by rapid declines (Figure 2.10).
Some of these, such as the crash in 1988, were caused by an unusually cold
winter and an increased death rate. Other declines were not correlated with
any obvious change in the environment.
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Figure 2.10 Population size of the song sparrow (Melospiza melodia) on Mandarte

Island. (After Smith et al. 1991.)
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Figure 2.11 Density dependence in the Mandarte Island song sparrow (Melospiza
melodia) population. As the population becomes more crowded (a) the proportion of
nonterritorial “floater” males increases; (b) the number of surviving young pro-

duced per female decreases; (c) juvenile survival decreases. (After Arcese and Smith
1988 and Smith et al. 1991.)



@ aﬁ;\ltl;:ugh th‘xs populat.ion is clearly buﬂfeted by density-independent
: ges, there is good evidence of underlying density dependence. Male
e o oot s g s
territories. These nonterritorial ”tlfl’:) te ”many male§ from ever estabhshm &
viduals. Their proportons aters” are b.ehavwrally submissive indi-

. portion increased in a density-dependent fashion as the
holders vore e 2.11a). When the resident territory
ders penmentally removed, floater males quickly took over their
temtoru_es, so the total breeding population size remained relatively constant.

Density dependence is also seen in the number of surviving young pro-
duced per female (Figure 2.11b), and in the survival of juveniles (Figure 2.11c),
both of which decreased as the population size increased. Experimental stud-
ies confirmed that food limitation was the controlling factor: when food lev-
els for sparrows were artificially enhanced, female reproductive output
increased fourfold (Arcese and Smith 1988). Thus, both territoriality and food
limitation generated density-dependent birth and death rates in song spar-
rows.

Nevertheless, although density dependence has the potential to control
population sizes, the risk of extinction for Mandarte Island sparrows proba-
bly comes from unpredictable environmental catastrophes and other densi-
ty-independent forces. Somewhat paradoxically, it is these density-indepen-
dent fluctuations that allow us to detect density dependence, because they
push the population above or below its equilibrium and reveal the underly-
ing dynamics of birth and death rates.

POPULATION DYNAMICS OF SUBTIDAL ASCIDIANS

Ascidians, or “sea squirts,” are filter-feeding invertebrates that live attached
to pier pilings and rock walls. These animals are important components of
subtidal “fouling” communities throughout the world. Ascidians are actual-
ly primitive chordates that disperse with a sexually Pl’Odl:lCed tadpole larva.
The perennial ascidian Ascidia mentula has been the subject of a lo'ng-term
study of population dynamics on vertical rock walls off the Swedish west
coast (Svane 1984). .

Six populations were monitored continua.lly for 12 years yvlﬁl phofograpl’.\s
of permanent plots. At sheltered sites within a ﬁqrd, de.r151ty was hjghe?t in
shallow plots; at exposed stations, densi‘ty was h.lghest in deep.-water P ctyits
At all sites, populations fluctuated considerably (ngure 2,12)., in C'(l’n:as tg
the predictions of the basic logistic model. Mortality was prun}:‘m yf uteors
“bulldozing” by sea urchins and temperature fl}lctuatlons. Tthese a:s s
seemed to operate in a density-independent fashl_on, l?ecau§e erze 1“:;3) o
relationship between mortality rate and population size (Figure 2.13a).
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Figure 2.12 Population density of ascidians (Ascidia mentula) at six subtidal sites off
the coast of Sweden. Population densities are greater in shallow water than in deep,
except at the exposed site. Note the use of a logarithmic scale for the y axis, which
diminishes the appearance of population fluctuations. (After Svane 1984.)

contrast, reproduction (as measured by larval recruitment) was density-
dependent and decreased at high densities. At low densities, there was evi-
dence of an Allee effect: recruitment actually increased with population den-
sity until a density of approximately 100 animals per square meter was
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Figure 2.13 (a) Density-independent mortality rates. The mortality rat idi
(Asadm mentula) at the six population sites a]:ypears tobe i.ndepeng,ent Zf0 ;;Culﬂﬁ
size. (_b) Density-dependent recruitment rates. The rate of recruitment of new juve-
niles into ascidian populations is density-dependent and is lower in more dense
populations. Note the appearance of a possible Allee effect, as recruitment is also
decreased at sites with very low abundance. (After Svane 1984.)

reached (Figure 2.13b). Possible explanations for this Allee effect include the
behavioral attraction of larvae to established adults and entrapment of lar-
vae by local water currents.

Like the Mandarte Island sparrows, these ascidians showed some evidence
of underlying density dependence, although the population never reached a
steady carrying capacity. Both the ascidian and sparrow populations were
affected by temperature fluctuations, although these effects seemed more
subtle and long-term for the ascidians. Unlike the isolated sparrow popula-
tion, the ascidian populations were potentially linked by larval dispersal
between sites, so that a realistic model of population dynamics might be espe-
cially complex (see Chapter 4).

LOGISTIC GROWTH AND THE COLLAPSE OF FISHERIES POPULATIONS

How many tons of fish should be harvested each year to maximize long-te@
yield? This optimal yield problem has been very important to commercial
fisheries because of the huge amounts of money involved and beca}xse over-
fishing has been a problem since at least the 1920s, when comme\tcm] sto.cks
of many species started to decline. The logistic gr?wth curve prov1de§ asim-
ple, though often unpopular, prescription for optimal ﬁshmg strategies.

The optimal strategy is the one that maximizes the population growth rate,
because this rate determines how quickly fish can be removed from the pop-
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Fisure 2.14 Relationship between fishing effort and total catch for the Peruvian
ar;schovy (Engraulis n'ngfns) fishery. Each point represents the fishing _catch and effort
for a particular year. The data include fishing effort by humans and fish catches by
seabird populafions. The parabola is drawn by fitting the logistic model to data

from Boerema and Gulland (1973). (After Krebs 1985.)

ulation while still maintaining a constant stock for future production. If a pop-
ulation is growing according to the logistic equation, maximum population
growth rate occurs if the population is held at K/2, half the carrying capacity
(Figure 2.3a). Two other strategies are guaranteed to produce low yields. The
first is to be extremely conservative and remove very few animals at each har-
vest. This keeps the standing stock large, but the yield is low because the pop-
ulation is close to carrying capacity and grows slowly. The other strategy is to
harvest the population down to a very small size. This also produces low yield
because there are so few individuals left to reproduce.

Unfortunately, this latter strategy of overdepletion has been followed by
all the world's fisheries. Figure 2.14 shows the yearly catch of Peruvian
anchovy (Engraulis ringens) fitted to the predictions of a simple logistic model.
The model predicts a maximum sustained yield of approximately 10 to 11
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Figure 2.15 Total catch for the Peruvian anchovy (Engraulis ringens) fishery from

1955 to 1981. This was the largest fishery in the world until its collapse in 1972
(After Krebs 1985; unpublished data from M. H. Glanz.). = '

million metric tons per year. The annual catch was close to this sustained
maximum from 1964 to 1971. In 1972, the Peruvian anchovy fishery col-
lapsed, in part due to overfishing, and in part due to an El Nifio event, in
which a warm tropical water mass moved off the coast of Peru and greatly
reduced productivity. Although fishing was reduced to allow stocks to recov-
er, anchovy populations have never reached their former abundance and fish-
ing yields remain low (Figure 2.15). Increasingly sophisticated technology
and large factory-ships have depleted world stocks of many fish populations
to the point where the industry itself is doomed to economic collapse. In 1989,
for example, the cost of operating the world’s 3 million fishing vessels was
estimated at $92 billion, whereas the total catch was worth only $72 billion
(Pitt 1993). The disappearance of human societies that depend on fishing is
also inevitable.

The situation can only be remedied by worldwide restrictions on fishing
and short-term reductions in catch. Unfortunately, this will not be easy
because each individual fishing vessel tries to maximize its short-term yield
by intensive fishing. Migratory fish populations do not obey political bound-
aries, making international policies difficult to enforce. The problem of shor.t-
term versus long-term profits in the exploitation of natural resources is
known as “the tragedy of the commons” (Hardin 1968).
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Problems
2.1. Suppose a population of butterflies is growing according to the logistic

2.2,
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2,
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equation. If the carrying capacity is 500 butterflies ar}d r = 0.1 individu-
als/ (individual « month), what is the maximum»possxble growth rate for
the population?

A fisheries biologist is maximizing her fishing yield by n‘lamtauju:'\g' a
population of lake trout at exactly 500 individuals.. Pre.dlct the u'ut'lal
instantaneous population growth rate if the population is .stoc:'k?d with
an additional 600 fish. Assume that r for the trout is 0.005 individuals/
(individual - day).

You are studying a density-dependent turtle population that has the fol-
lowing relationships for the birth rate b’ and the death rate 4’ as a func-
tion of population size (N):

b’ =0.10 + 0.03N - 0.0005N?

d’'=020+0.01N

Plot these functions in the same graph and discuss the population
dynamics of the turtle. How does this model differ from the simple logis-
tic model with linear birth and death functions?

. Prove that the decline of a population above its carrying capacity is

always faster than the corresponding increase below carrying capacity.
(Hint: The starting population above carrying capacity should be repre-
sented as K + x.)

. In our derivation of the logistic equation, we assumed that both the birth

and the death rates were density-dependent. Prove that the logistic
model holds for a population in which the birth rate is density-depen-

- Tropical populations of many organisms experience seasonal Vvariation in

rainifall and food supply, even though temperatures are fairly constant
year-round. Suppose that a water-filled tropical tree hole has a carrying
capacity of 500 mosquito larvae. The water level in the hole declines grad-
ually through the dry season, so the carrying capacity varies seasonally
between 250 and 750 larvae. If the population is slow-growing, what is
th.e ]on'g-term average population size, and what sort of temporal fluctu-
ations in population size would you expect to see? Assume that rc <<d.0.

* Advanced problem



CHAPTER 3

Age-Structured
Population
Growth




50 CHAPTER 3: AGE-STRUCTURED POPULATION GROWTH

Model Presentation and Predictions

EXPONENTIAL GROWTH WITH AGE STRUCTURE

In Chapter 1, we represented per capita birth and death rates as.conStamS ®
and d), which allowed us to easily calculate 7 for a POP“lft:‘on Wf,th eXponen>
tial growth. The resulting model was appropnate‘for simple orgafusms
such as single-celled bacteria or protozoa. But for thost plants and animals,
birth and death rates depend on the age of an individu‘al. .

For example, a newborn elephant cannot reproduce immediately, but must
grow for a decade or more before it is reproductively mature. I_Death rates also
vary with age. Seeds, larvae, and hatchlings usually have higher mortality
rates than older age classes. Death rates also tend to be high for the very old-
est individuals in a population, which may be more vulnerable to predators,
parasites, and disease.

The age structure of a population has the potential to affect population
growth. For example, if a population consisted only of tadpoles, it would not
begin to grow until the tadpoles had metamorphosed into frogs and reached
sexual maturity. In contrast, if a population of monkeys consisted only of old,
postreproductive individuals, it would decline to extinction.

In this chapter, we will learn how to calculate r for a population in which
birth and death rates depend on the age of an organism. Next, we will illus-
trate the short-term changes in age structure of a population that occur before
it settles into a pattern of steady exponential growth. We will briefly consid-
er the problem of life history strategies—why natural selection tends to favor
certain birth and death schedules. Finally, we will develop a model of popu-
lation growth for organisms with complex life histories, such as corals and
perennial plants, that do not exhibit simple age structure.

_ Many students find the analysis of life tables to be one of the most confus-
Ing topics in ecology. Admittedly, the calculations jn this chapter are tedious;
we have to keep track of the birth rate, death rate, and number of individuals
in each age class of the population. Be careful with your subscripts, but try

than those in Chapter 1.

NOTATION FOR AGES AND AGE CLASSES

To begin our analysis, we need some notation to keep track of the different

ages and age classes in a Population. Technically, we are modeling a popula-

tion with continuous births and deaths. However, becauge we are classifying

mdtli\;duals intq discrete age classes, our calculations will represent approxi-
fations to continuous growth. There is more than one way to approximate
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g;ethsee conhl.:llugus functions, and the equations we use depend on the timing

s pop tha on censuses and the seasonal pattern of births and deaths.
For 0:‘3‘: e variable x n Pafentheses to refer to the age of an individual,
: scussion, the units of x will be years. However, any convenient time
interval can be used, and the choice will usually be based on the life span of
the organism and the type of census data that are available. By convention,
we classify a newborn as age 0 (not age 1). An individual is age O at birth, age
0.5 at 6 months, and age 1 at its first birthday, which is the start of the second
year. We use the constant k to refer to the final age in the life table, that is the
age by which all individuals have died. Thus, x is a number whose value
ranges from 0 to k. The number of ages in the life table depends on the length
of the census interval and the life span of the organism.

Alternatively, we can designate the age of an individual by its age class.
An individual in age class i is between the ages of i — 1 and i (Figure 3.1). For
example, an individual in the third age class is between the ages of 2 and 3.
Similarly, a newborn is of age 0, but is in the first age class. If the ages in the
population range from 0 to k, the age classes range from 1 to k. To keep the
distinction clear, variables that indicate age will appear in parentheses,
whereas variables that indicate age class will be designated by a subscript.
For example, f(5) indicates individuals of age 5, whereas f5 indicates individ-
uals in the fifth age class (those between the ages of 4 and 5).*

There is a subtle distinction between ages and age classes. In a continu-
ously growing population, individuals of different ages have different birth
and death rates. However, when we classify individuals into discrete age
classes, we will usually be grouping individuals of slightly different ages. For
example, the first age class includes both newboms and individuals who are
about to celebrate their first birthday. For modeling purposes, we treat both
kinds of individuals as identical and assign a single value of survival proba-
bility (P;) and fecundity coefficient (F;) to all individuals of an age class.

We can analyze our demographic model using the nqtation of either ages or
age classes. We will follow the textbook tradition of using the age notation to
describe the life-table analysis. However, we will switch to the age class nota-
tion to describe population growth and the analysis of complex life cycles.

*Most ecology textbooks designate ages with subscripts, but [ have followed the mathemati-
cians’ convention of using subscripts for age-class matrices (see Caswell 2001).



THE FECUNDITY SCHEDULE [b(x)] ‘
The fecundity schedule consists of the average number of female offspru'-\g
dividual female of a particular age. The fecundity

born per unit time toan in Tec
schedule is a column of values represented as b(x) or m(x), abbreviations for

birth or maternity. For example, if b(6) =3, 2 female of age 6 will give birth
to an average of 3 female offspring. Thus, the b(x) schedule gives per capita
fecundity rates for females. Technically, we should be modeling the numbers
of both males and females, because the two sexes often have different mor-
tality schedules. However, we can reasonably model population growth by
counting only the females.

The entries in the fecundity schedule are non-negative real numbers. An
entry of zero in the fecundity schedule means that individuals of a particular
age do not reproduce. The fecundity schedule gives the average reproduction
for a female of a particular age, so these numbers do not have to be integers,
and may be less than 1.0 for ages with very little reproduction.

Table 3.1 gives a hypothetical life table for an organism that lives to the
end of its fourth year. The ages are 0 through 4, and the age classes are 1

Table 3.1 Standard life-table calculations.

Tl T

\‘ il 100 = ‘ A [ lni{ial Corrected

| x | S®|bX | 50)/50) I(x+1)/l(x)‘ Ibx) | l00b(x)x eﬁlxmate estimate

1 4 ; | e ™Ix)b(x) | e ™I(x)b(x)

‘ 0 | 500 1.0 ‘ 0.0 0.000 0.000

‘ 1 | 400 0.8 1 0.50 ‘ 1.6 0.780 0.736

7 |2 5
b 00 | 0.4 \ 095" M|F 12 0.285 0.254
31 50| 1 1 |
‘ 4 \ | 0 000 | 01 0.012 0.010
(
| 4] ] 0 0.0 ‘ 0.0 0.000 0.000 J
Ry= s 2.9 ‘
| Zl(x)b(x) (vffs_};xing =480 2=l z=1.000 “
| oo Zlbx
i SI0b(x) =1.483 years ‘
‘ r (estimated) = In(R,)/G =0.718 individuals/
i (individual « year)
Correction added to

“The x, S(x), and b(x) l estimated r =0.058

columns are supplied.

2.{1 mottl;‘ers are calculated ‘ r (Euler) =0.776 individuals/

ese. | (individual « year)




through 4. We will.use Athe data in Table 3.1 to illustrate all the calculations

nec(;;sary for a typical life-table analysis. If you look at the b(x) column, you

Zef;esp 1::1 netv‘:v,borns dolgot reproduce. One-year-olds produce an averagé of 2
; two-year- i

o rmg year-olds produce 3 offspring, and three-year-olds produce 1

FECUNDITY SCHEDULES IN NATURE

znisr;;t;‘:;hw‘:\e:‘.ﬂsg;s s:'fn f:lcundity schf_dules do we find? A1:u'mal ecologists
i ; parous and iteroparous reproduction. Plant ecolo-
gists use ﬂ?e equivalent terms monocarpic and polycarpic. In semelparous
gm‘.)nm.:arplc), or “big bang” reproduction, an organism reproduces only once
in its lifetime. Examples are oceanic salmon and many flowering desert
plants. The fecundity schedule for a semelparous organism would have
zeroes for all ages except for the single reproductive age. In iteroparous (poly-
carpic) reproduction, the individual reproduces repeatedly during its lifetime.
Examples include long-lived organisms such as sea turtles and oak trees.
Fecundity schedules for iteroparous organisms have non-zero entries for two
or more ages.

Plant ecologists use two similar terms, annual and perennial, to refer to
plants that complete their life cycle in a single season, and those that live for
more than one season. Although there are many exceptions, most annual
species are semelparous, and most perennial species are iteroparous. We will
postpone our discussion of the evolutionary significance of these reproduc-
tive strategies. For now, we will simply use the fixed fecundity schedule for a
population to help us calculate the intrinsic rate of increase.

THE SURVIVORSHIP SCHEDULE [/(x)]
Fecundity is only half the story. The population growth rate depends equally
on the rates of mortality for different ages. Individuals of a particular age
might produce dozens of offspring, but if very few individuals survive to that
age, the effect on population growth rate will be minor. ) )
How can we measure the survivorship schedule of a population? Imagine
that we have a cohort of individuals that were all born at the same time. We
follow this cohort from birth until all the individuals have died. We keep
track of the number of individuals that have survived to the start of each new
year. These data can be represented as a column of numbers_, S(x.), the cohort
survival. Table 3.1 gives some cohort data for our hypothetical !1fe .table. We
begin with a cohort of 500 individuals at birth, and by the beginning of the
i m have died. ]
ﬁft’?’tree:;’v;vﬂ:i::aﬂ‘is the S(x) column must now be conyerted to the survivor-
ship schedule, designated as I(x), where [ stands for life table. The c}ﬁan?atzt
I(x) is defined as the proportion of the original cohort that survives to the s



we can think of (x) in terms of the suwivor§hip of an
ty that an individual survives from birth to the
umber of survivors of age x

of age x. Equivalently,
individual. I(x) is the probabili n i
beginning of age x. To calculate I(x), divide the n
[S(x)] by the size of the original cohort [S(0)]:

I(x)= _';(_Y) Equation 8.1

The first entry in the I(x) column is /(0). 1t represents the survivor’ship (.>f thi
cohort to birth. By definition, all individuals in the cohort have “survived
to the start, so the value of (0) is always 1.0 [I(0) = 5(0)/5(0) = 1.0]. The last
entry in the [(x) column is I(k). 1t represents the age that none of the original
cohort reaches: I(k) always equals 0.0 [I(k) = 0.0 /56(0) = 0.0]. Between these
endpoints, I(x) shrinks in size as individuals in the cohort age and die. Thus,
the I(x) column is a set of consecutively decreasing real numbers between 1.0
and 0.0.

For the data in Table 3.1, the original cohort was 500 individuals, so we
will divide each observation by this value to calculate [(x). Notice that 80% of
the original cohort survived to age 1 [I(1) = 0.80], but only 10% of the cohort
made it to the start of age 3 [/(3) = 0.10]. This remaining 10% died between
age 3 and age 4, so I(4) = 0.0; none of the original cohort is left.

When you calculate /(x) from a survivorship schedule, take care to divide
all the entries by the original cohort size [S(0)]. Do not make the common
mistake of dividing S(x) by other values in the life table. In the next section,
we will calculate age-specific survival probabilities, which do use consecu-
tive values of 5(x). But for the calculation of I(x), always divide the observed
values by 5(0).

SURVIVAL PROBABILITY [g(x)]

The survivorship schedule /(x) gives the probability of survival from birth to
age x. To compare the survival of different ages directly, we must determine
the probability of survival from age x to age x + 1, given that an individual
has already survived to age x. The survival probability g(x) is the probability

that an individual of age x survives to age x + 1:
I(x+1)
I(x)

g(x)= Equation 3.2
From Table 3.1, for example, the
year and reaches age 1 is g(0) =
that a newborn will still be aliv

probability that a newbomn survives its first
0.8/1.0 = 0.8. Thus, there is an 80% chance
e at age 1. If we are thinking in terms of a
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cohort analysis, 80% of all newborns will be alive at age 1. In contrast, the
probability of survival between ages 1 and 2 [g(1)]is (0.4/0.8) = 0.5. Although
the I(x) schedule never increases with age, the g(x) schedule may either
increase or decrease. The way in which survival probabilities change with

age is an important component of the life history of an organism, as described
in the next section.

SURVIVORSHIP SCHEDULES IN NATURE

What are the different types of survivorship curves observed in nature? There
are three basic patterns. These can be seen by plotting the logarithm of i(x)
on the y axis and age (x) on the x axis. The points on this graph are connected
to form a survivorship curve. The slope of this curve at any point is In[g(x)].
Therefore, if the survivorship curve forms a straight line, the probability of
survival is constant over those ages.

Figure 3.2 illustrates the three types of curves. A Type | survivorship curve
has high survivorship during young and intermediate ages, then a steep
drop-off in survivorship as individuals approach the maximum life span.
Examples include humans and other mammals that invest a good deal of

In [1(x)]

Age (x)

Figure 3.2 Typel 11, and ITI survivorship curves. Note the logarithmic transforma-
i . 1L
tion of the y axis.



parental care in their offspring, ensuring high survivorship of young age

classes. . ivorshi In

The opposite, and more common, pattern is a Type lll survivorship curve.
this case, survivorship is very poor for the young age classes, but’muf:h high-
er for older individuals. Examples include many insects, marine inverte-
brates, and flowering plants. These organisms may produce hundreds or
thousands of eggs, larvae, or seeds, most of which die. However, th‘e hand.ful
of individuals that do pass through this vulnerable stage have relatively high
survivorship in later years.

Finally, the Type Il survivorship curve is intermediate between these two.
Because it is a straight line on a logarithmic graph, the Type II survivorship
schedule is one in which the mortality rate is constant throughout life. Few
organisms have a true Type 1l survivorship curve, because it is unusual for
the probability of death to remain constant as an organism ages. Some birds
have a Type 11 curve for much of their lives, but often with a steeper mortal-
ity curve during the more vulnerable egg and chick stages.

The I(x) and b(x) schedules are the basis for all our life-table calculations.
Keep in mind that these schedules are independent pieces of data about
death and birth. The I(x) schedule is calculated by following the survivorship
of a cohort of organisms. 1t tells us only the chances of individuals surviving
to a particular age, and contains no information about their reproduction. In
contrast, the b(x) schedule reveals only the per capita birth rates of females
of different ages, and does not say anything about how many females actual-
ly survive to those ages. 1f we know the I(x) and b(x) schedules, we can cal-
culate the intrinsic rate of increase, as illustrated in the next section. When
you work with the I(x) and b(x) schedules, be careful with your notation.
Remember that the I(x) column gives the survivorship up to the start of age x,
whereas the b(x) schedule gives the per capita birth rates of females of age x.

CALCULATING NET REPRODUCTIVE RATE (Ro)

To estimate r from the I(x) and b(x) schedules, we first have to compute two
other numbers, the net reproductive rate (Rg) and the generation time (G)

These {lumbers are part of the recipe for estimating r, but they tell us im, or—.
tant t}u.ng.s about an age-structured population in their own right Thepnet
reproductive rate, Ry, is defined as the mean number of female offs rm TO-
duced per female over her lifetime. To compute Ro, multiply eacg valgulz of
I(x) by the corresponding value of b(x) and sum these products across all ages:

k
Ro= Y I(x)b(x) Equation 3.3

x=0
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:;\h:te“;tz :Lfl i;)va:e ntumt.aers of offspring. T_he net repr_oducﬁve rate represents
v potential of a female during her entire lifetime, adjusted for
the morfahty schedule. Suppose that there was no mortality in the popula-
tll?)r\f::\:lll females reached their rnax.imum age. This would mean that I(x) =
K 1l ages except the last. In this case, Equation 3.3 would simply add
up the lifetime production of offspring—the gross reproductive rate. But in
most populations, mortality in each age class reduces the potential contribu-
tion of offspring to the next generation. Thus, the net reproductive rate is the
offspring production discounted by mortality. For the fecundity and sur-
vivorship schedules in Table 3.1, Rg = 2.9 offspring.

If Rg is greater than 1.0, there is a net surplus of offspring produced each
generation, and the population increases exponentially. If Rg is less than 1.0,
the mortality is so great that the population cannot replace itself, and it
declines to extinction. Finally, if Rg = 1.0, the offspring production exactly bal-
ances the mortality each generation, and the population size does not change.

This description of Ry is very similar to the description of A, the finite rate
of increase in the exponential growth model (see Chapter 1). In fact, you
might be tempted to conclude that 7 = In(Rg), because 1 = In(A) for popula-
tions with no age structure (Equation 1.5). However, A measures the rate of
increase as a function of absolute time, whereas Ry measures increase asa func-
tion of generation time. Therefore, if we want to calculate r, we must scale Ro to
account for generation time.

CALCULATING GENERATION TIME (G)
Generation time is a somewhat elusive concept for populations with contin-
uous growth. Imagine that we followed a cohort from birth and ke_pt track of
all the offspring it produced. One definition of the generation h‘mfe is the aver-
age age of the parents of all the offspring produced by a single cohort
(Caughley 1977). This is calculated as:

e —————— Equation 3.4

The units of I(x) and b(x) cancel in the numerator and denominafo;,\ lfeavmg us
with an answer in units of time (x). Unless newborns have hig fecu:'\ rlg\
(b(0)>>0), the numerator will always Pe la.lrger t‘han tk:lel dgnomn;:rcih in
Equation 3.4. Consequently, the generation time vtnll usu if Ge_g;e483 than
1.0 for populations with age structure. For the data in Table 3.1, G =147



EASE (0
CALCULATING INTRINSIC RATE OF INCR .
We can use the equation for exponential growth to sglve for r in tteinill\s c;‘fJ :(ao
and G (Mertz 1970). Imagine a population is growing exponentia ly
time G: &
Ng = Noe Expression 3.1

Dividing both sides by No gives:

Ng _,G Expression 3.2
No
The ratio on the left side of the expression is an approximation to the net
reproductive rate, Ro:
Rg = e Expression 3.3
Taking the natural logarithm of both sides gives:
1n( Ro) =rG Expression 34

Rearranging Expression 3.4 gives us an approximation for :

In(Ry)
r=

Equation 3.5
G

Thus, the rate of population increase is slower for organisms with long gen-
eration times. Continuing with the data in Table 3.1, the estimate of 7is 0.718
individuals/(individual « year).

Equation 3.5 is only an approximation, although it is usually within 10% of
the true value (Stearns 1992). To obtain an exact solution for r, you must solve
the following equation:

= XL' "(x)b(x) Equation 3.6

=0

Equation 3.6 is adapted from the Euler equation (pronounced “oiler”), named
after the Swiss mathematician Leonhard Euler (1707-1783), who developed it
in his analyses of human demography. Later in this chapter, we will illustrate
the derivation of the Euler equation. For now, we will simply use Equation
3.6 as a formula for determining the precise value of r.

Becguse we know the I(x) and b(x) schedules, the only unknown quantity in
Equation 3.6 is 7. Unfortunately, there is no way to solve this equation except
by plugging in different values of r and adjusting your estimate upwards or
downwards. A good starting place is the estimate of 7 from Equation 3.5. For



the data in Table 3.1, substitut'ing ¥ =

DESCRIBING POPULATION AGE STRUCTURE
Once we have calculated r fro

will shiff our notation from ages to age classes.

) l:We will use n.,-(t) to indicate the number of individuals at time ¢ in age class
i. For .exar_np]e, if 71(3) = 50, there are 50 individuals in the first age class at
tl;:u m time step. Because there are k age classes in the population, the age
s at time t consists of a vector of abundances. We indi i

with a boldfaced, lowercase n: = e Indicate his vector

my(t)

m(t)
n(t)= : Expression 3.5
ny (t)

For example, the vector for the population in Table 3.1 after five years might
be:

600

270
n®=100

50

Expression 3.6

Thus, there are 600 individuals in the first age class, but only 50 individuals in
the terminal age class (age class 4). Using information in the mortality and
fertility schedules, we can predict how the age structure of a population
changes from one time period [n(#)] to the next [n(¢ + 1)].

Describing the population in terms of its age structure requires us to shift
from using ages to using age classes. First, we need to obtain survival proba-
bilities P; for each age class. These probabilities represent the chance that an
individual in age class 7 survives to age class i + 1. Next, we need to calculate
fertilities F; for each age class. These fertilities represent the average number
of offspring produced by an individual in age class i. Clearly, the survivor-
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ship probabilities and fertilities for individuals of diffe{rent age classes are
related to the I(x) and b(x) schedules for individuals of different ages. o

However, the conversion of these values is tricky; it depends on thg timing
of births and deaths within an age class, and the timing of thcf population cen-
sus (Caswell 1989). In this primer, we will assume a simple birth-pulse model,
in which individuals give birth to all their offspring on the day theY en.ter a
new age class. We will further assume a postbreeding census, in which indi-
viduals are counted each year just after they breed.

These assumptions make the calculation of P; and F; relatively simple. A
birth-flow model, in which individuals reproduce continuously in an age
class, would require more complex calculations. Keep in mind that the esti-
mates of population growth will depend on how the age-class model is set
up. The estimates of population growth also may not match the exact calcu-
lations from the Euler equation. Once we have the survival probabilities and
fertility values for each age class, we will use them to calculate the changes in
population structure with time.

CALCULATING SURVIVAL PROBABILITIES FOR AGE CLASSES (P;)

For the birth-pulse model with a postbreeding census, the probability that an
individual in age class i survives to age class i + 1 is:

y Lol ati
= T=1) Equation 3.7

This equation is similar to the calculation of the age-specific survival proba-
bility g(x) (Equation 3.2), although note the shift in notation as we go to a
model of age classes. With Equation 3.7, it is easy to calculate the change in
the number of individuals in a particular age class from one time period to
the next:

niwq(E+1)= Biny(t) Equation 3.8

Equat-ion 3.8 says that t.he number of individuals in a particular age class next
time step [n;,(t + 1).] 1§ the number of individuals currently in the previous
age class [(t)] multiplied by the survival probability for that age class (P))

1)

So, the survival probability control .
s the rate at which indjvi " ~
to each successive age class. chindividuals “graduate

CALCULATING FERTILITIES FOR AGE CLASSES (F;)

Equation 3.8 works for all a
! . ge classes except the first. The numb indivi
uals in the first age class depends on the reproduction of all th:a3 ra;ilgils‘:e:.



We define the fertility of age class  as;

E =b(i)P.
i =b(i)P, Equation 3.9

Eg:aﬁon 3.9 says that the fertili
pring proc.iuced, discounted by the survival probability for that age class.

Once F; is known for each a i
is kno ge class, we multiply these fertilities b
number of individuals in each age class. This progu);t is then sum;\ed};\t/l:
all age classes to calculate the number of new offspring:

k
111(t+1):2F,11[(i) Equation 3.10
i=1

Having derived fertility and survivorship coefficients for each age class from
the I(x) and b(x) schedul , we can now calculate the number of individuals in
each age class for a single time step. For a population with four age classes,
we would have: '
m(t+1) = Finy(t)+ Bny(f) + Fyng(t) + Fyny(f)
np(t+1) = Pymy(f)
n3(t+1)=Pony(t)
ny(t+1) = Pyny(t)

In the next section we will express these changes in matrix form.

Expression 3.7

THE LESLIE MATRIX

We can represent the growth of an age-structured population in matrix form.
The Leslie matrix, named after the population biologist Patrick H. Leslie,
describes the changes in population size due to mortality and reproduction
(Leslie 1945). If there are k age classes, the Leslie matrix is a k x k square
matrix. It always has the following form:

R K RKE
RO 0O
“lo po o
0 0 PO

Expression 3.8

Each column of the Leslie matrix is the age at time ¢ and each row is the ageat
time t + 1. Each entry in the matrix represents a transition, or change in the
number of individuals from one age class to another. In the Leslie matrix, the



fertilities are always in the first row; they represent conh'ib'u‘ﬁ‘ons to newborr'ws
from reproduction of each age class. The survival probabilities are always in
the subdiagonal. They represent transitions from one age class to‘t?'le next.
All other entries in the Leslie matrix are 0 because no other transitions are
possible. Individuals cannot remain in the same ape class from one year Fo
the next, so the diagonals must equal zero. Similarly, individuals cannot skip
or repeat age classes, so other entries in the matrix are zero.

The reason for using the matrix format is that we can now describe popu-
lation growth as a simple matrix multiplication:

n(t+1)= An(t) Equation 3.11

In other words, the population vector in the next time step [n(f + 1)] equals
the Leslie matrix (A) multiplied by the current population vector [n(t)]. The
rules of matrix algebra are used to calculate the changes in abundance in each
age class, and these are equivalent to the calculations in Expression 3.7. If you
have had matrix algebra, A is the dominant eigenvalue of the Leslie matrix.
Now that we have converted our age-based life-table data to an age-class
Leslie matrix, we are ready to see how age structure changes during popula-
tion growth.

Table 3.2 Calculation of age-specific survival probabilities and fertilities for the
Leslie matrix. Data from Table 3.1. Notice that the first row of the table is blank for
P, and F, because we begin counting age classes at 1, not 0.

B T Toi-) 15'45?;
0 1.0 1'—77
1 0.8 2 0.80 1.60
2 2 0.4 3 0.50 1.50
3 3 0.1 1 0.25 0.25
4 4 0 0 0.00 0.00

The resulting Leslie matrix is:

16 15 025 0
(08 0 0 o
0 05 0

0
0 0 025 0
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Figure 3.3 Stable age distributions, showing the effects of initial age structure on
population growth. Each line represents a different age class, growing according to
the birth and death schedules of Table 3.1. In (a), the initial age distribution was 200
newbomns. In (b), the initial age distribution was 50 individuals in each age class.
After some initial fluctuations, both populations settle into identical stable age dis-
tributions. On the logarithmic scale, the straight line for each age class indicates

exponential increase.
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number of individuals in each age class as a function of .t'ime.. You can see that
the graphs for the two populations initially appear quite dxfferen't from one
another as the relative numbers in the different age classes change in the ea'rly
phases of population growth. In particular, you can see that I".he: population
with 200 newborns is dominated by this single age class, Wh:lCh passes as a
cohort through the older age classes. However, after about 6 time steps, both
populations have converged on the same age structure—they both have the
same relative numbers in each age, with newborns being most common, and
the oldest individuals being most rare. These relative proportions are main-
tained as the numbers in all ages increase exponentially.

These graphs illustrate an important property of age-structured populations.
For most life tables, if a population is growing with constant birth and death
rates, it will quickly converge on a stable age distribution, regardless of its initial
age structure. In the stable age distribution, the relative numbers of individuals
in each age class remain constant. Remember that the absolute numbers will
increase exponentially, as evidenced by the linear population growth curves
on the logarithmic scale of Figure 3.3. A special kind of stable age distribution is
the stationary age distribution. In a stationary age distribution, r = 0, so both
the relative and the absolute numbers in each age class remain constant,

What are the relative proportions in the different ages once the stable age
distribution has been achieved? The proportion of the population represent-
ed by each age is just the number in that age divided by the total population
size. This ratio is (Mertz 1970):

_eT(x)

Z(, (x) Equation 3.12

c(x)=

=0

Once r has been calculated from the I(x) and b(x) schedules, Equation 3.12 can
be used to determine the stable age distribution. The calculations are illus-
trated in Table 3.3. In a stable age distribution, newborns are the most com-
mon age, and the oldest age is least common, In most cases, the larger 7 is
the greater 'the proportion of the total population represented by newborns’
am% young individuals. For the matrix algebra solution, the stable age distri
bution is th.e right-hand eigenvector of the Leslie matrix. ® )
_ The Leslie matrix calculations of population growth can also be used as
independent check on the calculation of 7. Table 3.4 illustrates some of I'.hEm
raw data of age strucu.ue and population size from Figure 3.3a. For an); i‘wces
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Table 3.3 Calculation of stable age and reproductive value distributions.”

dsigfilbeu‘:ig:n Reproductive value distribution l

t X l I(x)l b(x)[ l(x)e”‘w c(x) ' e™/I(x) . e(y)b(y) | e el(y)b(y) ‘V(x) )
0 1.0 0 1.000 0.684 1.000 0.000 1.000 1.000

1 0.8 2 0.368 0.252 2.716 0.736 1.000 0.717
2 0.4 3 0.085 0.058 11.802 0.254 0.264 0.118
3 0.1 1 0.010 0.007 | 102.574 0.010 0.010 0.000

* =1463

4 These calculations use r = 0.776, from the solution to the Euler equation in Table 3.1.

By 6 or 7 time steps in the model, the stable age distribution has been
achieved, and the estimate of r is 0.776, which matches the calculation from
the Euler equation in Table 3.1.

Table 3.4 Estimating 7 from the Leslie matrix calculations.”

Time A=
step m () m(t) ny(t) ny(t) Noa(® Mo () r=In@)
Jn,//”"fﬂm/'
0 200 0 0 1] 200
1 320 160 0 0 480 24 0.875
2, 752 256 80 0 1088 2.267 0.818
6 16549 6091 1402 161 24,203 2B 0.776
7 35966 13,239 3045 351 52,600 2.173 0.776

78,165 28,772 6620 761 114,318 2173 0.776

The data are from different time steps in Figure 3.3a. Practions for the age-class values have
bee: n:unded to the nearest whole number.



Model Assumptions

In spite of the lengthy calculations, the model presented here shares the basic

assumptions of the simple exponential growth model we defived in Chapter
1. In other words, we assume a closed population, no genetic structure, and
no time lags. In the simple exponential model, weassumed thaF band d were
constant—they did not vary with time or with population density. In the age-
structured model, we assume that the I(x) and the b(x) schedules are constant.
As before, if each age class has a constant birth and death rate no matter how
large the population, resources must be unlimited.

Incidentally, if we use the value of r from the Euler equation to forecast
population growth, we must further assume that the population has achjeved
a stable age distribution. One final point is that we have described the /(x)
schedule from a cohort analysis, in which the fate of a cohort is followed
through time. This horizontal, or cohort life table is the simplest method of
obtaining the I(x) schedule, but it assumes that death rates are constant dur-
ing the time the cohort is followed. A more reliable method is to measure
short-term death rates directly for each age class. Finally, it is possible to take
a cross-section of the population at one time and estimate death rates from
the relative sizes of consecutive age classes. This vertical, or static life table is
much less reliable and assumes the population has reached a stationary age
distribution. However, birth and death rates can be very difficult to measure
in the field, and we often have to rely on a number of methods to piece
together the data needed for a life-table analysis.

Model Variations

DERIVATION OF THE EULER EQUATION

The Euler equation forms the basis for age-structured demography, so it is
important to understand how this equation is derived. The key to the Euler
equation is recognizing the relationship between the number of births now
and the number of births at some point in the past (Roughgarden 1979). The

number of births in the population now, B(t), is simply th
of births from parents of all different ages: Py fhesumof the number

k
B(t)= z (births from parents of agex) Expression 3.9
x=0 '
If we allow the age intervals to b infini
ant e equalots ecome infinitely small, we can express tl'us as

k
. B(t)= Io (births from parents of age x)dx Expression 3.10
e number of births from parents of age x is the product of the number of
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individuals born at time ¢ - x, i
. - x, th ffspri ;
probability of surviving to agex [l(e;;]:o Spring production [b(x)], and their

k
B(t)= J.o B(t - x)l(x)b(x)dx Expression 3.11

Remember that the number of births comes from a population that is increas-

Ing exponentially. Using C as an arbitrary starting Ppopulation size, we have:

o B(t)=ce™ Expression 3.12
Substituting this back into Expression 3.12 yields:

TS LN
Ce™ = [ Ce" " Dl(ypxax Expression 3.13

Finally, if we divide both sides of Expression 3.14 by Ce", we have the Euler
equation:

o
1:J‘0 e 7-‘/(,\')1’(«\')11\’ Equation 3.13
As we noted earlier, the equivalent equation in discrete time is:

k
= Z("“/(X)b(,\‘) Equation 3.14
x=0

REPRODUCTIVE VALUE
Using the Euler equation, we can calculate another useful statistic from the life
table—the reproductive value of each age (Fisher 1930). The reproductive value
is the relative number of offspring that remain to be born to individuals of a
given age. You might think that a newborn individual would have the highest
reproductive value because it has not yet produced any offspring. However,
its reproductive value is discounted by the fact that it might not achieve its
maximum potential lifespan and produce all of its potential offspring. Let v(x)
equal the reproductive value for an individual of age x. We can define repro-
ductive value as the following ratio in a stable age distribution (Wilson and
Bossert 1971):

number of offspring produced

by individuals of age x or older Expression 3.14

ah = number of individuals of age x

We can use the Euler equation to quantify the terms in the numerator and the




i tion from
denominator. For the numerator, we add the terms In the Euler equal

the current age forward: ;

Offspring production = j
x
i in a i born
i individuals in age x is the number
the denominator, the number of indivi al is )
:?:ime x in the past, multiplied by the probability of surviving to age x. Thus:

Number in age x = e I(x) Expression 3.16

¢ Yi(y)b(y)dy Expression 3.15

Substituting Expressions 3.15 and 3.16 into 3.14 gives:
k
Je iy -
- X i Expression 3.
ox)= e l(x)

Rearranging the right-hand side yields a formula for reproductive value:

k

o(x) == J‘U*’”I(y)lv(}/)d}/ Equation 3.15

The discrete-time version of Equation 3.15 allows us to use the I(x) and b(x)
schedules to calculate the reproductive value for individuals of age x:
€ k . ry . *
v(*) =17 Zk’ 1(y)b(y) Equation 3.16

For the matrix algebra solution, the left-hand eigenvector of the Leslie matrix
is the vector of reproductive values. From Equation 3.15, the reproductive
value of newborns always equals 1.0 (v(0) = 1.0). Thus, reproductive value is
measured relative to that of the first age. For example, if v(3) = 2.0, an indi-
vidual of age 3 will produce roughly twice as many offspring during the
remainder of its lifetime as will a newborn. Reproductive value reflects the
survivorship of an individual to its current age, its survivorship and repro-
duction in future ages, and the magnitude of r. Reproductive value usually
peaks at or near the age of first reproduction, then drops off rapidly with
later ages. For the data in Table 3.1, reproductive value is maximal for indi-
viduals of age 0 (Table 3.3).

“Be careful with the notation in this formula. In particular, notice that the summation suhscript
(y = x + 1) is increased by one. Thus, using the data from the sixth and eighth columns of Table
3.3,v(1) = (2.716)(0.264) = 0.717. Equation 3.16 generates reproductive values that are consis-
tent with the matrix algebra solutions, but the formula is restricted to birth-pulse populations
with a post-breeding census. See Goodman (1982) and Caswell (2001} for more details.
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Reproductive value tell
able” for future populati
yield for a harvested pop
to maximize population

s us which ages in the population are most “valu-
on growth. In Chapter 2, we noted that maximum
ulc“d:IO:;1 Occunedte . “t]l'l:m the population was harvested
growth rate. For the simple logisti
strategy turned out to be maintaining the populaﬁsn at I% / ;m Fg;?ﬁgtznlﬁi
Fure_d .p0pu.latl.on, maximizing population growth rate would mean harvesting
individuals with relatively low reproductive value—usually newborns and
very old individuals, depending on the age structure of the population.
Reproductive value is also relevant to problems of population manage-
ment and conservation biology. If we are going to transplant captive-bred
individuals to a new population in order to increase the population growth
rate, we should wait until those individuals reach the age with the highest
reproductive value. Finally, natural selection will operate most heavily on
ages with high reproductive value. For example, an allele that expresses dele-
terious effects in reproductive age classes will be eliminated by selection
much more quickly than an allele that expresses the effects in older age class-
es, with lower reproductive value. Senescence may represent the accumula-
tion of deleterious effects in old individuals. Selection pressure is weaker on
older individuals (Rose 1984), in part because of their lower reproductive
value (Fisher 1930).

LIFE HISTORY STRATEGIES

Life-table data are essential for ecological predictions of population growth
rates and age structure. From an evolutionary perspective, we can ask why
we see certain life history patterns. In other words, why has natural selection
favored certain I(x) and b(x) schedules? Selection will favor any life history
schedule that maximizes an individual’s contribution of offspring to the next
generation. Thus, the “perfect” life history schedule would be one with max-
imum survivorship and maximum fertility in all age classes!

However, two forces prevent the evolution of this optimal life history.
First, we expect a number of tradeoffs to occur among life history traits.
Organisms that invest heavily in reproduction have less energy to devote
towards growth, maintenance, and resource acquisition. This may lead to
tradeoffs between reproduction and survivorship. An organism may produce
many small offspring that survive poorly or a few larg(.e offspring that sur-
vive well. Hence, there may be tradeoffs between offspring number and off-

ing survivorship. )
Splililfg history stratzgies will also be shaped by constraint§—Phy§iolog1cal.or
evolutionary limitations that prevent the evolution of certain life history t:'iutii
For example, organisms with large body siz..e must take Ionger' tc;dgrbowb:‘l
reach maturity, so the age at first reproductlor} may be constram' thy umy
size. If an organism bears live offspring, body size will also constrain the v
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ber of offspring produced. The life history traits of an orga.ni”sm m?y t’e:lect:\ a
long evolutionary heritage, and may not mPre?ent the best .soluhon o the
problem of maximizing fitness in the organism’s currfent envlrom'pent. )

One popular body of theory envisions that relative Populahon density
serves as an important selective force on life histery traits (MaCAfth“f and
Wilson 1967; Pianka 1970). The theory of r-K selection takes its name from
the two constants of the logistic growth equation. Imagine a population that
is maintained at low population density, so that resources for growth are not
limited. Under these circumstances, the best reproductive strategy is simply
to maximize offspring production. So, the traits expected under r-selection
are early, semelparous reproduction, large r, many offspring with poor sur-
vivorship, a Type Il survivorship curve, and small adult body size.

By contrast, in K-selection, an organism is growing in an environment that
is chronically crowded. An r-strategy will not work in this case because the
offspring will face limited resources and be relatively poor competitors.
Instead, the best strategy is one that leads to fewer, high-quality offspring that
are superior competitors. With resource limitation, K-selection should favor
late, iteroparous reproduction, small r, few offspring with good survivorship,
a Type | survivorship curve, and large adult body size. Classic examples of
species thought to have evolved under the different regimes include mos-
quitoes and weeds (r-selected), and humans and whales (K-selected).

In spite of its popularity in textbooks, the theory of r- and K-selection is beset
by a number of problems. One fundamental problem is that the “predictions”
of r—K selection theory were never derived from a population model with age
structure. Another difficulty is that population density is not the only force dri-
ving the evolution of life history traits. For example, the theory predicts that
iteroparity evolves when organisms face resource competition and must devote
more of. their energy to growth and maintenance than to reproduction. But
;te:;lpa?ty could.alzo; evolve asa "bet.-hedging” strategy if the survival of off-
aﬁv aghs \:zlc::rttsx: 1(111 one h‘;ne Penod to the ne)ft (MurPhy 1968). It may be
SFlosin gall pread Teproduction over many time periods if there is a risk

g all your offspring if they are born at the wrong time,
di Moreover, not all organisms have life history traits that neatly fit the pre-
ictions of the model. For example, many forest trees are lon -lived
iteroparous (K-selection), but they have T i s e,
tion). Finally, the r—K selecti A 2 ypelll survivorship curve (r-selec-
’ election theory has not been confirmed experimental-
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an organism experiences—including i i i

g its population de i

tant forces of natural selection that shape l?f}: histories. oy ean be impor-
For example, mortality from predators can lead

Ty traits can evolve very rapidly in response to the presence

(Reznick et al. 1997). Other studies havf shown that Eody sizeo—fa}:\rsfetx?cr:
some life history traits—can also evolve in response to the presence of com-
peting species (Schluter 1994). In Chapters 5 and 6, we will develop ecologi-
cal models for understanding the effects of predators and competitors on
population dynamics. But it is important to emphasize that these interactions
have consequences for the evolution of life histories as well.

STAGE- AND SIZE-STRUCTURED POPULATION GROWTH

An implicit assumption in our development of the life table model is that the
age of an organism is the "correct” variable to use in defining the life history.
But for many life histories, age is not the critical variable. For example, many
insects pass through egg, larval, pupal, and adult stages. Survival may be
influenced more by an insect’s stage than its age. That is, survival of a beetle
may not depend on whether the beetle is three or six months old, but on
whether it is in the larval or adult stage. Of course, age and stage are not
independent of one another, because an organism’s life history stage will
depend, in part, on how old it is. But the transitions between stages are often
flexible and depend on biotic factors, such as food supply and population
density, and abiotic factors, such as temperature and photoperiod.

Even for organisms that do not have distinct life history stages, survival and
reproduction may depend more on the size or an organism than.on its age.
Many organisms have indeterminate growth—a small fish may be either a fast-
growing juvenile or a stunted adult. If the risk of mortality is from predation by
other fishes, only the individual’s size, rather than its age, may be le.levant.
Finally, “modular” organisms such as plants and corals may be organized as
colonies or semi-independent units (plant shoots) that are capable of repro-
duction. In these cases, the life history may be extremely complex, as co'ral
colonies can fragment or fuse, and plants can reproduc‘e thr.ough Yegetahvi
propagation. In all these examples, the age_of the'orgamsm is less-unportan
than its size or stage in determining its survivorship and reproduction.
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Fortunately, the Leslie matrix can be modified to account for'the‘se kinds of
life histories (Lefkovitch 1965). The key change is that' the entries in t.he pop-
ulation matrix no longer represent the age of an organism, but rathq its sf:age
(or size). We still incorporate a time step that regr.esents the translt.lonl' f:)erg
one stage to the next. For example, here is a transition matrix for a simpli
insect life cycle with three stages—egg, larva, and adult:

egg larva adult
egg 0 0 Fae
larva | Py R 0
adult | 0 Pa Paa

Expression 3.18

Remember that each column represents the stage at time ¢ and each row rep-
resents the stage at time ¢ + 1. The entries in the first row represent fertilities.
The entries in the other rows represent transition probabilities between
stages. In contrast to the Leslie matrix, we now have positive entries on the
diagonal. This means that larvae and adults can stay in a particular stage ata
given time, whereas eggs will either die or advance to the larval stage. Only
the adult can reproduce, so there is a single fertility entry (Fe) for this stage.

Here is a transition matrix for a long-lived forest tree that is classified into
five size classes:

28 1. sizel size2 size3 size4 size5
el 10 TR TR -1 By 5

size2 | p, Py 0 0 0

size3 | ¢ Py Py 0 0 | Expression 3.19
size 4 4] 0 P34 P44 0

size5 | 0 0 0 Pys Pss

Again, Fhere is the possibility that an individual will remain in the same size
clasls (;ilagom)l elements) or grow to the next consecutive size class (subdiag-
onal elements). All size classes except the first reproduce, givin, ositi
s . ‘ tive fer-
tility values in the first row of the matrix. P Sringpositive fer
As a final, and more complex, example, conside i
i » and ; s , T a population of reef-
building corals with three size classes (small, medium, and Fl)arge):

small medium large

smal} Ps+Pys Poo+ Fns Bs+F
medium P Prm B Expression 3.20
large P.

sl Pml B
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As before, the diagonal elements represent the probability that a colony re-
mains in the same size class, and the subdiagonal elements represent the prob-
ability that a colony grows to the next size class. However, there is now the pos-
sibility that large colonies can fragment into medium (Pi) or small (P)5)
colonies, and that medium colonies can fragment into small colonies (Pps).
Small colonies can also fuse with one another, thus “skipping” a stage and
going directly from small to large (Pg)). Finally, look at the first row of the
matrix and notice that the entries are sums of fecundities and stage transitions.
This relationship occurs because the production of small colonies has compo-
nents of sexual reproduction (F) and asexual fragmentation and persistence (P).

As illustrated in Figure 3.4, these complex life cycles can also be repre-
sented in loop diagrams. Each circle in the loop represents a different life his-

(a) Insect E
0 0 Pae
Pg Py 0
0 P, P,

(b) Forest tree
Py Fp Fyy Fg Fs
P, Ppb0 0 O
0 PpPip0 O
0 0 Py Py
0 0 0 PgPs

(c) Coral
Pu+Fs Pms+tFms
Pom Prn
Py P

ansition matrices and loop diagrams for different life histories.

by o forest tree life history. (c) Coral life

implified insect life history. (b) Long-li‘ved
ﬁi?y,p vlvl?tids:nxsueal and asexual reproduction.



resents a transition from one stage to the next.

fory stage, and e e for the corresponding entry in

Stages not connected by arrows have a zero
ition matrix. ) .
the[rrlnsi;iste of the complexities of these life cycles', the mech?mcs of.th; m?:;x
multiplication are exactly the same as for the su'ngle Le:r»lle mal'nxl.l s)‘hi bg‘
as the transition elements are constant, the pop.ula tion will eventually e
it exponential growth and a stable stage distr}butnf)n. However, wbe c_antzo
longer use the Euler equation for these life hlstor1e§, and must obtain the
matrix solutions for r and the stable stage distributlfm. For any transition
matrix, A is the dominant eigenvalue. The right-hand eigenvector is ?he stable
stage distribution, and the left-hand eigenvector is the reproductive value
distribution (Caswell 1989). The matrix approach allows us to use theAsame
analytical framework to study complex life histories that do not fit a simple

age classification.

Empirical Examples

LIFE TABLES FOR GROUND SQUIRRELS

A long-term demographic study of the Uinta ground squirrel (Spermophilus
armatus) demonstrates the importance of life-table analysis in understanding
population growth (Slade and Balph 1974). At a field station in northern Utah,
squirrels emerged from hibernation each year between late March and mid-
April, depending on the weather. Females bred shortly after they emerged and
established territories. The first young were born in early May, and juveniles
left their natal burrows about three weeks later. During June and July, all age
classes and sexes in the population were active. Adults began hibernating in
July, and by September all squirrels had disappeared underground.
Researchers trapped and tagged all individuals in the 8.9-hectare study
area and monitored their activity from observation towers. The research was
conducted over a seven-year period and divided into two phases. During the
first phase (1964-1968), the population was left undisturbed, except for the
monitoring. Population size fluctuated from 178 to 255, with a mean of 205.
During the second phase (1968-1971), researchers reduced the squirrel pop-
ulation to about 100 individuals. Life-table analysis (Table 3.5) revealed the
dramatic effects of density reduction on growth rate and age structure.
cppromatty asned, genetnng e omem e nd deth e wer
, i ne =
—0.046 individuals/ (individual year;s]. Thegmelx);muxgna h'lf‘;esg:r)lvx:sl:te v i
. A pproxi-
mately five years, although this varied somewhat between different habitats. In
the stable flge distribution, 37% of the population was juveniles (Figure 3.5;)\ a.nd
reproductive value peaked for individuals during their second year (Figure 3.5b),
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Table 3.5 Life tables for Ui i
e r inta ground squirrels (Spermophilus armatus) before and

Pre- S
re rftdll(ll()r? life table Post-reduction life table

x (years) I(x) b(x) 1(x) ¥ b
0.00 1.000 7()7." )0 1 000 - 70 06 N
0.25 0.662 0.00 0.783 0:00
0.75 0.332 129 0.398 1.71
1:25 0.251 0.00 0.288 0.00
1.75 0.142 2.08 0.211 224
225 0.104 0.00 0.167 0.00
275 0.061 208 0.115 224
3.75 0.026 2.08 0.060 224
475 0.011 2.08 0.034 2.24
5.75 0.000 0.00 0.019 2.24
6.75 0.010 2.24

75 s s 0.000 0.00

Data from Slade and Balph (1974).

After density was reduced, reproduction exceeded mortality, and there
was a substantial rate of population increase {r = 0.306 individuals/(individ-
ual - year)]. The maximum life span increased to seven years, and the stable
age distribution shifted slightly toward older ages (Figure 3.5a). The repro-
ductive value showed a broader peak for three- and four-year olds (Figure
3.5b), reflecting the increased reproduction and survival of older ages.

The density reductions revealed that crowding had many effects beyond a
slowing of population growth rate. Survivorship, reproduction, life span, and
age structure were all sensitive to population density. The manipulations also
point to a key weakness of our exponential growth model: age-specific birth
and death rates change with population size!

Density dependence can be incorporated into either the mortality or the fecun-
dity schedules for one or more age classes. Even if it limits the increase of only a
single age class, density dependence can be an effective brake on total popula—
tion growth, and can lead to complex population dynamics. In the mmda of
this primer, we will return to simple models of populations that do not incorpo-
rate age structure. However, the biological details of migra‘tion (Chapter 4), com-
petition (Chapter 5), predation (Chapter 6), and colonizathn (Chapter 7) almost
certainly reflect the age and size structure withina population.
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Figure 3.5 (a) Stable age distribution and (b) reproductive value distribution for

Uinta ground squirrels (Spermophilus armatus) before and after density reduction.
Data from Table 3.5.

STAGE PROJECTION MATRICES FOR TEASEL

Teasel (Dipsacus sylvestris) is a European perennial “weed” that is common in
abandoned fields and meadows of the eastern United States. The plant has a
complex life cycle that can be described with a stage-based matrix model.
Most seeds fall within two meters of the adult plant, and the seeds may lie
dormant for one or two years. Seeds that successfully germinate form a large-
leafed rosette. The rosette phase is variable and may last for more than five
years. The rosette requires cold-hardening (vernalization) before it will form
a flowering stalk the following summer. Teasel flowers and sets seed only
once, and then the plant dies.

Teasel was studied in eight abandoned fields in Michigan, which were
sown with teasel seed at the start of the study (Werner 1977; Werner. and
Caswell 1977). To construct the stage-based transition matrix, individual
plants were monitored in marked plots for several consecutive years. The life
cycle of teasel can be divided into six stages (Caswell 1989):
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1. Dormant first-year seeds

2. Dormant second-year seeds

3. Small rosettes (< 2.5 cm diameter)

4. Medium rosettes (2.5-18.9 cm diameter)

5. Large rosettes (219.0 cm diameter)
6. Flowering plants

Figure 3.6 gives the loop diagram and corresponding stage matrix for this life
cycle as measured on one of the eight experimental plots. From the positive
entries on the diagonals and subdiagonals, the rosettes can remain in their own
size class, grow to a larger rosette size, or flower. The single entry in the first

Seed (1) Seed (2) Ros (s) Ros (m) Ros (1) Flowering
plant

0 0 0 0 0 322.380
0.966 0 0 0 0 0

0.013 0.010 0.125 0 0 3.48
0.007 0 0.125 0.238 0 30.170
0.008 0 0 0.245 0.167 0.862

0 0 0 0.023 0.750 0

Dormant

Dormant
seeds (2)

0.038
i i lvestris).
ix and loop diagram for teasel (Dipsacus sy

r?::r c;’l;:‘lan:gst-yeg:r and second-year seeds [seed (1) and

Figure 3.6 Transition .
{ros (s), ros (m), ros (U}, and flowering

jtions are shown
':;:::I‘S(IZ)], small, medium, and large rosettes
plants. (Data from Caswell 1989.)
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row of the matrix reflects the fact that only the flowering plants can produce
seed. Also, notice that the diagonal element is zero for flowering plants (Pge),
indicating that they do not survive after they flower. The population growth
rate for this matrix is A = 2.3242. This corresponds to an r of 0.8434 individu-
als/ (individual « year), with a projected doubling time of less than 10 months.

In contrast to a simple age-classified model, relative frequencies in the sta-
ble stage distribution do not always decrease with later stages. In the stable
stage distribution for teasel, there were more médium than small rosettes
(Figure 3.7a). Reproductive values varied over six orders of magnitude, from
a minimum for second-year dormant seeds to a maximum for flowering

plants (Figure 3.7b).

(@ o7
0.6
05
04

03

Relative frequency

0.2

0.1

Seeds (1) Seeds (2) Rosette (s) Rosette (m)  Rosette o Flowering
plant

®

g

Reproductive value
o —-
2 . =2 8

o
o
=

o
=1
S
=2

Seeds
(1) Seeds (2) Rosette (s) Rosette (m)  Rosette ) Flowering
plant

Stage

Figure 3.7 (a) Stal le-s ge distributio; rep; €e-value
table-sta; ] distributi n and (b) roductiv alug d.lSﬂlbllhOll for
tease| (Dlpsacus syIvestns . Note loganth.nuc scale. Derived from data in Flgum 3.6.
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These same data were also analyzed as an age-classified model, treating
rosettes of 1-4 years as separate age classes (Werner and Caswell 1977).
However, the stage-based model predicted the year of first flowering more
accurately than did the age-based model. The results suggested that the size
of a rosette, rather than its age, is the more important determinant of growth
and survivorship for teasel.

The model results for teasel varied greatly between different fields, and
population growth rates (r) ranged from ~0.46 to 0.96 individuals / (individ-
ual « year). Fields with the lowest r had high levels of grass litter, which sup-
pressed teasel seed germination. Population growth rate was also low in
fields with high densities of herbaceous plants, which reduced survivorship
of teasel rosettes through competition and shading. Finally, r was correlated
with annual primary productivity of a field. Population growth rates were
highest in the least productive fields, perhaps reflecting competition with
other plants. The very high rates of increase measured for some teasel popu-
Jations are unlikely to be sustained in the long run. As in the ground squirrel
example, a density-dependent model may be more appropriate for forecast-
ing population size.
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Problems

3.1. Plot the logarithm (base 10) of squirrel survivorship for the pre- and post-
reduction populations (Table 3.5). What is the general shape of t'hese
curves (Type I, II, or ), and how does density reduction affect survivor-
ship? o

3.2. Here is a set of hypothetical life-table data for a population of snails:

Age in years (x)  S(x) b(x)
0 500 0.0
1 400 25
2 40 3.0
3 0 0.0

a. Complete the life-table analysis by calculating I(x), g(x), Rg, G, and the
estimate of r. Calculate the exact value of r with the Euler equation.

b. Determine the stable age and reproductive value distributions for this
life table.

*3.3. Suppose the snail population in Problem 3.2 consisted of 50 newborns,
100 one-year-olds, and 20 two-year-olds. Construct the Leslie matrix for
this life table, and project population growth for the next two consecu-
tive years.

* Advanced problem



CHAPTER 4

Metapopulations

A



Model Presentation and Predictions

In Chapters 1-3, we explored several models of population S"o“(’::‘a' Tthe?l‘;
models differed in their major assumptions: unlimited resources (Chapter
versus a finite carrying capacity (Chapter 2), and @ homogenous popula;loln
(Chapter 1) versus an age-structured one (Chapter 3). All‘Of these m(;) els
described a closed population. In other words, the populat?on changed size
because of births and deaths that occurred locally. We explicitly assumed that
individuals did not move between populations. . .

This assumption of a closed population was mathematically convem‘ent,
but not biologically realistic. For migratory animals, such as North Amenca'n
songbirds that overwinter in the tropics, or oceanic salmon that spawn in
freshwater streams, the seasonal movement of individuals is the dominant
cause of population change. Many nonmigratory species also move between
populations. In particular, organisms with complex life histories often have
seeds or larvae that are adapted for movement to new populations. The
ascidians described in Chapter 2 are a good example. The adults are filter-
feeding invertebrates that attach permanently to rock walls, but the “tadpole”
larvae are free-swimming and drift in the current for several days before set-
tlement and metamorphosis. Consequently, the “births” in a local ascidian
population consist of juveniles that originated from many different sites.

The movement of individuals between populations may be density-depen-
dent. In territorial species, such as black-throated blue warblers (Dendroica
caerulescens), not all individuals are able to establish territories, and those that
do not may migrate in search of less crowded populations. Mathematical
models that ignore the biology of animal and plant movement may not give
an accurate description of population dynamics.

In this chapter, we will develop a class of simple models that takes into
accougt the fact that individuals do move among sites and that such move-
ment is potentially important to the persistence and survival of populations.
This chapter explores the concept of a metapopulation. The metapopulation
can be thought of as a ’.’populat-ion of populations” (Levins 1970)—a group
of s[f\vergl local populations that are linked by immigration and emigration.
i et o e ke o g i
tions. In Chapters 1—; ;u nf d slt Shlftd":om:erns hf’W Vo measure. popula-
number of individuals’at e |.lii’ibe'5 pl‘eo ored the size Of. a population—the
predict the size of a po ulgt' rl;LIm. ur metapopulation models will not
Fmbers representi_np p u_[l(:'n’ l'lt onl.y its persistence. Thus, the range of
values: 0 (local exﬁnfﬁr::\]; o 31101'\ Slz1e wxl{ be callapsed t? only two possible

e bt | r 1 (loca per§1stence). We will no longer distin-
g een large and small populations, or between populations that
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cycle, fluctuate, or remain constant. Instead, thy istincti

. ) ; » the only distinction is b
populations that persist and those that go extinct. Y on s between
N The second shift concerns the spatial scale at which we study populations.
: Cba:pters 1-3 we emphasized equilibrium solutions for population size,

is the regional or landscape level, which encompasses many connected sites.
At this scale, we will no longer focus on the persistence of any particular pop-
ulation. Instead, we will build a model that describes the fraction of all pop-
ulation sites that are occupied. Thus, we will ignore the fate of individual
populations and model the extent to which populations fill the landscape.
This large-scale view will allow us to use simple mathematics and avoid the
complexities of trying to explicitly model local population size and individual
migration. As an analogy, if we were modeling the dynamics of a busy park-
ing lot, we would try to predict how many parking spaces were filled, not
which particular spaces were occupied.

METAPOPULATIONS AND EXTINCTION RISK

The metapopulation perspective allows us to make a distinction between
local extinction, in which a single population disappears, and regional extinc-
tion, in which all populations in the system die out. Even if populations are
not connected by migration, the risk of regional extinction is usually much
lower than the risk of local extinction.

To explore this concept quantitatively, we can define p, as the probability of
local extinction—that is, the probability that the population in an occupied
patch goes extinct. This probability is a number that ranges between 0 and 1.
If p. = 0, persistence is certain, whereas if p, = 1, extinction is certain. All pop-
ulations go extinct in the long run, so probabilities of extinction must be mea-
sured relative to a particular time scale. For metapopulation dynamics, the
appropriate time scale is often years or decades. . )

Suppose that p, = 0.7, for probabilities measured ona yeérly time scale. ThlS
means there is a 70% chance (100 x 0.7) that a population will go extinct during
a single year, and a 30% chance that it will persist (1 -p. = 0.3). W"l'}at are the
chances that the population will persist for two years’ The pro.bablllty of per-
sistence for two years is the probability of no extinction in the first year (’1['1: p,?
multiplied by the probability of no extinction in the second year (1 -p). Thus:

2 ;
P2=(1—pe)(l—pe)=(1—pe) Expression 4.1
The probability that a population will persist for n years (P,) is the probabil-
ity of no extinction for 7 years in a row:



P, =(1 ‘.Ur)” Equation 4.1

: : 5
For example, if p. = 0.7,andn=5,Pp= (1-077= 0.00243. So, if ﬂf\ere 1:,1 ;ch/;
chance that a population goes extinct in one year,the chance of per

i 1s in a row is only 0.2%. ] ‘
forl&:;):fppose that instea}n; of a single population, we have two 1dtlené1crz:i
populations, each with a p, of 0.7. For now, we assume Fhat.these POP;[ atio t
are independent of one another—the chance of_ extut\chon in one patch is r;g
affected by the presence or absence of populations 1n other pétches. For t s
pair of populations, what is the probability of reglor@l persistence, that is,
what are the chances that at least one population persists for one year? "I"he
probability of regional persistence for one year (P,) is 1 minus the probability
that both patches go extinct during the year:

By =1-(pe)pe)=1-(pe)" Expression 4.2

The probability of regional persistence in a set of x patches is the probability
that all x patches do not go simultaneously extinct:

P, = 1*(;5]\ Equation 4.2

Thus, if we had 10 patches, each with p, = 0.7, the probability of regional per-
sistence is Pyo = 1 - (0.7) = 0.97. In other words, with 10 patches, there isa
97% chance that at least one population will persist, even though it is likely
that any particular population will go extinct (p. = 0.7)! Figure 4.1 shows that
P, increases rapidly as more patches are added, although there is an overall
decrease as p. is increased.

Equation 4.2 illustrates an important principle: multiple patches “spread
the risk” of extinction. Even if individual populations are doomed to extinc-
tion, a set of populations can persist for a surprisingly long time. In the next
section, we will build metapopulation models in which these local popula-
tions are linked to one another, so that probabilities of local extinction and
local colonization depend on patch occupancy.

A MODEL OF METAPOPULATION DYNAMICS

Imagine a set of homogenous patches, each of which can be occupied by a single
population. Let f equal the fraction of sites occupied, that is the proportion of
patches that contain populations. Thus, fis a number constrained between @ and
1.Iff=1, a].l sites are occupied by populations, and the landscape is saturated. If
f=0, all sites are unoccupied, and the metapopulation is regionally extinct.
How .does f change with time? f can increase if empty sites are successful-
ly colonized. Let I = the immigration rate: the proportion of sites successfully
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colonized per unit time.* f can also decrease if occupied sites undergo extinc-
tion. Let E = the extinction rate, that is, the proportion of sites that go extinct
per unit time. The change in fis determined by the balance of gains from col-
onization and losses from extinction:

% =I-E Expression 4.3

There is a close analogy between Expression 4.3 and our initial derivation of the
exponential growth model in Chapter 1 (Expression 1.5). In the exponential
growth model, there was continuous turnover of individuals from births and
deaths. Population size (N) reached an equilibrium only if the birth rate pre-
cisely equaled the death rate. Similarly, at the metapopulation level, there is con-
tinuous turnover of individual populations through colonization and extinction.
The fraction of population sites (f) reaches an equilibrium when the immigra-
tion rate precisely equals the extinction rate. We will see this same derivation
once more in Chapter 7, when we model the number of species in a community.

*Technically, we should refer to this as the colonization, not the immigration, rate, but we use
this terminology for consistency with the MacArthur-Wilson model, which is developed in

Chapter 7.
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We now wish to describe the immigration and extim_:tior'\ functions In {nore‘
detail. The immigration rate depends on two factors. First is the Probablllt'y'.o
local colonization, p,. If each site is colonized independgptly, thfs ?robabﬂlty
will depend only on the physical and biological condmops w1thm a p.at.ch.
Many factors can affect p;, including patch area, the availability of critical
habitats and food resources, and the absence or scarcity of predators,

pathogens, and competitors.

The probability of local colonization can also be affected by fa.ctors that are
external to the site. Specifically, if the sites are linked by migration, the prob-
ability of colonization may depend on the presence of populations in other
sites. In other words, when many sites are occupied (large f), there are many
individuals migrating, so the probability of colonization is higher than when
few sites are occupied (small f). Therefore, p; will depend on f. In the follow-
ing sections, we will develop models in which p, is either dependent or inde-
pendent of f (Gotelli 1991).

The immigration rate depends not only on p, but also on the availability of
unoccupied sites, which is measured by (1 - f). The more sites available for
colonization, the faster the overall immigration rate. Thus, the immigration
rate is the product of the probability of local colonization (p;) and the fraction
of unoccupied sites (1 - f):

I=p{1-f) Expression 4.4

The immigration rate will equal zero in two cases: first, if the probability of
local colonization is zero (p; = 0); and second, if all the sites in the metapopu-
lation are occupied (f=1).

If we follow a similar line of reasoning, the extinction rate, E, is the product
of the probability of local extinction (p.) and the fraction of sites occupied (f):

E=pf Expression 4.5
".I'he extinction rate equals zero if the probability of extinction is zero (p, = 0), or
if none of the sites in the metapopulation is occupied (f = 0). Substituting
Expressions 4.4 and 4.5 back into 4.3 gives us a general metapopulation model:

af _
AT pi=f)=p.f Equation 4.3*

:aecc;:::lt:\: exss ;l continuous differential equation, p, and p, are technically not probabilities, but
Fractional rat c.)vec;vsv:v:r, P an§ pebehave as probabilities when they are multiplied by a ﬁ:liite
fime inters (0} er s a; aﬂt:me mterval: we would need to add a correction term to Equation 4.3
o et oot I-[ce at an occupied patch could undergo an extinction and a recoloniza-'
fon difierenﬁall ? a.ﬁ owever, t'he correction term is small, and it is simpler to use the continu-
quation and to interpret p; and p, as immigration and extinction probabilitiesu
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Equation4.3is a simple model of metapopulation dynamics that will serve
as a template for developing alternative models, By 'changing some nbf our
assumptions about colonization and extinction processes, we can generate
new metapopulation models that make different predictions about the frac-

tion of sites occupied at equilibrium ( f)- Before exploring these variations
we will first examine the general assumptions of this model.

Model Assumptions

Equation 4.3 makes the following assumptions:

v Homogenous patches. The population sites must not differ in their size,
isolation, habitat quality, resource levels, or other factors that would
affect the probability of local colonization and local extinction.

v No spatial structure. The model assumes that probabilities of coloniza-
tion and extinction may be affected by the overall fraction of occupied
sites (f), but not their spatial arrangement. In a more realistic metapop-
ulation model, the probability of colonization for a particular site would
depend on the occupancy of close neighboring patches, rather than on
the overall f. This sort of “neighborhood” model can be studied by com-
puter simulation or by using equations of diffusion, in which the spread
of populations through empty sites is analogous to the dispersion of an
ink droplet through a beaker of water.

v No time lags. Because we are describing metapopulation dynamics with
a continuous differential equation, we assume that the metapopulation
“growth rate” (df/dt) responds instantly to changes in f, p;, or pe.

v Constant pe and p;. The probabilities p, and p; do not change .f-rom one
time period to the next. Although we cannot say precisely wmc?\.Popu-
Jations will go extinct and which will be colonized, the probabilities of
these events do not change.

v Regional occurrence (f) affects local colonization (p;) and extinction (pe).
Except for the basic island—mainland model (see below), metapopula-
tion models assume that migration is substantial enough to éffect local
population dynamics and influence pmbabiliﬁ?s of colonization and /or
extinction. Consequently, p; and/or p, are functions of f.

v Large number of patches. The fraction of occupied sites in our modg! can
become infinitely small, and the metapopulation will still p‘crslsl. Thus,
we are not assuming any demographic stochasticity (see Chapter 1) of
the metapopulation due to small patch numbers.
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Model Variations

THE ISLAND-MAINLAND MODEL

The simplest model for our metapopulation is that both the p; and p, are con-
stants. If p, is a constant, the probability of extinction is the same.for eac.h
population and does not depend on the fraction of patches occupied. This
assumption is analogous to a density-independent death rate in a population
growth model, because the death rate does not depend on population size
(see Chapter 2). Similarly, the probability of colonization may be fixed.
Constant p; implies a propagule rain—a continuous source of migrants that
could potentially colonize an empty site (Figure 4.2a). If there is a large, stable
“mainland” population, it may generate a propagule rain for a set of
“islands” in the metapopulation. A propagule rain may also characterize
some plant populations that may be colonized by a seed bank of long-lived
buried seeds. The equilibrium value of f for this island-mainland model can be
found by setting Equation 4.3 equal to zero and solving for f:

0=p;—pif —p.f Expression 4.6
pif +p.f=pi Expression 4.7
Dividing both sides of Expression 4.7 by (p; + p,) gives f, the equilibrium for f:

P . 14
P tPe

Equation 4.4

.In the island-mainland model, the fraction of sites occupied at equilibrium
isa b.alance between extinction and immigration probabilities. Notice that
even l.f th.e probability of extinction (p,) is very large and the probability of
c'olomz'anon (p) is very small, at least some of the sites in the metapopula-
tion will be occupied (f > 0), because the metapopulation is continuall

replenished by the external propagule rain. Y

INTERNAL COLONIZATION

pi=if Expression 4.8

The constant i is a measure of how much the

empty sites increases with each additional pprObabiIity o colonzatiom.of

atch that is occupied. In this
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Figure 4.2 (a) Colonization in the island-mainland model. Colonists for a set of
islands always come from a large mainland area. Open islands represent empty sites
and filled islands represent sites that contain populations. (b) Colonization in the
internal model. Colonists do not originate from a permanent external source, but
instead originate only from currently occupied islands.

mode), each population contributes individuals to a pool of propagules,
which then have the potential to colonize unoccupied sites. Note that if all of
the populations go extinct (f = 0), the probability of colonization goes to zero
because there is no other source of colonists. This condition is in contrast to
the island-mainland model, in which colonists were always present because
of the external mainland population.

Assuming that the extinctions are still independent and substituting
Expression 4.8 back into the general model (Equation 4.3) gives (Levins 1970):

Z—{ =if(@1-f)—p.f Equation 4.5

Again, we set this equation equal to zero and solve for the equilibrium f:
pef =if(1-£) Expression 4.9
pe=i-if Expression 4.10

if=i-p, Expression 4.11
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Dividing both sides by i yields:

Pe

+ Equation 4.6
i

f=1-

In contrast to the predictions of the island-mainland model, persistence of
the metapopulation (f > 0) is no longer guaranteed. Lnstea.d, t.he metapopt.l-
lation will persist only if the strength of the internal c?lomza.tl.on ?ffect () is
greater than the probability of local eich'nction (p,)- If this condition is not met,
the metapopulation will go extinct (f <0). Extinction can happen bgcau;e the
metapopulation is no longer receiving the benefit of external colonization.

THE RESCUE EFFECT

Our first two metapopulation models (island-mainland and internal colo-
nization) both assumed that the probability of extinction was independent of
the fraction of sites occupied. Now we should consider the possibility that
extinction might be affected by f. How might this happen? As before, we
assume that each occupied site produces an excess number of propagules that
leave the site and arrive at other populations. If the propagules arrive at an
empty site, they represent potential colonists. 1f conditions are good, these
propagules may be able to establish a breeding population in the site. But
migrants may also arrive at occupied sites and increase the size of established
populations. This increase in N is a rescue effect that may prevent the local
population from going extinct due to demographic and environmental sto-
chasticity (see Chapter 1). The rescue effect is defined as the reduction in the
probability of extinction that occurs when more population sites are occupied,
and hence more individuals are available to boost local population sizes.

The tradeoff of propagules leaving a site and those entering from other
sites cannot be strictly linear. Otherwise, it would not be possible to achieve a
rescue effect—the reduction in p, due to immigration would be canceled by
the increase in p, due to emigration. However, the loss of some individuals
as migrants may k}ave a negligible effect on p,. In fact, if migration is density-
dependent, mdlvnjluals that do not migrate to other population sites might
::5:3:1‘;;;? vil;i‘;g’; it;oz'ly_ inlth:ir sites of origin. An explicit l:nods.:l of the
we can capture the essenc: 01-;1;1‘; r:src)fxla;lfeter? o o e gufion, l?ut

ect in our simple metapopulation

model by assuming that:
Pe=e(1-f) Expression 4.12

Expressi'on 4..12 says that the probability of local extinction decreases as more
population sites are occupied. e is a measure of the strength of the rescue



effect, because it controls how much Pe

€T occupied site. Notice that if e withthe ddition of ano

‘all Population sites are occupied (f = 1), the

- This is unrealistic, because even i

1s-ialll:r]e;ted landscape there should be some intrinsic background ext'ierf:::ir(l;
sk. But we would have to introduce another parameter into the model to

daf S T
m:l’:(l‘_f)‘ ef(1-f) Equation 4.7

As before, we set Equation 4.7 equal to zero and then solve for the equilibri-
um value of f

ef(1-f)=p;(1- f) Expression 4.13
ef=p; Expression 4.14

Dividing both sides by e gives:
_/‘: = Pi Equation 4.8

¢

As in our original island-mainland model, persistence of the metapopulation
is assured when there is both a propagule rain and a rescue effect. In fact, if
the extinction parameter (e) is less than the probability of colonization (58
the metapopulation will be saturated at equilibrium, and all population sites
will be occupied (f = 1).

OTHER VARIATIONS

One final variation based on our simple metapopulation model would be to
combine internal colonization with the rescue effect. In this case, the
metapopulation is entirely closed to outside influences; both colonization and
extinction probabilities are a function of the fraction of sites occupied. The
equation for this model comes from substituting Expression 4.8 (internal col-
onization) and Expression 4.12 (rescue effect) into Equation 4.3 (the general

model):

b _if1--ef1-) Hpuapn il
at



82 CHAPTER 4 METAPOPULATIONS

However, if you try to set Equation4.9 equal to zero an.d.th.en s?,lve for f, you
will find there is no simple solution. Instead, the ”equlh}arlum dePends on
the relativesizes of iand e. If i > €, the immigration rate {if1-MN w111. alwa)"s
be greater than the extinction rate [ef(1 )], so the '_“efﬂRDP“la“‘?“ "f"n
“grow” until f = 1 (landscape saturation). Conversely, 1.f e>1, the exh.nchop
rate exceeds the immigration rate, and the metapopulation will contract u{\hl
f=0 (regional extinction). If i and e vary stochastically, the metapopu.lanon
may fluctuate between these two equilibrium points (Hanski 1982). Finally,
if i equals ¢, f will not change because the immigration rate will always equal
the extinction rate. If some external force changes f, it will then stay at this
new equilibrium value. We refer to this as a neutral equilibrium.

The metapopulation models that we have considered here have treated
colonization as either internal or external. Similarly, extinctions were either
independent or mediated by a rescue effect (Table 4.1). These four alterna-
tives actually represent endpoints of a continuum. Colonization in most
metapopulations is probably both from propagules generated from within
the system and from propagules derived from external “mainland” sources.
Similarly, there are extrinsic and intrinsic forces leading to extinction. These
factors can be incorporated into a more general metapopulation model,
which includes the four models developed in this chapter as special cases
(Gotelli and Kelley 1993).

The derivations presented here just scratch the surface of metapopulation
models (Hanski and Gilpin 1991). Other metapopulation models predict N
directly, rather than just the presence or absence of populations.
Metapopulation models have also been extended to two-species models of
competitors or predator and prey. In some cases, species may coexist region-
ally tl}at cannot coexist locally in closed populations. In other instances,
exposing local populations to competitors or predators can lead to extinctions
DR e g e e

pen” systems when we model the colonization of an

Table 4.1 Four metapopulation models (Gotelli 1991).

Extinction
i Independent Mediated by rescue effect
External df if
(“propagule rain”) 4= Pi=N-pf i

df :
if(L =)= pof df

Internal = = . :
dt e 5= fA-f)-efQ-f)

Colonization
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Empirical Examples
THE CHECKERSPOT BUTTERFLY

Populations of the bay check . .
occur in discrete patcth thact szf::c:; lljzztct:;ilrﬂz(f:i}if: ;ylus ]
tion. The butterfly i ; o SFpe el A pula-
L : uttertly is somewhat of a habitat specialist; adult butterflies emerge
]:r';l; mTfl’:s ax;]d females prefer to lay their eggs on the annual plantain Plantago

. ost plant serves as a food source for the caterpillars, which feed
for one. or two weeks and then enter a summer diapause, or resting stage.
Caterpillars resume feeding during the cool, rainy months of December to
February, and then build cocoons. P, erecta grows in Northern California
grassla.ers on serpentine soil rock outcroppings, which serve as potential
Ppopulation sites (Figure 4.3). Populations of the checkerspot butterfly have
been studied in this area for over 30 years (Ehrlich et al. 1975).

Fluctuations in the weather can disrupt the life-cycle synchrony of the but-
terfly and its host plant, leading to local extinction. For example, at least three
butterfly populations are known to have gone extinct following a severe
drought in 1975-1977 (Murphy and Ehrlich 1980). Very small populations
recorded in 1986 may represent successful recolonizations of empty sites
(Harrison et al. 1988). The Morgan Hill site is a large patch of serpentine soil
that supports a population of hundreds of thousands of butterflies. Because of
its large size and the topographic diversity of the site, this population survived
the drought and probably served as a source of colonists for empty patches.

The checkerspot metapopulation is similar, in some respects, to the
island-mainland model, in which there is a persistent, external source of
colonists. Although our simple metapopulation models assumed that all
patches were identical, this was clearly not the case for the checkerspot but-
terfly. Populations were more likely to be found in sites that were close to the
Morgan Hill population, had large areas of cool, north-facing slopes, and
high densities of appropriate host plants (Harrison et al. 1988). For conserva-
tion purposes, preservation of the Morgan Hill population is probably essen-
tial because it provides colonists for other patches.

By their very nature, metapopulation studies require access to a lot of land.
Although researchers have studied the checkerspot metapopulation for sev-
eral years, work on many of the smaller patches can no longer be carneq out.
Attitudes of western land owners have changed; many are no longer willing
to allow biologists onto their property to census the checkerspot butterfly
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Q <«— Extinct in 1976, recolonized in 1988

& <«— Colonized in 1986

Morgan Hill

HEATHLAND CARABID BEETLES

Not all metapopulations oceur jn well-defined Patches, as in the checkerspot
butterfly example. Populationg may be organized as a metapopulation even
in the absence of discrete habitat patches. In the northern Netherlands, pop-
ulations of carabid ground beetles have been Studied by pitfall trapp;
over 35 years (den Boer 1981). Radioactive marking revealed that most indj-
viduals moved a very limited distance, For example, 90% of the individuals
of the beetle Pterostichys versicolor moved Jesg than 100 meters o day.
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Cor lsequently, sites separated by even modest distar 1ces eﬂeCthEIY contain

Populations of P. versicolor that were

studied f,
led for 21 years. Although populations fluctuated asynchronously, there
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Figure 4.4 (a) Metapopulation dynamics of the ground beetle Pterostichus versicolor
in heathlands of the northern Netherlands. Each symbol represents the track fora
different subpopulation in the heath. Note the great variability in population
dynamics and the relative rarity of local extinctions. Broken lines indicate gaps in
sampling. Lines that touch the x axis indicate local extinctions. At each time period,
some subpopulations are usually increasing, which may act as sources of migrants
that prevent the extinction of declining subpopulations. (b) Metapopulation dynam-
ics of the ground beetle Calathus melanocephalus in heathlands of the northern
Netherlands. In contrast to P. versicolor, subpopulations of C. melanocephalus tend to
fluctuate in synchrony. Consequently, there are no “source” areas to rescue declining
subpopulations, so that local extinctions are more frequent. (After den Boer 1981.)
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were almost no extinctions recorded during this time period. This is because,
at any point in time, some populations were increasing in size and acting as
source populations that prevented the extinction of other, declining sink pop-
ulations. In contrast, the population fluctuations of the species Calathus
melanocephalus were much more synchronous during this period (Figure
4.4b). As a consequence, conditions were sometimes uniformly bad for all
populations. At these times, there were no source populations available, so
population extinctions were much more frequent. Because each subpopula-
tion of C. melanocephalus behaved similarly, the risk of extinction was high.
Because each subpopulation of P. versicolor behaved differently, the metapop-
ulation structure effectively spread the risk of extinction. We still don’t under-
stand why the population dynamics of these two beetle species are so differ-
ent, but it is clear that metapopulation structure affects local extinction and
perhaps long-term persistence.
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Problems

41

42

*4.3.

- You are studying a rare and beautiful species of ant lion (see cover). Pop-

ulations of the ant lion live on a set of islands and on an adjacent main-
land that serves as a permanent source of colonists. You can assume that
the mainland is the only source of colonists and that extinctions on the
islands are independent of one another.

a. If p, = 0.2 and p, = 0.4, calculate the fraction of islands occupied at
equilibrium.
*b. A developer is preparing to pave over the mainland area for a new
condominium complex. To appease local environmental groups, the
developer promises to set aside the islands as a permanent “ant lion
nature reserve.” Assuming that p, = 0.4 and i = 0.2, predict the fate of
the island populations after the mainland population is eliminated.

- An endangered population of 100 frogs lives in a single pond. One pro-

posal for conserving the frog population is to split it into three popula-
tions of 33 frogs, each in a separate pond. You know from your demo-
graphic studies that decreasing the frog population from 100 to 33 indi-
viduals will increase the yearly risk of extinction from 10% to 50%. In the
short run, is it a better strategy to retain the single population or to split it
into three?

Suppose a metapopulation hasa propagule rain and a rescue effect. The
parameters are p, = 0.3 and e = 0.5. Forty percent of the population sites
are occupied. Is this metapopulation expanding or shrinking?

* Advanced problem
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We need to consider not only the mechanism of competition, but the extent
to \ﬂﬁch competition occurs within and between species. Intraspecific com-
petition is competition that occurs among members of the same species. The
logistic equation (Equation 2.1) is a model of intraspecific competition
because the per capita growth rate diminishes as the population becomes
more crowded. Interspecific competition is competition between individuals
of two or more different species. In this chapter we will build a model of
interspecific competition that is a direct extension of the logistic equation.

THE LOTKA-VOLTERRA COMPETITION MODEL

In the 1920s and 1930s, Alfred J. Lotka (1880-1949) and Vito Volterra
(1860-1940) described a simple mathematical model of interspecific compe-
tition that is the framework for competition studies in ecology. The model
treats populations of two competing species, which we will designate as Nq
and N,. Each population grows according to the logistic, with its own intrin-
sic rate of increase (r; or 1;) and its own carrying capacity (K, or Ky). As in the
logistic model, population growth is reduced by intraspecific competition:

dN; _ Ki-N; .
o Ta nN 1( K Expression 5.1
dN K>;-N .
th_ = erz( ZKZ 2) Expression 5.2

In our new model, the population growth rate is further depnessgd by the
presence of the second species. For now, assume that the growttf is reduced
by some function (f) of the number of individuals of the competitor:

Ky - N;—f(N2) .
Eg’t_l =nN 1(—1—;(1’—— Expression 53

= 4 Expression 5.4

Ky—-No—f(N1
dN> ‘YzNz[ 2 22 f(N1)
These expressions show that population growth rate is depress.edt'l:é' f\:;t::
intraspecific and interspecific competition. Tk;e;e‘lal‘;e rtn;ny ic;r;ixtc?omula is

i i jons 5.3 and 5.4, but the s
tions that we could use in Expressions ! .
to multiply the population size of the competitor by a constant number:

dNy _ N w\ Equation 5.1
dt = Ky )
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| D
2
2

Figure 5.1 A graphical analogy for interspecific competition. The heavy square
frame represents the carrying capacity for species 1 (K, ). Each individual consumes
a portion of the limited resources available and is represented by a tile. Individuals
of species 2 reduce the carrying capacity four times as much as individuals of
species 1. Hence, the tiles for species 2 are four times larger than those for species 1,
and a = 4.0. (After Krebs 1985.)

two kinds of tile. In the next section we will solve for these equilibrium den-
sities.
EQUILIBRIUM SOLUTIONS

As in all our previous analyses, we find the equilibrium population densities
(N) by setting the differential equations equal to zero and solving for N:

N;=K;—aN, Equation 5.3

Ny =Ky - BNy Equation 5.4

These results make intuitive sense. The equilibrium for Ny is the carrying
capacity for species 1 (K;) reduced by some amount due to the presence of
species 2 (aN,). But we have trouble putting numbers into these sqlutlons—
the equilibrium for species 1 depends on the equilibrium for species 2, énd
vice versa! We can make progress by substituting the equilibrium for N, into
Equation 5.3, so that the answer will be entirely in terms of Ni:

Ny =K -o(Ky - BN;) Expression 5.5



Similarly, we can substitute the equilibrium for N; into Equation 5.4:

Ny =Ky - B(K1 - aN,) Expression 5.6

For each of these expressions, we carry out the. multiplication,.movel ag t::
N terms to the left side of each equation, and arrive at the following solutions:

G Ky -aKy Equation 5.5
N 1-ap &
N: = %{.{% Equation 5.6

Note that for both species to have an equilibrium population size greater than
zero, the denominator of each expression must usually be greater than zero.
Thus, it is usually the case that the product o must be less than 1 for both
species to coexist.

THE STATE SPACE

Although Equations 5.5 and 5.6 tell us the equilibrium conditions for the
Lotka-Volterra competition models, they do not provide much insight into
the dynamics of competitive interactions, or whether these equilibrium points
are stable or not.

We can understand these equations much better by using the state-space
graph, a special kind of plot. In the state-space graph, the x axis represents the
abundance of species 1, and the y axis represents the abundance of species 2.
This graph takes a bit of getting used to, but it is an important tool in multi-
species models. We will use it again in Chapter 6, when we explore preda-
tor-prey models.

What do points in state space represent? A point in this graph represents
a combination of abundances of species 1 and species 2. The abundance of
species 1 can be read from the x axis and the abundance of species 2 can be
read from the y axis. If our point falls on the x axis, then only species 1 is
present and the abundance of species 2 is zero. For points on the y axis, only
species 2 is present. So, the full collection of points in this graph represents
all the different combinations of species 1 and species 2 that we could put
together.

We use th.e state-space graph to understand the population dynamigcs of
two cc.)rnp.etltor.s. Imagine two competing species whose population; are
;ha;réf:gysalzse irv‘\'lil;\ hzr'\e.t {\t tel’?ch point in time., we could represent their abun-
B sl (%i P 11; 21]:1’1 e state space (Flg'ure .5.2a). As both populations

gure 5.2b), we would trace a line in the state space. The final
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Figure 5.2 (a) A state-space graph. The axes of the state space are the abundances of
the two species (N; and N,). As abundances change through time, a curve is traced
from left to right. The numbers on the curve indicate time, beginning at 0 and end-
ing at 40. (b) Translation of the state-space graph in (a). The abundances of each
species are read from the state-space graph at different times. Note that species 2
first increases and then decreases, whereas species 1 shows a continuous increase in

population size.

equilibrium point is the end of this line, and if either species goes extinct, this
point falls on one of the two axes of the state-space graph.

How can we use the state-space graph to help us understand the Lotka-
Volterra equations? We will first plot Equation 5.3 in the state space. Equation
5.3 is the equilibrium solution for species 1, and its graph is a straight line.
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This line represents the combinations of abundances of species 1 af'ld .species
2 for which there is zero growth of species 1. At any point on this line, the
carrying capacity for species 1 is entirely “filled” with h:\dividuals of both
species. This line is an isocline: a set of abundances for which the growth rate
(dAN/dt) of one species is zero. =

The isocline for species 1 intersects the axes of the state-space graph in two
places. The intersection on the x axis is at a value of K;. This equilibrium point
represents the case in which species 2 is absent and species 1 has grown to
its own carrying capacity. The other point is the intersection on the y axis.
Here, species 1 is essentially extinct, and the carrying capacity of species 1 is
entirely filled with individuals of species 2. The equilibrium solution at this
point is Ky /a individuals of species 2 and zero individuals of species 1.
Between these extremes are combinations of both species that fall on the iso-
cline (Figure 5.3).

The isocline for species 1 splits the state space into two regions. If we are to
the left of the isocline, the joint abundance of N; and N is less than the car-

Ny

i ’ P .
TI}%::: OSC.I;;IB: lgi.lnnea::l-:sochne'fm' species 1 in the Lotka~Volterra competitiommodel.
ot For peu t:Sto 5‘ c?mbmahgn of abundances for which species 1 shows Eere '
cated by the right-poinﬁenge {\toorflzu;lnst;lln :;rg\‘: I:I’glmlafjDn b i, P indﬁ
i ! . For ts i joi
cdl:::lrc:aof Species 1and species 2 exceeds the isoc]jf\‘e)l;;r stoet?iisn lghb o Join iy
ses, indicated by the left-pointing arrows, P RS



:y].ng (.:apauty for species 1, sp N will increase. An increase in Nj in the state
pace 1s represented as a horizontal arrow pointing to the right. The i
horizontal because the abundance of i iy 4 arow is
When you work with stat ) i pmesilad o the 3 axd,
species’ isocline you ar le ttPace graphs_, pay close attention to which
Shnsoe generatZs . hoerip o ) "1'18 ,:ny point to the left of the isocline for
81500, e R zgn al rig t—po%n.tmg arrow. Under -these circum-

Pces, now pecies 1 has a positive growth rate, so its population
will increase in size. In contrast, if we are to the right of the isocline, the joint
abundance of N; and N, exceeds the carrying capacity of species 1. In this
case, the growth rate of N is negative, and the population decreases. The
decrease is represented as a left-pointing horizontal arrow in the state space.
Finally, if we are at a point precisely on the isocline, N, neither increases nor
decreases, and there is no movement in the horizontal direction.

Now we plot the isocline for species 2 in the state space. The isocline of
species 2 intersects the y axis at a value of K, and intersects the x axis ata
value of K;/f. The first case is one in which species 1 is absent and species 2
has grown to its carrying capacity. In the second case, species 2 is absent, and
its carrying capacity is occupied by K,/f individuals of species 1. Once again,
the isocline for species 2 splits the state space into two regions. If we are
below the isocline, the joint abundance of species 1 and species 2 is below Kj,
and N will increase. Because species 2 is on the y axis, positive growth of
species 2 is represented as a vertical arrow pointing up in state space.
Similarly, if we are above the isocline, the carrying capacity of species 2 is
exceeded; its population decreases, represented by a downward-pointing
arrow (Figure 5.4).

It is important to recognize that there is a unique isocline for each species
that dictates its population growth. By plotting both isoclines together in the
state space, we can understand the dynamics of two-species competition. Of
course, there are an infinite number of isoclines we could build, simply by
using different values of K1, K3, @, and B. Fortunately, there are only four qual-
itatively different ways we can plot the isoclines. These four patterns represent
the four possible outcomes of competition in the Lotka-Volterra equations.

GRAPHICAL SOLUTIONS TO THE LOTKA-VOLTERRA COMPETITION MODEL

Case 1: Species 1 wins in competition. Figure 5.5 shows one possiblg conf.ig—
uration of the two isoclines in the state space: the isocline for species 1 he's
entirely above the isocline for species 2. In this case, the state space is split
into three regions. If we are in the lower left-hand region .of the graph, weare
below the isoclines of both species, and both sl.)e.cies can increase. T};ils_n?p;
resented by a horizontal and vertical arrow joined at their base. The ]}?jlsh
movement of these two populations is repres?nted by the vectorfsu}rln, v:a N
is an arrow that points towards the upper right-hand corner of the graph.
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Figure 5.4 The isocline for species 2 in the Lotka-Volterra competition model. Note

that the arrows point vertically for species 2, because its abundance is measured on
the y axis of the state space graph.

Conversely, if we are in the upper right-hand region of the state space, we are
above the isoclines of both species. Both populations will decrease, and the
joint vector points towards the origin of the graph.

Things get more interesting in the interior region. Here, we are below the
isocline of species 1, so its population increases in size, and the horizontal
arrow points to the right. However, we are above the isocline of species 2, so
its population decreases, and the vertical arrow points down. The joint vector
points down and to the right, which takes the populations towards the car-
rying capacity of species 1. Eventually, species 2 declines to extinction, and
species 1 increases to K;. Notice that, no matter what combination of abun-
dances we start with, the arrows always point towards this outcome. If the
isocline of species 1 lies above that of species 2, species 1 always wins in com-
petition, and species 2 is driven to extinction.

Case 2: Species 2 wins in competition.  If we graph the isocline of species 2 above
that of species 1, then we reverse the conditions and species 2 wins in coﬁipeti-
tion (Figure 5.6). The only difference in this graph is the vector in the interior
tegion. In this case, we are above the isocline of species 1, which generates a hor-
izontal arrow to the left, but we are below the isocline of species 2 which gener-
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N,

K;

Ky/B
Ny

Figure 5.5 Case 1: Competitive exclusion of species 2 by species 1. The thin arrows
show the trajectories of each population, and the thick arrow is the joint vector of
movement. Competition results in the exclusion of species 2 and an equilibrium for
species 1 at carrying capacity. The box indicates a stable equilibrium point.

K, Ko/
Ny

Figure 5.6 Case2: Competitive exclusion of species 1y species 2.
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ates a vertical arrow pointing up. The joint vector points up a?'ld to the left, tak-
ing us towards the equilibrium point at Ky, with N; going extinct.

Case 3: Coexistence in a stable equilibrium. The remaining two cases are
slightly more complex, because they involve isoclines that cross, dividing the
state space into four regions. Nevertheless, the analysis is exactly the same.
We simply plot the vectors in each of the four regions to determine the out-
come (Figure 5.7). First, note that because the two isoclines cross, there must
be an equilibrium point—the crossing of the isoclines represents a combina-
tion of abundances for which both species 1 and species 2 have achieved zero
growth. The state space analysis reveals whether that equilibrium is stable or
not.

As in our previous two examples, the region close to the origin is one of
joint growth of both populations, and the region in the upper right-hand cor-
ner of the graph is one of joint decrease. The vectors in these regions point
towards the equilibrium intersection. If we are in the region of the graph on
the lower right, we are above the isocline of species 1, but below the isocline of
species 2. Here, the joint vector points towards the center, as N; decreases
along the horizontal axis and N, increases along the vertical axis. Finally, if

K/a

.9]

k& Ky/B

Figure 5.7 Case 3: Coexistence ilibri
Hgae : Coe) In a stable equilibrium. The two isocli
e TS point in towards the equilibrium point, The equi]ibnl'x:xi: ;;c;st‘?b?:d

i joint vecto;
ause if the populati i :
um sizes, | FOPY ations are displaced, they will always return to their equilibri-
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we are in the region of the graph on the upper left, we are above the isocline of
species 2, but below the isocline of species 1, and the joint vector again points
towards the center.

This is a stable equilibrium in which all roads lead to Rome—no matter
what the initial abundances of the two species are, both populations will
move towards the joint equilibrium value. Although this equilibrium is stable
and both species coexist, note that each species persists at a lower abundance
than it would in the absence of its competitor. Competition reduces the pop-
ulation size of each species, but neither can drive the other extinct.

Case 4: Competitive exclusion in an unstable equilibrium. This final case is the
one in which the isoclines cross in the opposite way (Figure 5.8). Once again,
both populations increase in the sector closest to the origin, and both popu-
lations decrease in the upper right-hand region. But the pattern changes in
the two remaining slivers of state space. In the lower right-hand region, we
are below the isocline of species 1, but above the isocline of species 2. In this
region of the graph, the populations move away from the joint equilibrium
and towards K;. Similarly, in the fourth region of the state space, we are above
the isocline for Ny, but below that for N,. The populations move away from
the joint equilibrium and towards K.

N,

K/

iti jon i table equilibrium. The two iso-
Figure 5.8 Case & Competitive exclusion in an uns able eq e lons gl

i i form an equilibrium point. However, e
s ar%?rl\nﬂf\;:i]?:l}l?brium. If fl:le populations are displaced, one species Of the

?t;ae)r' :vill win in competition, depending on the starting abundances.
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Case 4 represents an unstable equilibrium. If the populat?ons are displaced
from the joint equilibrium, they will eventually end up in one of the two
regions of the graph that will take them to competitive exclusion. Thus, both
species cannot persist in the long run, and one will be driven to extmc.:hon by
competition. However, the winner is difficult to predict. The populanoq fhat
has a numerical advantage is the one that will probably win in competition,
but the outcome depends on the initial position in the state space, and the rel-
ative growth rates of the two competitors (r; and r3).

THE PRINCIPLE OF COMPETITIVE EXCLUSION

Now that we understand the four graphical solutions to the Lotka—Volterra
competition equations, we will take another look at the algebraic solutions.
We can reason that species 1 will always persist if it can invade under the
worst possible circumstances. The worst scenario for species 1 is that its own
abundance is close to zero (N; =~ 0), and the abundance of its competitor is
close to carrying capacity (N, ~ K;). If Nj can achieve a positive per capita
growth rate [(dN;/dt)(1/N;) > 0] under these circumstances, then it should
always be able to invade (MacArthur 1972). Plugging these conditions into

Equation 5.1 gives:
dN K;-0-aK
(d_tlj(NL]J = ’1(1K—12J Expression 5.7

Since ry is always positive, the following inequality must hold for Nj to
increase:

K; -ok;
1[(—12 >0 Expression 5.8
which reduces to:
K
K—; >a Expression 5.9

If species 1 is to successfully invade, the ratio of the carrying capacities must
excegd ;h.e competitive effect of species 2 on species 1. In other words, if
Species 2 is a strong competitor, species 1 must have a relati arry,
ing capacity to persist. gy
Using Equation 5.2, we can go through a simi i
g E 152, similar calculation to arrive at
following inequality for the persistence of species 2: et the

K, s
> B Expression 5.10
Flipping the inequality makes this directly comparable with Expression 5.9:

ST
K, Expression 5.11

=



Table 5.1 Algebraic inequaliti
alities de
outcome of oompetitio:\qin the Lot

(a)

fining the ability of speci i
KaVohons equ;}::i ons?ev:les to invade and the

Inequality Outcome
K . i SO, R
" Species 1 invades
ﬁ <a 5 i
K, Species 1 cannot invade
el .
K, B Species 2 invades
v A
KB Species 2 cannot invade
®) Species 1 Species 2 .
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N ol 1Ky Species 2 wins
0 Yes B>K—2x o ((l‘ase 2)
Yes Yes b KT Stable coexistence
Ij> K, <l (Case 3)
’ K Unstable equilibr
8 No RO nstable equilibrium
e B S K, 3 (Case 4)

Now we have expressions for whether N; will invade or not, and whether
N, will invade or not. Putting these expressions together generates four alge-
braic inequalities that define the four graphical solutions to the
Lotka—Volterra equations. For example, if species 1 can invade (K;/K;> a) ,
but species 2 cannot (1/8 < K;/K), then we have defined the conditions for
case 1, in which species 1 always wins in competition. If both species are able
to invade, we have the stable coexistence of case 3, whereas if neither species
can invade, we have the unstable equilibrium of case 4 (Table 5.1).

These inequalities give us insight into one of ecology’s enduring proverbs,
the principle of competitive exclusion. Briefly stated, the principle is that
“complete competitors cannot coexist” (Hardin 1960). In other words, if
species are able to coexist, there must be some difference between them in
resource use (Gause 1934).

If two species are very similar in their resource use, then o and B should
be very close to 1. Suppose, for example, that o = B = 0.9. From the inequal-
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ity in Table 5.1, coexistence of these species requires that:

1.5 09 Expression 5.12

357K, "

11> _klfl_ >09 Expression 5.13
2

Thus, if the species are very similar in their use of resources, therg is only a
narrow range of carrying capacities that will ensure sta.ble coex1ste.nce. I.l'l
contrast, suppose that & = B = 0.2, indicating that species differ greatly in their
use of common resources. In this case, coexistence will occur if:

5> % >02 Expression 5.14
2

In this case, the two species will coexist with a wide range of possible carry-
ing capacities. Thus, our analysis of the Lotka—Volterra equations allows us to
refine the competitive exclusion principle: the more similar species are in
their use of shared resources, the more precarious their coexistence.

The Lotka-Volterra equations are the simplest two-species model of com-
petition. As you might expect, it is even more difficult to obtain coexistence of
species in models that have three or more competitors. For many years, ecol-
ogists have studied the “coexistence problem,” and discovered that species
often coexist in nature with little apparent difference in resource exploitation.
In these circumstances, one or more of the following assumptions of the
model has been violated.

Model Assumptions

As in the logistic and exponential growth models, we assume there is no a ge
or genetic structure to the populations, no migration, and no time lags. The
following assumptions also apply to the Lotka-Volterra model:

v Resources are in limited supply. The result of resource limitation is both
intra- and interspecific competition. If resources are not limiting, then an

infinite number of species can coexist, regardless of how similar they are

in resource use.

v Competition coefficients (@ and B) and carrying capacities (Ky and K3)
are const..‘m.fs.lf these parameters should change with time or density, it
may be difficult to predict species coexistence. .



MODEL VARIATIONS 115

v Density dependence is linear.
produces a strictly linear decr
This is reflected in the line
Models with nonlinear isocl
that are not easy to deduce

Adding an individual of either species
€ase in per capita population growth rate.
ar isoclines of the Lotka-Volterra model
ines have more complex stability properties
from simple state-space graphs.

Model Variations
INTRAGUILD PREDATION

Ecologists classify species interactions according to their effects on popula-
tion growth rate. Thus, competition is defined as both species having a net
negative effect on one another (—-), mutualism as both species having a net
positive effect (+,+), and predation or parasitism as one species gaining and
the other species losing (+,-). These classifications are convenient and nat-
ural, and they reflect our model assumptions that interaction coefficients are
constant and that there is no age structure in the Ppopulations.

But when we study the natural history of many animals, we find they can-
not be classified simply as “predators” or “competitors.” For example, lions
prey on the young of cheetahs, wild dogs, and spotted hyenas, but also com-
pete with these same species for prey. Flour beetles in the genus Tribolium
compete for food, but at high densities they also consume one another’s lar-
vae. For many predators, diet is determined strictly by their size and what
they can get their jaws around. As individuals age, their diets can change rad-
ically. Anyone who has tried to raise baby fish in an aquarium can appreciate
that predation is often critically tied to body size. Individuals of a single
species may act as prey, competitors, or predators, depending on their age
and size. Intraguild predation (IGP) is the ecological interaction in which two
competing species also interact as predator and prey. IGP is not an isolatefi
phenomenon; it is common in terrestrial, marine, and freshwater communi-
ties, and probably represents the rule rather than the exception in nature
(Polis et al. 1989).

How can we modify our simple competition model to take account of l_GP?
Suppose that two species compete according to thfe Lot.ka—Volterra equations,
but species 1 is also a predator on species 2. This is a sm?ple.model that doe‘s
not involve age structure, reciprocal predation, or canr}lbal.lsm. Ho.wever, it
at least illustrates the way that IGP can modify ecological interactions. The
growth equation for species 1 (“predator”) is:

K;—N;—oaN
LU =nN; ‘]—7\11—#2

+YN1Ny Equation 5.7
dt



This is identical to the original Lotka-Volterra model, exce'ept we have ad:ihec’lt
an additional term. This addition represents the increase in growfh ‘rate a

species 1 receives by feeding on species 2. The amount of thllS increase
depends on the abundances of predator and prey (N1N2) and an mterac'tl:n
coefficient (7). We will see a similar expression in Ch?pmr 9 Whe:'l we build a
predator-prey model. The growth equation for species 2 (“prey”) is:

N> K> -~ N, - BN
dN, =mNy| 22 77‘[/771

-6NiN Equation 5.8
dt K. 12 |

Again, growth of species 2 is described by the Lotka-Volterra model, but is
further reduced because of losses due to predation by species 1. These losses
also depend on the abundances of predator and prey (N1N,) and an interac-
tion coefficient (5). Note that the interaction coefficients for predator (y) and
prey (8) need not be equivalent. The loss of an individual to predation usual-
ly does not correspond to a symmetrical gain for the predator population.
Again, these ideas are explored more thoroughly in Chapter 6.

How does IGP affect the coexistence of species? The graphical effect of 1IGP
is to rotate the isoclines. IGP does not change the carrying capacity for either
predator or prey. Instead, it changes the abundance of the competitor that is
necessary to cause extinction. Consequently, each isocline is rotated up or
down, but remains fixed at the intercept on its own axis. For the predator, the
isocline swings up, because it now requires more competitors to drive the
predator to extinction than before (Figure 5.9a). For the prey species, IGP
swings the isocline in towards the origin, because it now requires fewer com-
petitors to cause extinction (Figure 5.9b).

IGP can either reinforce or reverse the outcome of competition, depending
on the position of the isoclines and the amount of rotation (which is ultimate-
ly controlled by the interaction coefficients). For example, if the inferior com-
petitor is also the prey species, IGP merely adds the insult of predation to the
injury of competition and reinforces the extinction of species 2 (Figure 5.10a).
But if the inferior competitor is the predator, IGP can change the outcome from
competitive exclusion (case 1) to stable coexistence (case 3; Figure 5.10b).
Qmer outcome.s are possible, and IGP may provide insight into species coex-
istence when simple competition and predation models fail (Polis et al. 1989).

Empirical Examples

COMPETITION BETWEEN INTERTIDAL SANDFLAT WORMS h

N
In northern Puget Sound, many species of marine worms coexist in intertidal

sandflats at very high densities. Abundances can be manipulated experi-
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Figure 5.9 (a) Intraguild predation rotates the isocline of the “predator” species up,
because it now requires more individuals of the competitor-prey to drive it to
extinction. (b) Intraguild predation rotates the isocline of the “prey” species down,

because it now requires fewer individuals of the competitor-predator to drive it to
extinction.

mentally, allowing for a direct test of the Lotka-Volterra competition model.
Gallagher et al. (1990) examined competition between juveniles of the poly-
chaete Hobsonia florida and a number of closely related species of oligochaetes.
Both Hobsonia and the oligochaetes coexist in dense aggregations in nature
and feed on benthic diatoms.
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Figure 5.10 (a) Intraguild predation reinforces competitive exclusion. In this exam-
ple, the superior competitor (N, ) is also the predator, so the shifted isoclines lead'to
the same outcome. (b) Intraguild competition reverses competitive exclusion. In this
example, the inferior competitor (N>) is now the predator. The isoclines shift from
competitive exclusion (Case 1) to stable coexistence (Case 3).
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911gochaetes in the patch. These starting densities represented a single point
in the state space. Next, they measured the increase and decrease of each pop-
ulation in the patch after three days. These changes revealed the vector of
population dynamics in the state space. By repeating this procedure for dif-
ferent starting densities, they were able to determine the placement of both
isoclines. These field experiments produced the following estimates: K;
(Hobsonia) = 64.2, & = 1.408; K; (oligochaetes) = 50.7, B = 0.754. Finally, the
authors started two patches at a low initial abundance of both competitors
and then followed their dynamics for 55 days.

The isoclines for both species are plotted in Figure 5.11. Superimposed on
this state space is one of the trajectories for the 55-day experiment. Because
the isocline for the oligochaetes lies slightly above the isocline for Hobsonia,
the model predicts that the oligochaetes should win in competition. But the
trajectory of the 55-day experiment did not reach the oligochaete carrying
capacity, and in nature, both species coexist. The simple Lotka-Volterra
model must be rejected for this system.

Why did the model fail to give us the correct predictions? Because the iso-
clines of the two species are very close to one another, the predicted time to

Oligochaetes per 0.95 cm?
@
o

15

0 15 30 45
Hobsonia florida per 0.95 em?

i iti n marine intertidal worms. The solid line is the esti-
Flgl:erfl 5(1)211:(1:: ;:1? ?-g::ar:lzeftl:rei;a, and the dashed line is the estimated mocthhantewﬁ;:
ma lij lf)chaetes. The line segments trace an experiment in the stat;fi 'scpaigethe s

O:aex.'lt)eclg with low abundances of both competitors. The numre;-s 11;\9 [;)

Zf days since the start of the experiment. (From Gallagher etal. :
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extinction is long. Moreover, there are seasona.l changes in dlat:m a'buncxx}\l:
so that the carrying capacities for each species a”re always c angm'f1a Phen
carrying capacities change, the isoclines ”wobb%e through time, so ol i]:) n]:
ulation trajectories may be continually cha‘ngmgi I.Jn.der these con iy r
there may not be enough time for one species to win in competition. Thus,
the oligochaetes do not competitively exclude Hobsonia because' the env:.ror71-
ment is always changing. As the ecologist G. Ev.elyn Hutchinson (19.6 )
wrote: “The competitors of a given genus or other higher ta.xon.ale from time
to time lined up, and sometimes the race begins, but as it rr‘uight be in the
works of Lewis Carroll, the event is always called off before it is completed
and something entirely different is arranged in its place.”

THE SHAPE OF A GERBIL ISOCLINE

Gerbils are mouselike rodents of the deserts of Africa and the Middle East.
They are nocturnal seed foragers, and the coexistence of several gerbil species
may depend on their use of common food and habitat resources. Abramsky
etal. (1991) studied the coexistence of Gerbillus allenbyi and G. pyramidum in
the western Negev desert of Israel.

Experimental studies of vertebrate competition are particularly difficult
because of the large areas needed to enclose populations, and because com-
petition is often mediated by subtle behavioral interactions. Abramsky et al.
(1991) took advantage of the fact that G. pyramidum is considerably larger than
G. allenbyi (mean mass = 40 grams versus 26 grams). The authors built enclo-
sures that were 100 meters on a side (one hectare in area). Each enclosure was
separated into two plots by a common fence. This fence had small gates to per-
mit gerbils to move between the two sides. The gates were large enough to
allow G. allenbyi through, but too small for G. pyramidum to pass. Thus, the
fence acted as a semipermeable membrane, allowing G. allenbyi to “equili-
brate” its density on the two sides based on the density of G. pyramidum.

Although the Lotka-Volterra competition model predicts changes in pop-
ulation growth rate, these are difficult to measure in short-term experiments
on vertebrates. Moreover, the effects of competition on gerbil populations are
likely to be expressed more immediately in changes in behavior and forag-
ing activity. Instead of measuring gerbil density, the authors measured the
“activity density” of each species by counting gerbil footprints in clean trays
of sand that were placed in the plots each night. This index was correlated
with density and foraging activity of individual gerbils.

The authors established one half of each enclosure with a high density of
G. pyramidum and the other half with a low density. The density of G allenbyi
was a!lowed to eq}:ilibrate to these differences in competitor dens-,ity. The
resulting changes in activity of both species can be plotted in state space.
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Figure 5.12 Results of gerbil competition experiments plotted in state space. Each
line segment connects the points for the high-density and low-density plots in an
experimental enclosure. Most of the segments have a negative slope, indicating a
reduction in the activity density of Gerbillus allenbyi (y axis) in the presence of its
competitor G. pyramidum (x axis).

Each line segment in this graph represents the activity density in the two
halves of an enclosure. The slope of this line segment is a measure of the iso-
cline of G. allenbyi in that area of the state space (Figure 5.12). Although there
is considerable scatter in the data, most of these segments have a negative
slope, indicating that high densities of G. pyramidum depressed the activity

of G. allenbyi.



ocline based on the “best fit” of all these line seg-
ments. In contrast to the predictions of the Lotka—Yolterra model, th.e 'isoc]‘.:me
for G. allenbyi is nonlinear, with steep declinf.'s at high a’}d low de;r}smes of G.
pyramidum, but a shallow slope at infermet?late 'COmPe“tor densnltles. .

Why isn't the isocline of G. allenbyi a straight line? The answer is that activ-
ity density depends not only on the abundance of competitors, but also on
the availability and use of different habitats. In the Negev Desert, th.ere. are
two habitat types that the gerbils use. “Semistabilized dunes” c?l:ltam little
perennial vegetation, many open patches of sand, and unstabilized Sa{'ld
dunes. “Stabilized sand” habitats are dominated by dense shrub cover, with
large areas of stable soil crust and few open patches. Both habitat types were
present in approximately equal abundance within each enclosure.

Under uncrowded conditions, both gerbil species preferred the semistabi-
lized dunes. As intraspecific density increased, both species began to use the
stabilized sand in greater frequency. G. pyramidum density induced a habitat
shift in G. allenbyi, and this was responsible for the nonlinear isocline.
Superimposed on the state space in Figure 5.13 are four lines (“isolegs”) that
are cutpoints for changes in habitat use of the two species. At low densities
(regions 1 and 1I), both species preferred the semistabilized dunes, and
increased densities of G. pyramidum led to a sharp decrease in the activity
density of G. allenbyi. As the density of G. pyramidum increased, G. allenbyi
did not decrease its activity, but instead shifted into the less preferred stabi-
lized sand habitat. Consequently, the isocline is relatively flat in this region,
reflecting habitat shift, rather than a reduction in activity density. But as its
density increased, G. pyramidum was also forced to use the stabilized sand
habitat. At high densities of G. pyramidum, G. allenbyi could no longer
“escape” competition by moving to an unoccupied habitat, so activity densi-
ty again dropped off steeply. Additional field experiments measured the iso-
cli.ne.of G. pyramidum (Abramsky et al. 1994), and a mathematical analysis
predicts stable coexistence of both competitors.

The Lotka-Volterra model generates simple predictions and provides a
fram.ework for field tests of competition. Nevertheless, it is very difficult to
cf:\rirrlllp‘:lll::; Os:t:;letzs d?il}:;es in realistic fle!d experiments, and it s still an
even grhen resourge‘;va:e li i 1_':?011‘5]:!5 o hm’lm!g. e St‘:ld?es S AT
because factors such as varli:]l;]mg, t' e model's Slmple.predlcho.ns may fail
Pt tiie ot (e e fe.envuonm.e.nts and habitat selection can also

specific competition.

Figure 5.13 shows the is



Activity density of G. allenbyi

0 10 20 30 40 50
Activity density of G. pyramidum

Figure 5.13 The isocline for Gerbillus allenbyi, estimated from the data in Figure 5.12.
Note that the isocline (thick line) is not linear, but has a region of shallow slope at
intermediate densities of G. pyramidum. This nonlinear isocline reflects the effects of
competition and habitat selection. The thin lines divide the state space into regions
based on habitat use. Region I: Both species use the preferred habitat, semistabilized
dune. Region II: G. allenbyi is forced to use the less preferred habitat, stabilized sand.
Region III: Increased use of the stabilized sand by G. allenbyi. Because G. allenbyi
shifts to its less preferred habitat, its activity density can remain high, leading to a
shallow slope for the isocline in this region of the state space. Region IV: G. pyra-
midum is forced into the stabilized dune habitat by intraspecific competition.
Because G. allenbyi no longer has an escape to the unoccupied habitat, its activity -~
density drops off sharply with increases in the activity density of G. pyramidum.
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Problems

5.1. You are studying competition between red and black desert scorpions.
For the red scorpion, K; =100 and a = 2. For the black scorpion, K = 150
and §=3. =
Suppose the initial population sizes are 25 red scorpions and 50 black
scorpions. Graph the state space and isoclines for each species, and plot
these initial population sizes. Predict the short-term dynamics of each
population and the final outcome of interspecific competition.

5.2. Suppose that, for two competing species, & = 1.5, 8 = 0.5, and K; = 100.
What is the minimum carrying capacity for species 1 that is necessary for
coexistence? How large is the carrying capacity needed for species 1 to
win in competition?

*5.3. Diagram the state space for two competing species in which there is a sta-
ble equilibrium. Show how intraguild predation could shift this to exclu-
sion by the predatory species.

* Advanced problem N
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Model Presentation and Predictions

Competitive interactions in nature are often indirect and subtleK an.d may be
mediated through populations of resources. In contrast, predation is a du:ect
and conspicuous ecological interaction. The image of a wolf pack .bn.ngx.ng
down a moose, or a spider eating a fly evokes Tennyson’s description of
“nature red in tooth and claw.” Seed predators, such as finches and harvester
ants, are less dramatic in their feeding, but may be equally effective at control-
ling plant populations. Other animals do not consume their prey entirely.
Parasites require that their hosts survive long enough for the parasite to repro-
duce, and many herbivores graze on plants without killing them. In all of these
interactions, we can recognize a population of “predators” that benefits from
feeding, and a population of “victims” that suffers. In this chapter, we will
develop some simple models to give us insight into the dynamics of predation.
As in our analysis of competition, the predation equations were first derived
independently by Alfred J. Lotka and Vito Volterra. Volterra’s interest in the
subject stemmed from his daughter’s fiancé, a fisheries biologist who was try-
ing to understand fluctuations in the catch of predaceous fish (Kingsland 1985).

MODELING PREY POPULATION GROWTH

We will use the symbol P to denote the predator population and the symbol
V to denote the victim or prey population. The growth of the victim popula-
tion will be some function, £, of the numbers of both victims and predators:

av
= f(v,p) Expression 6.1

Suppose tha_t the predators are the only force limiting the growth of the vic-
tim population. In other words, if the predators are absent, the victim popu-
lation increases exponentially:

av
il Expression 6.2

with  representing the intrinsic rate of increase (see Chapter 1). This potential

for increase of the victim ion i
population is offset by losses that
tors are present: Y R Ewhen preda:

avi,.
= rV —aVPpP Equation 6.1

The term after the minus s;

ign says that Jos; i i
the product of predator an s M i Eeportiond b

d victim numbers. This is equivalent to a chemical
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reaction in which the reaction rates are proportional to the concentrations of
molecules. If predators and victims move randomly through the environ-
ment, then their encounter rate is proportional to the product of their abun-
dan.cgs. Note that we have now started recycling symbols: & is not the com-
petition coefficient from Chapter 5! Instead, here ot measures capture

var)*
the victim population.” The units of o are [victims/(victim » time « predator)].
The larger a is, the more the per capita growth rate of the victim population is
depressed by the addition of a single predator. A filter-feeding baleen whale
would have a large @, because a single whale can consume millions of plank-
ton. In contrast, a web-building spider might have a fairly low ¢ if the addi-
tion of a single web does not greatly depress prey populations. The product
aV is the functional response of the predator—the rate of victim capture by a
predator as a function of victim abundance (Solomon 1949). Later in this chap-
ter, we will derive some more complicated expressions for the functional
response, but for now we will represent it is as a simple product of victim
abundance (V) and capture efficiency (). Before we explore the solutions to
the equation for victim growth, we will develop an analogous equation to
describe the growth of the predator population.

efficiency, the effect of a predator on the per capita growth rate ( . dV)

MODELING PREDATOR POPULATION GROWTH

The growth of the predator population is affected by the numbers of both
predators and victims:

—‘;—1: =g(P,V) Expression 6.3

We use the symbol g for this function to distinguish it from the function f that
is used for the victim population in Expression 6.1. )

The predator we are modeling is an extreme specialist. It will feed only on
the victim population and has no alternative source of prey. C.onsequel"\ﬂy,
if the victim population is absent, the predator population declines
exponentially:

dpP__ Expression 6.4
ar =P
i i is i jvalent to the death rate
where g is the per capita death rate. (This is equiva
from thqe exponential growth model described in Chapter 1; we have changed
symbols here to avoid confusion.)

*This same capture efficiency appeared as the interaction coefficient 6 in qu.xaﬁon i.ﬁt,iu:‘here it
represented losses to predation in a pair of competitors engaging in intraguild predation.
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Positive growth occurs only when the victim population is present:

% = BVP-qP Equation 6.2

Here BVP indicates random encounters of predators and victims. f§ is a mea-
sure of conversion efficiency*—the ability of predators to convert each new
victim into additional per capita growth rate for the predator population
(%%J Its units are [predators/(predator « time « victim)]. We expect 8
to be high when a single prey item is particularly valuable, such as a moose
that is captured by wolves. In contrast, # will be low when a single prey item
does not contribute much to growth of the predator population; think of a
single seed consumed by a granivorous bird. V reflects the numerical
response of the predator population—the per capita growth rate of the preda-
tor population as a function of victim abundance.

EQUILIBRIUM SOLUTIONS

To find the equilibrium for the victim and predator populations, we set each
equation equal to zero and solve for population size. Beginning with
Equation 6.1:

0=rV-aVP Expression 6.5
rV=aVP Expression 6.6
r=aP Expression 6.7
P= é Equation 6.3

Although we tried to solve for the victim equilibrium, the solution is in terms
of P, the predator population! The important result is that a specific numb:

of predators (P) will maintain the victim population at zero growth Th?
predator level is determined by the ratio of the growth rate of the vicﬁ.;n ( ;
to the capture efficiency of the predators (o). The faster the growth ratee(s thre

*Again. th N =
C hi;:,?i cl?ex;\erei:slon efﬁv:l‘:;cy appeared as the interaction coefficient Yin Equation 5.7 of
( , Tepresen| ins ion i i i i
e gains from predation in a Ppair of competitors engaging in



0=BVP-gpP Expression 6.8

BVP=qp Expression 6.9

BV=g4 Expression 6.10
v=1

S Equation 6.4

Thus, the predator population is controlled by a fixed number of victims (V).
The greater the death rate of the predators (g), the more victims needed to
keep the predator population from declining. Conversely, the greater the
conversion efficiency of predators (8), the fewer victims needed to maintain
the predators at equilibrium. Because Equations 6.3 and 6.4 give the condi-
tions for zero growth, they represent the victim and predator isoclines,
respectively.

GRAPHICAL SOLUTIONS TO THE LOTKA-VOLTERRA PREDATION MODEL

As in our analysis of the competition model (Chapter 5), we can plot the iso-
clines for each species in state space to evaluate the joint equilibrium. Plotting
the victim population on the x axis yields a horizontal victim isocline, repre-
senting the number of predators needed to hold the victim population in
check. If the predator population is less than this number, the victim popula-
tion can increase in size, represented by horizontal arrows pointing to the
right. Conversely, if the predator population is above the victim isocline, the
victim population declines, represented by horizontal arrows pointing to the
left (Figure 6.1).

Similar reasoning applies to the analysis of the predator isocline. This iso-
cline is a vertical line, representing a critical size of the victim population. To
the left of the isocline, there are not enough victims to support the predator
population. In this region of the state-space graph, the predator popt.)lation
declines, represented by downward-pointing vertical arrows. To the nghf of
the isocline, there is an excess supply of victims, and the predator population
increases, represented by upward-pointing vertical arrows (Figure 6.2).
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Figure 6.1 The victim isocline in state space. The Lotka-Volterra predation model
predicts a critical number of predators (/) that controls the victim population. If
there are fewer predators than this, the victim population increases (right-pointing
arrows). If there are more predators, the victim population decreases (left-pointing
arrows). The victim population has zero growth when P =r/c.

dp/dt=0.] I

Number of predators (P)
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Figure 6.2 The predator isocline in stat i
precits a critica et of vt e space. The Lotka-Volterra predation model

| nu C 4/P) that controls the predat: i

there are fewer victims than this, the predator population dl:creas:; (Ft’j(:f\)n‘rﬂnavsl::i.\“

E‘lnntmgd arrows). If there are more victims, the predator population increase )
pward-pointing arrows). The predator population has zero growth when 5: a/B
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Fn our analysis of competition models, there were four ways that the pair
of 1soc}mes could be placed in the state-space graph. For the predation model,
there is only one possible pattern: the isoclines cross at 90° angles (Figure 6.3).
However, we will see that the dynamics are more complex than in the com-
petition model.

The predator and victim isoclines divide the state space into four regions.
Beginning in the upper right-hand corner, we are in a region where both
predator and victim are abundant. Because we are to the right of the predator
isocline, prey are abundant enough for the predator to increase. However, we
are above the horizontal victim isocline. Consequently, there are too many
predators, and the victim population declines. The vector of net movement
points towards the upper left-hand quadrant. As the victim abundance con-
tinues to decline, we cross the vertical isocline into the upper left-hand region
of state space.

Now the victim population has declined to the point where the predator
population can no longer increase. Both predator and victim populations
decrease, and the vector moves into the lower left-hand quadrant. In this
region, the predator population continues to decline, but the victim popula-
tion starts to increase again. The net movement is down and to the right, tak-
ing the trajectory into the fourth quadrant. Here, the victim population con-

/| N

Numbers of victims (V)

rla

Number of predators (P)

Figure 6.3 The dynamics of p;'edator and victim popuﬁﬁc_ms u‘\n tl:;:el.‘ﬁtﬁk;—e\rl‘(:lherra
m%del The vectors indicate the trajectories of the pop au(;rkaise g
region;‘. of the state space. The populations trace a countercloc p

approximates an ellipse.
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but it has now become large enough for the predators to also

tinues to grow, ‘ i
back to the starting point, the upper right-

increase. The system again moves

hand quadrant. ) o
Thus, the predator and victim populations trace’an approximate ellipse in

state space. Unless the predator and victim populations are precisely at th.e
intersection of the isoclines, their trajectories will continue to move in this
counterclockwise ellipse.

How does this ellipse translate into growth curves for the predator and
victim populations? Both populations cycle periodically, increasing and
decreasing smoothly from minimum to maximum. The ellipse indicates that
the peak of the predator population occurs when the victim population is at
its midpoint, and vice versa. In other words, the peaks of the predator and
victim populations are displaced by one-quarter of a cycle (Figure 6.4).

What would happen if the predator and victim populations had a different
starting point in the state space? This would correspond to different initial
abundances of predator and victim, and a new ellipse would be traced. Both
populations would again exhibit cycles, although with a different amplitude.
The dloser the ellipse is to the isocline intersection, the smaller the amplitude
of the predator and victim cycles. Thus, the Lotka-Volterra cycles are neu-
trally stable—the amplitudes are determined solely by the initial conditions.

There are only two exceptions to population cycling: (1) if the victim and
predator populations are precisely at the isocline intersection, they will not

Time (t) .

Figure 6.4 Cycles of predators and victims in the Lo
4 : y tka—Vi
;tg): cyc_lez w; th an amplitude that is determined by the sotlatxe':’tl:il::grrl.;(o)deullial;:iaCh o
e lalg:;g of approximately 27/v/rg. The predator and victim jols] pl.1lati selans
vict?im 13,1 one-quarter of a cycle, so that the predator Ppopulation 4 ks When
Population has declined to half its maximum, and vice versa peaks when the
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chal_'lge, although if they are dis;
btegln cycling; or (2) if the star
hit one of the axes of the state

.placed'any distance from this point, they will
ting point of the ellipse is too extreme, it will
-Space graph. I.n this case, the amplitude of the

c-2r
NG| Equation 6.5

Thus, the greater the prey growth rate (r) and/or the predator death rate ()
the faster the populations cycle between high and low values. The essenﬁai
feature (_)f the Lotka-Volterra predation model is that the predator and victim
populations cycle because they reciprocally control one another’s growth.

Model Assumptions

The Lotka—Volterra predation model carries with it the standard assumptions
of no immigration, no age or genetic structure, and no time lags. In addition,
the model makes the following assumptions about predators, victims, and
the environment:

v Growth of the victim population is limited only by predation. Equation
6.1 shows that the victim population grows exponentially in the absence
of the predator.

v The predator is a specialist that can persist only if the victim population
is present. Equation 6.2 shows that the predator population will starve
in the absence of the victim.

v Individual predators can consume an infinite number of victims.
Because the horizontal victim isocline (dV/dt = 0) implies a constant
number of predators, each predator must be able to increase its con-
sumption as the victim population increases in size. An infinite capacity
for consuming prey also implies that there is no interference or coopera-
tion among predators.

v Predator and victim encounter one another randomly in an homogenous
environment. The interaction terms (VP and BVP) imply that predla—
tors and victims move randomly through the environment, and that vic-
tims do not have spatial or temporal refuges for avoiding predators.



134 CHAPTER & PREDATION

Model Variations
tion model is cycles of

The unique prediction of the Lotka-Volterra preda cl
predator and victim populations. However, these cycles are very sensitive to
the restrictive assumptions and linear isoclines of the model. In the follow-
ing sections, we will incorporate more realistic assumptions about pre:%ators
and victims that bend the isoclines and produce other dynamics. We will not
solve the equations for these more complex models, although we will ana-
lyze their behavior with state-space graphs.

INCORPORATING A VICTIM CARRYING CAPACITY

The victim isocline tells us how many predators are needed to hold the vic-
tim population in check. Notice that as we move to the right in the state-
space graph (Figure 6.1), the same number of predators will control the vic-
tim population. This is not realistic. We expect that as the victim population
becomes more crowded, it will start to be limited by other resources that
have nothing to do with predators. We can modify the victim isocline to
incorporate a victim carrying capacity by including another term with a new
constant c:

U 2 ‘
L.T =rV-aVP-cV? Equation 6.6

Now the growth of the victim population is decreased by the presence of
predators (aVP) and by its own abundance (cV?). When graphed in the state
space, this new isocline is a straight line with a negative slope, in contrast to
the horizontal victim isocline of the simple Lotka-Volterra model. The new
isocline crosses the x axis at r/c, which is the maximum population size
achieved by the victims when no predators are present. In the absence of
prgdators, Equation 6.6 is equivalent to a model of logistic population growth
with a carrying capacity K = r/c (Equation 2.1).

How does the interaction of predator and victim change when the victim
poPulaﬁon is limited by its own carrying capacity? Figure 6.5 shows that the
trajectory for the predator and victim populations spirals inwards to the equi-
librium intersection. This is a stable equilibrium point, and the equilibrium
abundance for the victim population is lower when the predators are present
t!wan when they are absent. The presence of a victim carrying capacity stabi-
hzes'th.e predator-prey interaction. This makes intuitive sense—if the victims
are limited by factors other than their predators, then there would be less of
tendency for the two populations to cycle. e
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Number of predators (P)

Number of victims V) /e

.Figmje 6.5 The effect of a victim carrying capacity on the victim isocline. The victim
isocline slopes downward with a carrying capacity incorporated. The intersection
with the vertical predator isocline forms 3 stable equilibrium point.

MODIFYING THE FUNCTIONAL RESPONSE

One of the most unrealistic assumptions of the Lotka-Volterra predation
model is that individual predators can always increase their prey consump-
tion as the victim population increases. This type of foraging is illustrated in
a graph of the functional response (Figure 6.6), which plots the rate of prey
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.6 The functional response of predators is the feeding 3
zf:r;of-l of pr:y abundance. 'IEhe shape of these curves depends on the capturi effi
ciency (a), the maximum predator feeding rate (k), and the victim abundance for
which the predator feeding rate is half of the maximum (D).
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captured per individual predator (n/t) as a function of prey abundan'ce V).
The Lotka—Volterra model assumes a Type | functional response, in which the
predator consumes more as prey abundance increases (Holling 1959). The
slope of this curve is o, the capture efficiency.

A Type I functional response is unrealistic for two reasons. First, predators
will eventually become satiated (stuffed) and stop feeding. Second, even in
the absence of satiation, predators are limited by the handling time (1) needed
to catch and consume each prey item. Consequently, there is a limit to the rate
at which individual predators can process prey.

We can construct a more realistic Type Il functional response by modeling
the components that contribute to feeding rate (1/¢), the rate at which indi-
vidual predators capture prey (Royama 1971). The total amount of time that
a predator spends feeding () is the time spent searching for the prey (t;), plus
the time spent “handling” or consuming the prey (t;):

t=ts+ty Expression 6.11
If we let  equal the number of prey items captured in time ¢ and h equal the
handling time per prey item, the total handling time is:
ty=hn Expression 6.12

Similarly, we can derive an expression for the search time. The total number
of prey captured by a predator (n) is simply the product of the victim abun-
dance (V), the capture efficiency (@), and the total search time (t;):

n=Vat, Expression 6.13
We can rearrange this to give us an expression for the search time:
b= E i
s = o7 Xpression 6.14

Substituting Expressions 6.12 and 6.14 into 6.11, we have:

_.n
t= ov thn Expression 6.15

Multiplying the second term by (aV/aV) gives:

t=_1_, 0Vhn
vt o Expression 6.16
= 1+aVh ey
t= n(—W) Expression 6.17

Finally, thi i
y, this can be rearranged to give us an expression for the feeding rate (n/f):
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o)A =
n/t= T Equation 6.7

Equation 6.7 describes the feeding rate per predator as a function of the cap-
ture efficiency, the victim abundance, and the handling time. Note that if the
victim abundance is very low, the term aV# in the denominator is small, so
the feeding rate is close to aV, as in the simple Lotka-Volterra model. But as
the victim abundance increases, the feeding rate approaches a saturation
value of 1/h. This value represents the maximum feeding rate that the preda-
tor can achieve because of the constraints of handling time. Equation 6.7 is
sometimes referred to as the “disc equation” because it fits data from an
experiment in which human subjects were blindfolded and required to find
and pick up small discs of sandpaper scattered on a flat surface.

We can simplify Equation 6.7 somewhat by letting k = 1/h, the maximum
feeding rate. We can also define the constant D as 1/ah. This value turns out
to be the half-saturation constant, which is the abundance of prey at which
the feeding rate is half-maximal. If we first multiply the numerator and
denominator of Equation 6.7 by 1/ah, we have:

aV.

ah .
n/t= —m Expression 6.18
oh

ah
Substituting in the two new constants k and D yields:

kv
D+V

n/t= Equation 6.8

This Type II functional response increases to a maxi.rm.m'l and constant rate
of prey consumption per predator (k). The half-sat-urat.lon constant (D) con-
trols the rate of increase to this maximum. This equation is identical to the
Michaelis-Menten equation of enzyme kinetics (Real. 1977).

Finally, a Type I}l functional response can be described by:

kv? Equation 6.9
s —a——3
D

For a Type Il functional response, the feeding rate also reaches an asymptote

at k, but the curve has a sigmoid shape, similar to the logistic curve (see

Chapter 2) Consequently, the feeding rate is accelerated at low prey density,

but decreases at high prey density as the asymptote is reached (Figure 6.7).
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Figure 6.7 Type 1, Type II, and Type IIl functional responses.

This functional response can occur if predators switch to prey items that
become more common, if they develop a search image that increases capture
efficiency as victim abundance increases, or if there are fixed and variable
costs to foraging (Holling 1959, Mitchell and Brown 1990).

The functional response has important consequences for the ability of
predators to control victim populations. Figure 6.8 shows the proportion of
the prey population that is consumed by an individual predator as victim
abundance increases. For the Type I response of the simple Lotka—Volterra
model, this proportion remains a constant, because each predator increases its

Proportion of victim
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m
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Figure 6.8 The proportion of the victim lati
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predator as a function of victim abunda.nl:::oel.:,u e FOTReC Sy mn o dug]
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individual feeding as victim abundance increases. For the Type II response,
the proportion decreases steadily because each predator can only process prey
at a maximum rate k. The Type IIl response shows an initial increase because
of the accelerated feeding rate, but this quickly decreases and converges on
the Type I curve. These curves show that, at high victim abundance, preda-
tors with a Type II or Type III response may not be able to effectively control
victim populations. Control is possible with the Type Il response, but only at
relatively low victim abundance. In contrast, the Type I functional response
ensures effective control over all levels of victim abundance.

Incorporating a Type II or Type III functional response into the equation
for the victim growth rate gives:

({T\I/ =rV —( \.}‘l/D P Equation 6.10

v _ v (k2 _p

= = 3 Equation 6.11
dt \v2+D?)

Figure 6.9 shows that the isoclines for these growth equations increase in the
state space, with an upward swing at low victim abundance for the Type 1l

A

N

Number of predators (P)

i Number of victims (V)

1 soclines incorpora ga lype ora ypeIlI(-unc onal response.
Flgure 6.9 Victim i lin tin I NoraT i |}

generates an unstable equilibrium point.
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functional response. Because each predator is limited by a maximum con-

sumption rate, more predators are required to hold large victim pop}xlaﬁons at
zero growth. When these increasing victim isoclines intersect a V'erflcal Rreda-
tor isocline, the equilibrium is unstable, and the predator and victim will not

coexist.

THE PARADOX OF ENRICHMENT

The victim isocline may also increase because of an Allee effect (see Chapter
2) for the victim population. If larger victim populations are more effective
at reproducing, obtaining food, or defending themselves from predators,
more predators would be needed to control the prey population. Because of a
victim carrying capacity, predator functional response, Allee effects, aAﬂd a
variety of other reasons, the victim isocline may have a hump in the middle
(Rosenzweig and MacArthur 1963), turning downward at both low and high
prey densities.

How does this more realistic victim isocline affect predator-prey dynam-
ics? The answer depends on precisely where the vertical predator isocline
intersects the victim isocline. If the intersection is at the peak of the victim
isocline, the predator and victim populations will cycle as in the simple
Lotka-Volterra model (Figure 6.10a). However, if the predator isocline cross-
es to the right of the hump, the predator and victim populations converge on
a stable equilibrium point, without population cycles (Figure 6.10b). In this
case, the predator is relatively inefficient. Thus, from Equation 6.4, the preda-
tor population has a relatively high death rate (§) and/or a low conversion
efficiency (B). In contrast, if the predator is relatively efficient (low g and/or
high f), the isoclines intersect to the left of the hump. In this case, the equi-
librium is unstable. The predator population will overexploit the victim pop-
ulation, drive it to extinction, and then starve (Figure 6.10c).

This instability due to a relatively efficient predator has been termed the
paradox of enrichment (Rosenzweig 1971). The paradox may explain why
some artificially enriched agricultural systems are vulnerable to pest out-
breaks. Suppose the “victim” population is a crop plant that coexists in a sta-
ble equilibrium with a “predator” population of an herbivorous insect. If the
productivity of the crop plant is increased with fertilizers, the victim isocline

Figure 6.10 (a) Predator-prey cycles with a humped isocling i

Volter_ra ‘model, the predator and victim populatigns Eyrfl}:a as lon; £ S;:hut; ;k:'idlﬁt)l(l'a
and victim isoclines are perpendicular where they intersect. (b) If the predator is rel-
atively !Illefflclent,' the predator isocline intersects to the right of the peak of the vic-
tim isocline. In this case, predator and victim coexist in a stable equilibrium. (c) If
the lp:re:fd&ltor Is relatively efficient, the predator i i
peak of the victim isocline. In thit i

Fmadizioes W Ss; ac:t]seeé.r.he predator overexplojts the prey popula-
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Number of predators P)

K K
Number of victims (V)

i 6.11 The paradox of enrichment. If the victim population has its carrying
:;%uar;ty enhance]zl from K to K’, the system moves from a stable equilibrium to over-
exploitation by the predator.

may shift to the right to a new, higher carrying capacity (Figure 6.11). If the
predator isocline remains stationary, the dynamics may shift from a stable
equilibrium to an unstable outbreak of the “pest.” This paradox depends on
the unrealistic assumption of a strictly vertical predator isocline. More realis-
tic predator isoclines, described later in this chapter, may enhance stability of
predator and prey over a wider range of victim abundances (Berryman 1992).

INCORPORATING OTHER FACTORS IN THE VICTIM ISOCLINE

The victim isocline may also turn upward at low victim abundance, generat-
ing different population dynamics. There are at least three reasons for an
upturn of the victim isocline. First, the isocline will turn up if there is a fixed
number of victim refuges that are secure from predators. For example, fish
that live in rock crevices and songbirds that establish territories in areas pro-
tected by cover have spatial refuges from predation. In this case, no matter
how large the predator population gets, the victim population can always per-
sist at low abundance in the refuges. Second, the victim isocline may turn
upwards if there is a constant number of vicim immigrants that arrive each
generation. With immigration, the victim population always has the potential
to increase at low numbers. Finally, the isocline may turn upward at low vic-
tim abundance because of a Type III functional response, as explained earlier.
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Number of predators (P)

Number of victims (V)

Figure 6.12 Cycling of predator and victim populations because of victim refuges. If
there are spatial refuges from predation, the victim isocline becomes vertical at low
victim abundance. In this case, the efficient predator cannot overexploit its prey, and
begins to starve once all the victims outside of the refuges have been consumed.
After the predator population declines below a certain point, the victim population
begins to increase again, repeating the cycle.

This upward turn of the victim isocline has the potential to stabilize preda-
tor—prey interactions. For example, suppose that the predator is relatively
efficient, but there is a victim carrying capacity and there are refuges from
predation for the victim population (Figure 6.12). In this case, the predators
quickly consume all the available victims, as in the destabilized case (Figure
6.10c). But once all the victims outside the shelters are consumed, the preda-
tor population begins to starve, and its abundance declines. When the preda-
tor population declines below a certain point, the victim population in the
refuges starts to increase, and the cycle repeats itself. In contrast to the simple
Lotka-Volterra model, these cycles are stable, because no matter what the
starting density, the predator population will eventually consume all the vic-
tims not in refuges, and the cycle will repeat.

MODIFYING THE PREDATOR ISOCLINE
We can also modify the vertical predator isocline to make it more realis.tic.
These modifications involve changes in the numerical response of Equation
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of the victim Population ac| i
o v ts as a carrying caj acity for th da-
socline increases with increasin, g victim agunganlce. or e pre

gnzed‘:::;hrr‘:)lclil :)e described qualitatively. For example, the Lotka-Volterra
size if there is aena:::m ” fth he Pl'.edator population ezt alitays tncoeasein
e preclate o t:ss ohapr.ey available. I.t is more Feahstic to suppose that
limirad b thp f; ation has its own carrying capacity, so that its growth is

. by other actors. A carrying capacity for the predator bends the preda-
tor isocline to the right (Figure 6.13a).

Anoth?r un.rea!istic assumption of the Lotka-Volterra model is that the
predatoxt is a specialist on the victim. Suppose instead that the predator has
alternative prey sources. Then, when the victim population becomes less
abundant, the predator population can continue to increase by feeding on
other prey items. This will tip the predator isocline towards the horizontal at
low prey abundance (Figure 6.13b). Thus, with alternative prey and a preda-
tor carrying capacity, the predator isocline can shift from vertical to horizon-
tal. As we noted earlier, the availability of other prey may shift the victim iso-
cline as well.

As an intermediate case, suppose that the size of the victim population
determines the size of the predator population. In other words, the victim
population functions as a “carrying capacity” for the predators. In this case,
the predator isocline will be a line with a positive slope, intermediate
between the vertical isocline of the Lotka—Volterra model and the horizontal
isocline of a predator with an independent carrying capacity and alternative
prey (Figure 6.13c).

How will these alterations of the predator isocline affect the stability of the
model? As a general rule, anything that rotates either the predator or the vic-
tim isocline in a clockwise direction will tend to stabilize the interaction,
whereas anything that rotates the isoclines counterclockwise will be destabiliz-
ing. These rotations can be compared to the neutral stability of a horizontal
victim isocline and a vertical predator isocline in the Lotka-Volterra model
(Figure 6.14). For example, giving the victim population a carrying capacity
rotates the victim isocline clockwise, leading to a stable equilibrium on the
right side of the hump (Figure 6.10b). But adding predator satiation rotates
the victim isocline counterclockwise at low abundances, leading to an unsta-
ble equilibrium on the left side of the hump (Figure 6.10c). Rotating the
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Figure 6.14 Effects of rotating the predator and victim isoclines on the stability of
the equilibrium. Relative to the neutral equilibrium of the Lotka-Volterra model,
clockwise rotations of the isoclines lead to more stable equilibria; counterclockwise
rotations lead to less stable equilibria.

predator isocline also increases the stability of the interaction. Whereas a ver-
tical predator isocline generates population cycles in a neutral equilibrium,
an increasing predator isocline generates damped cycles, and a horizontal
predator isocline generates a stable equilibrium point (Figure 6.15).

These geometrical rules make intuitive biological sense. The more inde-
pendent the predator and prey are of one another, the more stable the inter-
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Figure 6.15 Effects of clockwise rotation of the isocli
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.actlo.n. F'or example, suppose the victim isocline is vertical and the predator
isocline is horizontal (Figure 6.14). In this case, the carrying capacities of the
pred.ator and victim are completely independent of one another, and both
species coexist in a very stable equilibrium. Cycles are difficult to generate
with simple predator-victim models, and require a special dependence of

predator and victim populations upon each other, as in the original Lotka—
Volterra model.

Empirical Examples

POPULATION CYCLES OF HARE AND LYNX

The basic prediction of the Lotka-Volterra model is the regular cycling of
predator and prey populations. The most famous example of this cycling is
the case of the Canada lynx (Lynx canadensis) and its principal prey, the snow-
shoe hare (Lepus americanus). The ecologist Charles Elton analyzed fur-trap-
ping records from the Hudson’s Bay Company in Canada and found a long-
term record of population cycles (Elton and Nicholson 1942). The major
source of hare mortality is predation (Smith et al. 1988), and the hare popu-
lation cycles with a peak abundance approximately every 10 years (Figure
6.16). The lynx population is highly synchronized with the hare and usually
peaks one or two years later. These are not the only prey and predator species
that cycle in the boreal north. Populations of muskrat, ruffed grouse, and
ptarmigan exhibit 9 to 10 year cycles, whereas smaller herbivores such as
voles and lemmings cycle with peaks every 4 years. Predators such as foxes,
mink, owls, and martens also cycle synchronously with their prey.

What is the explanation for the striking hare-lynx cycle? An early sugges-
tion that the hare cycles were correlated with sunspot activity was dismissed
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i 16 One-hundred-year record of population cycles o
(nges z?rr:eﬁrimn:s) and the ()Eanada lynx (Lynx canadensis), based on pelt records of
the Hudson’s Bay Company in Canada.
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because sunspot activity peaks every 11 years, whereas the hare c)’d‘: hl:
approximately 10 years in length (Moran 1949). For manydyears, !
hare-lynx cycle was the classic textbook example of predator and prey p tr—
ulations that cycled according to the Lotka—Volterra mf)del. More rece;'\ Y,
ratio-dependent predator—prey models have beeg applied to th'e hare-lynx
data (Akgakaya 1992). These models are based on the aSSLI'mPhOn that the
functional response of the predator depends not simply on victim abuxluliance
(V), but on the ratio of prey to predator abundance (V/P) (Arditi and
Ginzburg 1989). .

Unfortunately, two additional pieces of data complicate the story. First, the
hare-lynx cycles seem to be broadly synchronized within a year or two over
wide areas of North America (Smith 1983). If the predator-prey models were
correct, we would expect cycles of different amplitude and period to arise in
different local populations. Second, there are places on the coast of British
Columbia and on Anticosti Island, Quebec, where there are no lynx, but the
hare population cycles nonetheless!

These results suggest that the hare and Iynx do not reciprocally influence
each other. Instead, the lynx population is probably “tracking” the hare cycle.
The hare cycle seems to be caused, in part, by interactions with its food supply.
Heavily grazed grasses produce shoots with high levels of toxins that make
them less palatable to hares (Keith 1983). This chemical protection persists for
two or three years after grazing, further contributing to the hare decline. A sin-
gle-species logistic model with a time lag (see Chapter 2) would qualitatively
describe this sort of cycle. However, as most hares die of predation, not star-
vation, food quality probably contributes to their susceptibility to predation.

Finally, recent evidence again suggests that sunspots may indeed con-
tribute to the cycles. Sunspot activity is associated with hare browse marks
in tree rings and with periods of low snow accumulation (Sinclair et al. 1993).
?unspot activity may serve as a phase-locking mechanism through indirect
influences on climate and plant growth. These broad climatic effects could be
responsible for the synchrony of hare-lynx cycles over large areas of Canada
and ll\laska. However, the degree of synchrony among continents is current-
z:;mg debated (‘Ran.ta.et al. 1997; Sinclair and Gosline 1997). Whatever the

ate explanation, it is clear that the hare-lynx cycle is more complex than

suggested by the superficial match of the data to the simpl dicti
the Lotka-Volterra model. TPl predictions of

POPULATION CYCLES OF RED GROUSE

Interactions between hosts and parasites re ial ki
ntera ; n hos present a special kind of “preda-
Eon in which the life history of the predator is intimately tied to thalt”oef its
ost. Whereas most predators benefit from rapidly killing and consumin,
their prey, a parasite must keep its host alive at least long enough to successg-
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fully reproduce and infect a new host. To understand

ics of hosts and Pparasites, the population dynam-

we must therefore model the dynamics of the egg
2;};1;:;5{3%)55 as well as those of the host and the adult parasite (Anderson
e : xg:;:gﬁﬁﬁ:;;ﬁ%ﬁ:}:eﬁ hc-iomgalexities is the case of the parasitic
L , which infects red grouse (Lagopus lagopus
scoticus) on the moors of England and Scotland. Adult worms inhabit the large
caeca of red grouse, and their eggs pass out of the host with the feces. If the
environment is warm and moist, the eggs hatch and develop into a larval stage.
The larval nematode moves to the growing tips of heather plants, where it is
consumed by a new host, and the life cycle repeats itself. A single bird may be
host to over 10,000 worms. As the intensity of the parasite infection increases,
winter mortality, egg mortality, and chick losses all increase (Figure 6.17). Thus,
T. tenuis has the potential to regulate the population growth of red grouse.
Because red grouse are an important game bird in England and Scotland,
there are detailed records on its population dynamics and the prevalence of
parasite infection (Hudson et al. 1992). Figure 6.18 shows a 14-year record of
host and parasite populations at Gunnerside, North Yorkshire. The red
grouse population cycles, with a period of approximately 5 years. Parasite
burden (number of worms per host) also cycles, with peaks occurring near
the low point of the red grouse cycle.
Even a relatively simple model of the grouse-nematode interaction requires
a minimum of three differential equations: one for the host (H), one for the
adult worms (P), and one for the free-living egg and larval stages (W; Dobson
and Hudson 1992). The growth of the host population can be modeled as:

%— =(b-d-cH)H - (o +8)P Expression 6.19
The first term [(b - d — cH)H] represents the growth of the red grouse popu-
lation in the absence of the parasite. The constants b and 4 represent intrinsic
birth and death rates, and cH is a density-dependent term. The first part of
this equation is really a model of logistic growth, with a carrying capacit){ of
[(b - d)/c). A finite carrying capacity is realistic for the grouse population
because the birds are territorial. The second part of the equation [(a + 8)P)
represents the losses due to parasites. o is the reduction in host popu]atio.n
growth due to effects of the parasite on the survivorsl'.\.ip of grouse, and 5'15
the reduction due to parasite effects on the reproduction of grouse. We dis-
tinguish between these two mechanisms because & and & appear separately
in other equations in the model. » .
Next, we write an equation for the growth rate of the free-living stages:

d_dvt! = AP—yW - BWH Expression 6.20
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Figure 6.17 Effects of parasite load on (a) the winter mortality, (b) egg mortality,
and (c) chick losses of red grouse (Lagopus lagopus scoticus). The x axis is the average
parasite load (worms per host), and the y axis is the proportional mortality caused
by each factor. Because the nematode Trichostrongylus tenuis reduces both the sur-
vivorship and reproduction of red grouse, it has the potential to regulate host num-
bers. (From Hudson et al. 1992.)

~

Here, A is the per capita fecundity of the parasite in the host, yis the death rate
of the egg and larval stages in the field, and BWH is the rate at which larvae
are transmitted to new hosts. Note the similarity of this latter expression to the
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Figure 6.18 Changes in red grouse (Lagopus lagopus scoticus) densi i

per square kilometer) and mean parasite load ‘(g\iﬂ)rms per h)ost) ovteyr (}341\;eeda£gai1ens
Gg.nnersu:l_e, North Yorkshire. Both the grouse and the nematode populations cycle
with a period of approximately 5 years. Note the logarithmic scale on the y axis.
(From Dobson et al. 1992; data from Hudson et al. 1992.)

”@dom encounter” term in the Lotka-Volterra model (Equations 6.1 and 6.2).
Finally, we can describe the dynamics of the adult worm population as:

2

‘;_}: =pWH-(u+d+a)P-a % (%) Expression 6.21
The first term (BWH) represents the increase in the adult worm population
from transmission. This is equivalent to the loss component of the egg-larva
population. The second term [(u + d + )P] represents decreases in growth of
the worm population due to parasite death (u), intrinsic host mortality (d),
and host mortality from parasitism (). The final term, [a(P2/H)][(k + 1) /k],
represents losses due to the spatial dispersion of the worms among hosts. The
constant k describes the distribution of worms among hosts. The smaller k is,
the more aggregated the worms are in a few hosts. Aggregation will tend to
decrease the growth of the worm population as the few heavily infected hosts
die and take their parasites with them! In contrast, if the worms are distrib-
uted randomly or evenly among hosts, the growth rate of the parasite popu-
lation is increased.

With ten different parameters in the model, there are a variety of possible
outcomes. If parasite and host fecundity are not high enough, the pa1tasite
will go extinct, and the grouse population will rise to its carrying capacity. If
the larval life of the parasite is relatively short, the grouse and parasite pop-
ulations will coexist in a stable equilibrium. But if the larval and egg stages



188 CHAPTER 6: PREDATION

are fairly long-lived, the model generates stable cycles of host and parasite
populations. Cycles in this model arise when /8 > k. In other words, the
ratio of parasite effects on survivorship (@) to parasite effects on reproduc-
tion () must exceed the degree of parasite aggregation among hosts (k).

Field data were used to independently estimate the parameters of
Expressions 6.19-6.21. The resulting model predicted population cycles with
a period of approximately five years, which was observed at Gunnerside
(Dobson and Hudson 1992). The model also provides insight into other
grouse populations in England and Scotland. Not all grouse and nematode
populations cycle, and these noncycling populations are in areas of relatively
low rainfall (Hudson et al. 1985). Under these circumstances, the survival of
eggs and larvae outside of the host is poor, and the model does not predict
cycles.

The interaction of red grouse and its nematode parasite is one of the few
well-documented cases of a predator and victim that cause each other’s pop-
ulations to cycle. However, the biology of the system is considerably more
complex than that described by the simple Lotka~Volterra model. Models of
host-parasite interactions have also been used to predict the dynamics of HIV
(the AIDS virus) that infects humans.
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Problems

6.1.

6.2,

*6.3.

*6.4.

Suppose that spider and fly populations are governed by Lotka-Volterra
dynarmics, with the following coefficients: 7 = 0.1, q=0.5,00=p=0.001.If
the initial population sizes are 200 spiders and 600 flies, what are the
short-term population dynamics predicted by the model?

Suppose that hawk and dove populations cycle with a peak every 10

years, and r = 0.5. If  is doubled in size, what happens to the period of
the cycle?

Draw the state-space graph for a predator isocline with a carrying capac-
ity and alternative prey, and a victim isocline with a carrying capacity
and an Allee effect. Discuss predator-prey dynamics at the two intersec-
tion points.

You are studying an insect-eating bird with a Type II functional response
for which k = 100 prey/hour and D = 5.

a. What is the capture efficiency, a?

b. If the prey abundance is 75, what is the feeding rate (n/1)?

* Advanced problem
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Figure 7.1 (a) Species-area relationship for breeding land-birds of the West Indies.
Each point is a different island. Note that species number increases rapidly for small
islands, but more slowly for large islands. (Data from Gotelli and Abele 1982.) (b)
Logarithmic (base 10) transformation of the species—area relationship. The data in
(a) have been plotted on a double-log plot. The best-fitting power function is shown
by the straight line log(S) = 0.942 + 0.113 log(A). Equivalently, the power function

is § = 8.759(A)0 113,
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The area of an island is not the only factor that affects species richness.
Figure 7.2 shows the effects of distance on species richness for birds of the
Bismarck Islands in the tropical Pacific. New Guinea serves as the probable
“source pool” for these islands, because all of the bird species found on the
Bismarck Islands are a subset of the New Guinea avifauna. The x axis of this
graph gives the distance from each island to New. Guinea. The y axis shows
the observed number of species divided by the number expected for a “near”
island (< 500 km from New Guinea) of comparable area. You can see that rel-
ative species richness decreases with increasing distance from the source
pool. In general, species richness is reduced for communities in small or iso-
lated areas. In the following sections, we develop several models that attempt
to explain the area effect (more species on large islands than on small islands)
and the distance effect (more species on near islands than on far islands).

THE HABITAT DIVERSITY HYPOTHESIS

The most straightforward explanation for the species-area relationship is that
large islands contain more habitat types than small islands. Therefore, species
that are restricted to certain habitat types may occur only on large islands with
those habitats. The species-area relationship for West Indian land-birds can be
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Figure 7.2 Distance effects for birds of the ismarck Archipelago. The x axis ves the
distance from each island to New Guinea, the Presumed source pool. The Y axis shows

the observed species richness divi
fhe ob F vided by the expected species ri “ i
island (< 500 kilometers from New Guinea) of cg:pmakﬁieﬁégisg;;oﬁga{m )
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explained, In part, by this phenomenon. The largest islands in the chain are the
Qreater Antilles (Puerto Rico, Cuba, Hispaniola, and Jamaica). These islands
uTclude many unique habitat types, such as extensive swampland (Cuba) and
.}ugh-elevahon pine forest (Hispaniola), that do not occur on any of the smaller
islands. Habitat specialists such as the Zapata wren of Cuba (Ferminia cerverai)
and the white-winged crossbill of Hispaniola (Loxia leucoptera) occur only in
these particular habitats. Intermediate-sized islands, such as Guadeloupe and
St. Lucia, are steep volcanic plugs that have fewer habitats and species than
islands of the Greater Antilles. Some of the smaller islands, such as Antigua
and Barbuda, are flat coral atolls, They are arid islands with structurally simple
vegetation, and they support even fewer bird species.

Although habitat diversity can account for many species—area relation-
ships, it is not always the correct explanation. For one thing, most species are
not extreme habitat specialists, and their distribution may not always be lim-
ited by available habitat. In addition, there are many examples of species—
area relationships in which there is little, if any, habitat variation. Within
patches of identical habitat, species number is still greater on large islands
than small, suggesting that other forces may be at work. In the next section,
we develop the “equilibrium model” of island biogeography as an alterna-
tive hypothesis that accounts for the species-area relationship. Later in this
chapter, we describe a third hypothesis, the passive sampling model, which
can also explain the species-area relationship.

THE EQUILIBRIUM MODEL OF ISLAND BIOGEOGRAPHY

The equilibrium model of island biogeography was popularized by Robert H.
MacArthur (1930-1972) and Edward O. Wilson (1929-). It is sometimes
referred to as the “equilibrium model” or the “MacArthur-Wilson model.”
The model’s basic premise is that the number of species occurring on an
island represents a balance between recurrent immigration of new species onto
the island, and recurrent extinction of resident species (MacArthur and Wilson
1963, 1967). When immigration and extinction rates are equal, the number of
species is at an equilibrium. The concept is similar to thg equili!:;rium N m a
local population (Chapter 2), and to the equilibrium fraction of sites occupied
by a metapopulation (Chapter 4). )

The equilibrium model assumes there is a permanent mainland source
pool of species that can potentially colonize an island. T}}erfz are P species in
the mainland pool, and we assume for now they are all s%rmla.r to one anoth-
er in colonization and extinction potential. We define the Il'nn?lgratlon rattt, A,
as the number of new species colonizing the island per unit time. The extinc-
tion rate, y,, is the number of species already present on the 1sla;—11d.gr>mdg
extinct per unit time. The rate of change in species number on t tf is ::ax:e
(dS/dt) is the difference between the immigration rate and the extinction rate.
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Thus:

ﬁ:/lg—y; Equation 7.3
dt ; ’
First, we will define the functions for A; and /5. Next, we will set Equation
7.3 equal to zero and solve for the equilibrium number of species. Finally, we
will modify the extinction and immigration curves to account for the effects
of area and isolation on species richness.

Figure 7.3 illustrates the immigration curve for the equilibrium model. The
x axis of the graph shows the number of species present on the island. The y
axis shows the rate of immigration. The maximum immigration rate, /, occurs
when the island is empty. The immigration rate decreases as more species are
added to the island. This is because as more species are present, fewer new
species remain in the source pool as potential colonists. Finally, suppose that
all of the species in the source pool are present on the island. By definition,
there can be no further immigration, so the immigration curve crosses the x
axis at the point S = P. Thus, the immigration curve is a decreasing straight
line, with a maximum rate of I, and a minimum rate of zero, when S = P.

Remember that a straight line can be described by the equation y = a + bx,
where 4 is the intercept and b is the slope. In this case, the intercept is I, and
the slope (rise over run) is -I/P. Thus, the equation for the immigration rate is:

I
Ag=1 -(F)S Expression 7.1

As=I-(I/P)S

Immigration rate (1)

~

Number of species on island (§) "

Figure 7.3 The immigrati i
rate (number of specgf ation rate in the MacA rthur-Wilso;

ey n model. The immigrati
istand. 1es per unit time) decreases as more immigration

Species are added to the
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Now we turn to the extinction rate, (1,. We expect yi; to increase with increasing
S:. the more species present on the island, the greater the rate at which species
disappear. This relationship occurs because each species has a constant prob-
ability of disappearance, so species disappear at a faster rate when there are
more species present on the island. The maximum extinction rate, E, will
occur when all the species in the source pool are present on the island (S =
P). Conversely, if no species are present on the island (S = 0), the extinction
rate must equal zero. Thus, the extinction curve is also a straight line with an

intercept of zero, and a maximum rate of E, which occurs when S = P (Figure
7.4):

Hs= (%)5 Expression 7.2

Now that we have derived expressions for linear immigration and extinction

rates, we can substitute these into Equation 7.3 to model the change in species
richness on an island:

dS _;_(INe_(E ]
i ( P)S ( P)S Expression 7.3

The number of species on an island reaches an equilibrium when (dS/dt)
equals zero. Setting Expression 7.3 equal to zero and solving for S yields:

S(I—},E) =1 Expression 7.4

Extinction rate (i)

Number of species on island (5)

7.4 The extinction rate in the MacArthur-Wilson model. The extinction rate

: i i i ded to
E\E:lnrleber of species extinctions per unit time) increases as more species are ad

the island.
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The equilibrium number of species, §, is thus:

Sl Equation 7.4

The equilibrium depends on the size of the source pool FP) anfi. I:hs‘.* maxirmfm
immigration (1) and extinction (E) rates. Graphically, this ethbnu{n species
number corresponds to the point on the x axis beneath the intersection of the
immigration and extinction curves (Figure 7.5). At the intersection, the rate
at which new species arrive is matched by the rate at which species present
on the island go extinct.

This equilibrium point is stable. If we are below §, we are to the left of the
intersection point. In this region of the graph, the immigration rate exceeds
the extinction rate, so species number increases. To the right of the intersec-
tion, extinctions exceed immigrations, so species number declines.

Equation 7.4 shows that species richness is increased by larger source
pools and higher immigration rates, and decreased by higher extinction rates.
Note the similarity between this equilibrium and the equilibrium in the
island-mainland metapopulation model (Equation 4.4) we derived in
Chapter 4. The intersection of the immigration and extinction curves also
resembles the intersection of density-dependent birth and death rate curves
in our derivation of the logistic growth equation (Figure 2.1) in Chapter 2.

Figure 7.5 also shows that the equilibrium is characterized by a turnover
rate, which is measured on the y axis of the equilibrium graph. This turnover
rate, T, is the number of species arriving (or disappearing) per unit time at
equilibrium. T can be measured as either the extinction or the immigration
rate, because these two are equal at equilibrium. Using some simple geome-
try, we see in Figure 7.5 that:

T_E i
5D Expression 7.5
Therefore:
TP=SE Expression 7.6

Rearranging and substituting Equation 7.4 for § gives:

P
Fe (1+‘E )E
P

~

Expression 7.7
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Figure 7.5 Equilibrium species number in the MacA i i

I uilibrium I rthur-Wilson model. The inter-
section of the immigration and extinction curves determines the equjlibriumenl:m-
ber of species (5) and the turnover rate (T) at equilibrium.

TS Equation 7.5

Note that the turnover rate at equilibrium depends only on the maximum
immigration and extinction rates (I and E), not on the size of the source pool
(P). As you might expect, increasing either the maximum immigration or
extinction rate increases the turnover at equilibrium.

This turnover of island populations at equilibrium is a key feature of the
MacArthur-Wilson model. In contrast to many of the ecological models we
have studied, the MacArthur-Wilson model does not predict stable popula-
tions. Instead, there is ongoing colonization and stochastic extinction of
island populations. Species composition on the island is continually chang-
ing, although total species number remains relatively constant.

So far, we have constructed an equilibrium model of island species richness,
but we still haven't explained the species-area effect. To do so, we must incor-
porate two additional assumptions about the demography of the colonizing
species. The first assumption is that total population size for each species is
proportional to island area. In other words, the density of populations (number
of individuals per unit of area) is the same on islands of different size. The sec-
ond assumption is that the-probability of population extinction decreases with
increasing population size. This assumption follows directly from thg mc?del
of demographic stochasticity developed in Chapter 1. Bec?use- populahop sizes
will be larger on big islands than on small islands, the extinction rates will cor-

respondingly be lower on big islands.
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Figure 7.6 The area effect in the MacArthur-Wilson model. Smaller islands have
smaller population sizes, which increases the extinction rate and leads toa lower
species equilibrium. E is the maximum extinction rate for small islands; E; is the
maximum extinction rate for large islands.

Suppose we have a large island (A/) and a small island (A,) that differ only
in area, but are identical in habitat diversity and distance from the source
pool (Figure 7.6). Because both islands are equidistant from the mainland and
colonized by the same source pool of P species, they have the same immigra-
tion curve. However, maximum extinction rates on the large island (E;) are
lower than on the small island (E,) because population sizes are greater on
the large island. Because of this area effect, the equilibrium number of species
is greater on the large island, with a lower rate of turnover.

We can also account for the distance effect by modifying the immigration
curves for near and distant islands. Suppose two islands have identical areas
and habitats, but differ in their distance from the source pool (Figure 7.7).
Because the areas are equal, the two islands have the same extinction curve.
But the maximum immigration rate will be higher on the near island (I,) than
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Rate

,ﬂ ¥
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n
Number of species on island (S)
Figure 7.7 The distance effect in the MacArthur-Wilson model. Islands that are dis-
tant or xsol.jited from the source pool have a reduced immigration rate, leading to a
lower species equilibrium. I,, is the maximum immigration rate for near islands; I/ is
the maximum immigration rate for far islands.

on the far island (I). Consequently, the near island will have more species at
equilibrium than the far island. The near island will also be characterized by
greater turnover than the far island.

Thus, island species richness in the MacArthur-Wilson model is uniquely
determined by the geometry of an island—its area determines the extinction
rate, and its distance or isolation determines its immigration rate. The inter-
section of these two curves controls the equilibrium number of species and

the turnover rate.

Model Assumptions

Although the equilibrium model predicts patterns of species richness, its
underlying assumptions are at the population level. These assumptions are:



v An island potentially can be colonized by a set of P source pool species
that have similar colonization and extinction rates. Thl'S assumption
implies that the species in the source pool a'nd on the 1slan.d are not
undergoing any evolutionary change that might alter colomz.a‘nop or
extinction rates. Thus, like most ecological models, the equ{llbnum
model does not incorporate evolutionary mechanisms or historical con-
straints that might influence species richness.

v The probability of colonization is inversely proportional to isola tiqn or
distance from the source pool. Isolated islands have shallower immigra-
tion curves than non-isolated islands. All other things being equal, this
lowers the equilibrium number of species (see Problem 7.2).

v The population size of a given species is proportional to the area of the
istand. In other words, the density of each population (number of indi-
viduals/area) is constant throughout the archipelago. Alternative mod-
els (Schoener 1976) assume that competitive interactions are important,
so that both island area and species richness influence population size.

v The probability of a population becoming extinct is inversely propor-
tional to its size. Although the equilibrium model does not explicitly
forecast population sizes, this assumption incorporates the idea that
demographic stochasticity (see Chapter 1) increases the risk of extinc-
tion at small population sizes. This assumption and the previous one
ensure that extinction curves are steeper for small islands than they are
for large islands, leading to a species-area curve.

v Colonization and extinction of local populations is independent of species
composition on the island. In contrast to classic models of competition
(Chapter 5) and predation (Chapter 6), the equilibrium model assumes
that the presence of one species does not affect the colonization or extinc-
tion of another. If extinctions are independent of species composition, the
island community is “non-interactive.” If colonizations are independent,
the island community is not undergoing any successional change, because
the particular order of arrival and departure of species is not important,

Model Variations

NONLINEAR IMMIGRATION AND EXTINCTION CURVES

'f[hedlfnear immigration curve implies that all species have identical potential
or dispersal and colonization of islands. But suppose that some species are
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Rate

Number of species on island (S)

Figure 7.8 Nonlinear immigration and extinction curves in the MacArthur-Wilson
model. These curves may reflect the influence of species interaction on the extinc-
tion rate and differential colonization ability on the immigration rate. The qualita-
tive predictions of this nonlinear model are similar to those of the linear model
described in the text (Figure 7.5).

much better at dispersal and colonization than others. These species would
be among the first to colonize an empty island, whereas the poor dispersers
would arrive later in the colonization sequence. With differential dispersal,
the immigration curve would be exponential, with a steep decline initially
and a slower rate of decrease as later species are added (Figure 7.8).

Similarly, the linear extinction curve implies that species extinctions are
independent of one another. It might be more realistic to assume that com-
petition increases the extinction rate when more species are present. In this
case, the extinction curve would increase exponentially with S (Figure 7.8).
In textbooks, the MacArthur-Wilson model is usually presented with these
nonlinear immigration and extinction curves. Fortunately, the basic predic-
tions of the equilibrium model remain the same, whether the linear or non-
linear rate curves are used.

AREA AND DISTANCE EFFECTS

Both area and distance affect extinction and immigration in the
MacArthur-Wilson model. But the basic model describes only two mecha-
nisms: the effect of area on extinction, and the effect of distance on immigra-
tion (Figure 7.9). In the next two sections, we briefly explore the effect (.)f dis'-
tance on extinction (the “rescue effect”), and the effect of island area on immi-
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Figure 7.9 Area and distance effects in the MacArthpr Wllson m .

;\%lgel (MW) considers the effects of area on the extinction rate and dxstancg on the
immigration rate. The model can be extended to incorporate the effects of distance
on the extinction rate (rescue effect), and the effects of area on the immigration rate
(target effect).

gration (the “target effect”). These modifications incorporate more biological
realism, but they also complicate the predictions of the simple MacArthur—
Wilson model. We then develop a “passive sampling” model that may also
account for the species-area relationship without invoking habitat special-
ization or a species equilibrium.

THE RESCUE EFFECT

The MacArthur-Wilson model assumes that the only effect of distance or iso-
lation is on the immigration rate. However, as we saw in Chapter 4, isolation
can also affect the probability of extinction. In the metapopulation models of
Chapter 4, we defined the rescue effect as the reduction in the probability of
local extinction as the frequency of occupied patches increases. For the island
model, we can define the rescue effect as the reduction in the species extinc-
tion rate for near versus far islands (Brown and Kodric-Brown 1977). Figure
7.10 illustrates the change in the immigration and extinction curves when a
rescue effect is present. The basic prediction that large islands have more
species than small ones remains unchanged with the rescue effect. However,
the original MacArthur-Wilson model predicted less turnover on mare iso-
lated islands because they received fewer immigrants. In contrast, the réscue

.effect may generate greater turnover on more isolated islands because of the
increase in the extinction rate.
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Figure 7.]0 The rescue effect is the reduction in the extinction rate of near islands

versus distant ones. Whereas the simple MacArthur-Wilson model predicts higher

turnover on near islands (a), the rescue effect may increase turnover on more distant

}slap‘l:ls (g). T, is the turnover rate on the near island; Ty is the tumnover rate on the
ar island.

THE TARGET EFFECT

The MacArthur-Wilson model considers only the effects of area on the extinc-
tion rate. However, island area might affect the immigration rate as well. To
the extent that islands functions as targets that intercept colonizing individu-
als, large islands may have higher immigration rates than small islands
(Lomolino 1990). We can incorporate this target effect by assuming that the
immigration rate is higher on large islands than on small. As in our analysis
of the rescue effect, this change does not alter the pattern of species richness
on large and small islands. If the target effect is strong enough, the model still
predicts a species—area relationship, but turnover is now greater on large
islands than on small (Figure 7.11).
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i is the i i immigration rate on large islands
Figure 7.11 The target effect is the increase in the immigra 1 ]
vegrusus small ones. V%hereas the simple MacArthur-Wilson model predicts higher
turnover on small islands (a), the target effect may increase turnover on large N
islands (b). T; is the turnover rate on the small island; T} is the turnover rate on the

large island.



THE PASSIVE SAMPLING MODEL

The nonlinear rate curves, rescue effect, and target effect are st-raightforwa.rd
variations of the MacArthur-Wilson equilibrium model. All of these v.ana-
tions still describe species richness as a balance between ongoing irnfnlgra-
tion and ongoing extinction. But might there not be a simpler explane'xhog for
the species-area relationship? Suppose that islands function as passive 'ta‘nr-
gets” that randomly accumulate individuals. Even in the absence of equilib-
rium turnover or habitat effects, we would still expect large islands to accu-
mulate more species, by chance alone.

A useful analogy is to think of the islands as a set of targets. The area of
each island is equivalent to the area of each target. Each individual organism
is a dart, which is tossed randomly at the set of targets. The different species
are represented by different colors of darts. Suppose we toss a handful of
these darts at the targets. By chance, we expect the larger targets to accumu-
late more darts, and hence more colors, than the smaller targets. Similarly, if
individuals colonize islands randomly, large islands should accumulate more
individuals and species than small islands.

We can use some simple principles of probability theory to develop this
passive sampling model (Coleman et al. 1982). First, assume we have a set of k
islands. We will use the counter i to denote the ith island. The area of the ith
island in the list is denoted as a,. For example, if the fifth island on our list
has an area of 100 square miles, a5 = 100. Similarly, we assume a set of s
species. We will use the counter j to denote the jth species. The total abun-
Fiarfcg of species j (summed across all islands) is n;. If there are a total of 300
individuals of the sixth species that occur in the archipelago, 1, = 300.

Let A equal the summed area of all the islands:

k
A= gui Expression 7.8
Next, define x, as the relative area of the ith island:

Xi= Expression 7.9

NE

Note that these proportional areas sum to 1.0:

k
z{xi =10 Expression 7.10
i=

i', ::Sn e:lso betmteri)re;ed as the probability that a randomly placed indi\‘;idual
Il intercept an island of area a;. Therefore, th ili i indi
vidual will 7ot reach a particular island (:;e probability thata ngle indi-



P(1miss)=1- X Expression 7.11

For species , the probability that all 1, individuals miss the island is:
P . . _ s n

(nl mxsses) =(1~x;)" Expression 7.12
Expression 7.12 gives the probability that none of the 1, individuals of species

j lanf] orl1.the island. Therefore, the probability that af least one individual of
species j is present on the island is:

P(species j occurs on island )=1-(1-x;)" Expression 7.13

Finally, .if we sum these probabilities across all species, we obtain the expect-
ed species richness on island i [E(S)}:

17(5;):;[1’“"‘1‘ } Equation 7.6

Why should the expected species richness equal the sum of the probabilities
of species occurrence? Suppose that the probability of occurrence of each
species was 0.5. Intuitively, you would expect to find about half of the species
in the archipelago occurring on the island. This expectation has a variance
associated with it (Coleman et al. 1982), but the derivation is beyond the
scope of this primer.

Like the MacArthur-Wilson model, the passive sampling model predicts
more species on large islands than on small. However, the MacArthur—
Wilson model predicts recurrent extinction and turnover of island popula-
tions, whereas the passive sampling model does not invoke turnover. Instead,
the passive sampling model predicts that an abundant species will have a
greater chance of occurring on an island than a sparse species. In fact, if an
island is extremely small, rare species may be unlikely to ever occur there.
Thus, the passive sampling model gives us more predictive power about
species composition than does the MacArthur-Wilson model. The passive
sampling model does not explicitly account for the distance effect, although
we could extend the theory by modifying the relative target area as a func-
tion of distance from the source pool.

Empirical Examples:

INSECTS OF MANGROVE ISLANDS
The most famous test of the equilibrium model was by Edeard O. Wilson
and his student, Daniel Simberloff. These authors studied the insects that col-
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#iglands” in the Florida Keys (Wilson and Simberloff
1969, Simberloff and Wilson 1969). Each island consisted of one to several red
mangrove trees (Rhizophora mangle) that grow in shallow seawater. The total
arthropod source pool for these islands was approximately 250 species, and
each island supported 20 to 50 species. There are thousands of these man-
grove islands in the Florida Keys that differ in their area and distance from
colonization sources.

Simberloff and Wilson chose six islands for experimental manipulation
and carefully censused them at the start of the experiment. The islands were
then covered with canvas and all the resident arthropods were killed with
methyl bromide, an insecticide. Over the next year, the authors repeatedly
censused the islands and recorded the presence of different insect species
during recolonization. The basic predictions of the equilibrium model were
confirmed: after 250 days, species number on most islands had returned to
approximately the same level as before defaunation (Figure 7.12). Large, near
islands accumulated more species than small, distant islands.

Perhaps more important, the census data revealed considerable turnover in
species composition, which is the essential prediction of the MacArthur-Wilson
model. Figure 7.13 shows part of the recolonization records for one of the six
experimental islands. Although species number returned to an approximate
equilibrium, species identity changed considerably from one census to the next,
with an estimated turnover rate of 0.67 species per day.

onized small mangrove

Island 1
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Figure 7.13 Colonization and extinction records for a single mangrove island. Each
row is a species and each column is a census date. Records are shown for 16 of the
90 arthropod species that colonized the island. Open squares indicate species
absence; darker squares indicate species presence. Lightly shaded squares indicate a
species was not seen, but its presence was inferred from other evidence. Note the
substantial turnover and change in species composition from one census to the next.
(From Simberloff and Wilson 1969.)

However, Simberloff (1976) re-analyzed the mangrove data and questioned
whether there was actually this much turnover. He pointed out that it is impor-
tant to distinguish between local extinctions of relatively isolated breeding pop-
ulations, and transient, short-term movements of individuals between islands.
From the original census records, he eliminated those populations that were
represented by only one or two individuals because they were unlikely to rep-
resent breeding populations. He also eliminated those populations that disap-
peared before they would have had time to reproduce. The corrected estimate
of turnover was only 1.5 extinctions per year! Simberloff (1976) concluded that
a test of the equilibrium theory required careful definitions of what constituted
a true “colonization,” and that much of the observed turnover in the mangrove
insect community was among transient species.

BREEDING BIRDS OF EASTERN WOOD

Although the immigration and extinction curves (Figure. 7.5) are the hefart of
the equilibrium model, they have rarely been measux.ed in the field. An inter-
esting exception is a long-term study of bird populations ina small plot with-
in an oak forest (Williamson 1981). From 1947 through 1975, a team of
ornithologists annually censused Eastern Wood, a 16-hectare plot of oak
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woodland in Surrey, England. The record of extinctions and colonizations can
be plotted as a function of the number of species present each year, which var-
ied from 27 to 36. The immigration curve matched the basic prediction of the
equilibrium model, declining from an estimated maximum of 16 species per
year to a value of zero at 40 resident species. This is somewhat less than the
source pool estimate of 44 species. As predicted by the MacArthur-Wilson
model, the extinction rate increased with S, although there was so much scat-
ter in the data the trend was not statistically significant (Figure 7.14).

As in Simberloff's (1976) analysis, a detailed consideration of breeding sta-
tus complicates the picture of species equilibrium. A core group of 14 species
bred in the wood every year. A second group of 19 species did not establish
substantial populations. These included species whose breeding status had
not been confirmed (6), species that were represented by only 1 or 2 pairs in
the plot (9), and species whose territories were larger than the area of the plot
(4). The remaining 11 species were casual breeders that underwent frequent
extinction.

The fit of the MacArthur-Wilson model to these data is somewhat ambigu-
ous. On the one hand, the existence of ecological turnover and the qualita-
tive appearance of the immigration and extinction curves (Figure 7.14) match-

Extinctions

Immigrants
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[e)s the basic assumptions of the equilibrium model. On the other hand, the
hccurrence of 1'4 core species that bred every Year in the woods could not
ave been predicted by the equilibrium model, This

tgre may be fairly typical—one set of Species with stable,
tions, and a second s ’

ghapters 1,2,3,5, and 6 may be more appropriate for the persistent popula-
ons, whereas the models in this chapter and in Chapter 4 may be more
appropriate for transient populations.

BREEDING BIRDS OF THE PYMATUNING LAKE ISLANDS

Althoug_h the passive sampling model was introduced over 70 years ago
(Arthenius 1921), it has only received widespread attention since the early
1980§. Coleman et al. (1982) developed the mathematical predictions of the
passive sampling model, and tested it with data on island breeding birds. A
number of islands in Pymatuning Lake on the Ohio-Pennsylvania border
were thoroughly censused for nests and bird territories. These islands were
originally hilltops before a reservoir was created in 1932. The islands retain
their deciduous forest vegetation, and the archipelago supports a pool of
approximately 36 breeding land-bird species.

Coleman et al. (1982) knew the area of each island, and they were able to
estimate the abundance of each species on the islands. They used these data
to predict island species richness with the passive sampling model. In Figure
7.15, the solid line shows the predicted species richness and a confidence
interval based on the passive sampling model. Species richness on most
islands matched this prediction fairly well. In fact, the passive sampling
model did a better job of predicting island species richness than did the
power function.

One drawback of the passive sampling model is that it requires estimates
of the abundance of all species on all islands, and these may be difficult to
obtain. A second drawback is that the target analogy is conceptually simple,
but biologically not very realistic. Many factors other than island area affect
individual colonization, including weather and current patterns, seasonal
migration, food resources, and the presence of other species of predators and
competitors.

In conclusion, the species—area relationship represents one of.the fgw gen-
eral patterns in ecology, but its causes remain elusive. The habitat c.hversuy
hypothesis, the MacArthur-Wilson equi]ibrium.model, and the passive sam-
pling model are not mutually exclusive explananons—e.ach may cgnmbutelto
the species—area relationship. Additional data on habitat dnversnt)_/, polpu' a-
tion turnover, and source pool structure are needed to gauge their relative
contributions to the species—area relationship.
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Figure 7.15 Observed and expected species richness for breeding land-birds on
islands in Pymatuning Lake. The x axis gives the logarithm of the fractional area
of each island. The solid line is the expected species richness and the dashed lines
show the confidence interval from the passive sampling model. Each circle is the
observed species richness for each island. Note the good match between the
observed data and the model predictions. (From Coleman et al. 1982.)
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Problems

7.1

7.2.

7.3

*7.4.

For tl'1e West Indian land-bird data in Figure 7.1, the best—ﬁtﬁng power
function has the constants ¢ = 8.759 and z =0.113. The island of Grenada
has an area of 120 square miles, and supports 17 land-bird species.

a. What is the predicted number of species from the power function?

b. Suppose that half of the island’s area disappears in a volcanic erup-

tion. From the power function, how many species would be expected
to remain?

Your colleague returns from the South Pacific with data on island lizards.
“Look,” she says, “my data show that there are more species of lizards on
small islands than large islands. This disproves the MacArthur-Wilson
equilibrium model!” Using an appropriate set of immigration and extinc-
tion curves, show how more species could occur on a small island (A,) than
on a large island (4,) in the MacArthur-Wilson model.

- Suppose that an island in MacArthur-Wilson equilibrium supports 75

species, out of a source pool of 100 species. The maximum extinction rate
(E) is 10 extinctions per year. Calculate the maximum immigration rate (I).
If I is doubled, what is the new species equilibrium and new turnover rate?

Here are some hypothetical data on the abundances of six species of cac-
tus on four small desert islands:

Island 1 Island 2 Island 3 Island 4

(110 ha) (100 ha) (10 ha) (5 ha)
Cactus A 3 0 i 0 0
Cactus B 1 0 0 0
Cactus C 4 2 3 1
Cactus D 2 0 2 2
Cactus E 1 0 1 0
Cactus F 1 0 0 8

Calculate the expected number of species on each island for the passive
sampling model. How close are the expected values to the observed

number of species?

* Advanced problem
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Model Presentation and Predictions

When ecologists study communities, they often make comparisons acro;s
space. We might compare the ant species of a bog a‘nd.a nearby f?’rest, ort ﬁ
wildflowers of two alpine meadows on a mountainside. These s'napshot
comparisons form the basic stuff of community ecology—we are l.ntereste'd
both in describing how communities differ from one place to ?nother and in
understanding the processes that lead to those differences (Wiens 1989).

However, communities do not spontaneously appear in their current state,
and they do not stay the same through time. Instead, communities are built
up gradually through colonization, and community structuFe changes
through time (Huston 1994). This chapter focuses on the details of those
changes.

By studying the temporal dynamics of communities we may be able to
understand the varieties of communities that we encounter in different
places. Rather than visiting, say, 100 forest sites during the course of a busy
field season, we would prefer to sit beneath a single tree and watch the
scenery around us change over the course of 100 years. This sort of “trajec-
tory” experiment would reveal the dynamics of the community and the
mechanisms that lead to change through time (Diamond 1986).

Of course, we cannot carry out trajectory experiments on these time scales.
Paleoecologists have used fossil series and pollen profiles to successfully
reconstruct communities of the past (e.g., Spear et al. 1994). However, these
studies usually give a coarse picture of community change, often over time
scales of thousands of years. In this chapter, we will describe some methods
for studying community change that can be applied over shorter time inter-
vals, such as years and decades.

THREE VERBAL MODELS OF SUCCESSION

Succession—broadly defined—is the change in community structure
through time. We will briefly describe some of the ideas and concepts that
have been important in the study of succession, and then develop a simple
mathematical model to describe those changes.

.The process of succession begins with an “empty” community that con-
tains no species. Primary succession occurs when a new substrate is formed
fmd colonized, as when a volcano erupts or a glacier retreats. More common
1s secondary succession, in which a previously established community is
removed by a disturbance. These disturbances “re-set the clock” of suece
sion and are a universal feature of communities. s
and fires to ice scour and hurricanes constitute na;
Initiate the process of succession. The most widespread forms of disturb
Now come from human activities, including clearcutting and burninagngi



forests, agricultural planti izati
, plantings, urbanization, and i
managed populations. When hy  hese st el and

ondary succession, many elements of the previous community may re-estab-

lish themselves. Dormant seeds resistant e

> . ) 8g or larval stages, and regener-
ating adults that were damaged but not killed may re-appear in a disfubed
patch. Bu-t the most common source of colonists will be dispersing individu-
als, both juveniles and adults. These dis

es that were not disturbed. e coigimate from e

Eﬂﬂ}’ on, ecologists made two interesting observations about colonization
following a disturbance. The first observation was that the species that
showed up immediately following a disturbance were often very different
from I:.he species that would show up later in time. These pioneer species
l’}ave life history traits that allow them to thrive in the harsh physical condi-
tions of a newly disturbed patch. These traits incdlude high fecundity and dis-
persal potential, rapid population growth rate, and low competitive ability—
in short, many of the same life history traits that characterize r-selected
species (see Chapter 3). As we shall see, these pioneering species do not per-
sist indefinitely, and are eventually replaced by other species.

The second observation was that communities that are disturbed in differ-
ent ways and look different to begin with may become more similar through
time. For example, forest patches that are damaged by windstorms, cleared
for agriculture, or selectively logged may—though not with certainty—con-
verge to a similar structure of secondary forest growth a century after the last
disturbance.

These observations—the presence of pioneer species and the convergence
of communities following disturbance—suggested that changes in species
composition during succession were deterministic, not random. Several mod-
els of succession have been proposed, and the most famous (and oldest) is
the facilitation model. In the facilitation model, a newly disturbed patch is
colonized by a set of pioneer species, which are the only ones that can sur-
vive the harsh physical conditions following a disturbance (Clements 1904?.
Through their growth and presence, pioneer species alter the physif:al envi-
ronment in the patch. In terrestrial succession, pioneering plant species ofteTl
stabilize soil movement, shade the soil surface, and add nutrients to the soil
profile when individuals die and decay. T!'tese altera.tion.s facilitate, or “pe;/(e
the way,” for the next group of species to m\.rafie while sm.mltaneousl.y mF -
ing the environment less suitable for the ongma.I set of pioneer SP"}:“’S' : °‘_'
example, tree seedlings may only become ‘estabhshed afte.r grass;es a\:}e‘ uﬂ\:e
tially invaded a patch, but the grasses will eventually die out benea

shade of the trees.
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amental conditions and competitive interac-
disappear and are replaced by a second set
of species. These species also alter the environment an.d pave t}.1e way for
additional groups of species to enter in order. In the classic fa'c1htahqn rr}odel,
the endpoint of this process is 2 so-called climaxcommumty, w.'hfch 1s_not
replaced by any other group of species. The climax community is invasion-
resistant and self-replacing, at least until another disturbance re-sets the sys-
tem (Clements 1936). The key prediction of the facilitation model is that suc-
cession proceeds in a predictable sequence of community replacements:
Community A (comprised of pioneer species) is replaced by community B,
community B is then replaced by community C, and so on until the climax
community is reached. The sequence must occur in order because facilitative
changes in the environment are necessary before the next group of species
can colonize.

Although the evidence for pioneer species during the early stages of colo-
nization is strong, the picture is not so clear at the endpoint of the sequence.
Most ecologists have abandoned the idea of a simple climax community.
Initial colonization events, influences of habitat type and long-term environ-
mental change, and historical and evolutionary factors lead to idiosyncratic
endpoints in species succession (Facelli and Pickett 1990). Other ecologists
have pointed out that facilitation is not the only game in town (Connell and
Slatyer 1977; Huston 1994). For example, marine communities that develop
on pier pilings or rock walls (see “Population Dynamics of Subtidal
Ascidians” in Chapter 2) are often dominated by a single species, such as a
barnacle or tunicate, that initially colonizes and then monopolizes the avail-
able space (Sutherland 1974).

. These invaders are not pioneer species in the sense of the classic facilita-
tion model. k}stead, they manage to hang on to their initial ”land grab,” and
may not be chsplace_d until another disturbance re-sets the system (Law and
e s ey e
the entry of latecomers. eHon model, pioneer species promote
wﬁ;‘?ﬂ(}; \;Vaec iﬁ!’;o:xlctlh consi.der the proposit'ion that initial colonists neither
e a itate the arrlv:?l of late'r species. This tolerance model of suc-
¢ n can be viewed asa kind of simple null hypothesis, in which biotic
mterachon§ and alterations of the environment do not have a great influence
on succession. However, an orderly successional sequence may still arise i
tl'.te tglerance m'odel because of differences in species life histoz"ies andjili
nization potential (Connell and Slatyer 1977). There are more complex wsys

to categorize successional models (Noble 19
81), b .
porate the most important mechanisms, ), but these three models incor-

Because of changing enviro;
tions, pioneer species eventually



MATRIX MODELS OF SUCCESSION

can be tested in the real world, In order to do this, we will develop a matrix
moFlel of ecological succession that describes, in general terms, thr; ways in
xiuch illcontu;nhum't'ies change from one “state” to another througlh time. Then
will set the parameters of that i ili

il inh_ibiﬁOn,Pand s of model to describe the processes of facilita-

Th.e matrix model that we will use is a simple but powerful method for
describing changes in populations and communities (Horn 1975; Usher 1979).
In fact, you have already been introduced to this Markov model” in Chapter
3, when we discussed age-structured growth. Both the simple Leslie matrix
model and the more advanced stage-based projection model use exactly the
same machinery of matrix multiplication that we will use here to model suc-
cession. (If you haven’t done so already, you should go back and read
Chapter 3 before proceeding,)

SETTING THE STAGES

To begin with, we need to define a number of mutually exclusive stages that
represent different, discrete communities. These stages may represent entire
sets of species (e.g., “algal mat,” “encrusting sponges”), or they could even
represent individuals or stands of a single species (e.g., “red maple,” "“shag-
bark hickory”). Some decisions must be made in order to organize and clas-
sify natural communities into a handful of discrete stages that are recogniz-
able and useful to us as ecologists. Whether these represent true “natural”
units of succession is an entirely different question, and it is not one that can
be answered by the model itself.

Incidentally, choosing the stages for the model implicitly sets the spatial
scale of the patch. For example, if the stages represent individual species,
then a single patch must not be so large as to hold more than one species at a
time. In addition to the stages that represent different community types, the
model will probably also include an “open space” stage, which represents th.e
community state immediately after a disturbance. Whatever stages are ulti-
mately chosen, they must be mutually exclusive and all-encump.assmg In other
words, at any given time;a community can be readily classified as one, and

i i i ician who pi d the
*Andrei Andreyevich Markov (1856-1922) was a Russian : cian who p
study of sequer)l,ces of random variables in which the future variable is determined by the pre-
sent variable but is independent of the way in which the present state is reached.
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only one, of the specified stages (mutually exclusive), énd the stages must
include all of the possibilities fora patch (all-encompassing).

SPECIFYING THE TIME STEP .
Once the stages are established, the investigator must specify the time step
of the model. Unlike the differential equations we have mos.:t.ly .used in pre-
vious chapters, the stage-based successional model occu{s in discrete m,
and the time steps must be specified. Typically, a successional model might
have a time step of a year or a decade. However, short-lived or seasqnal
assemblages, such as ephemeral algae or insects that colonize carrion, might
be modeled with a time step of weeks or even days.

CONSTRUCTING THE STAGE VECTOR

Suppose we have a set of n possible stages for a patch. Imagine that the land-
scape consists of a large number of such patches. We can then create a stage
vector that tells us the number of patches in each of the stages. We will use a
boldfaced s as a shortcut to indicate such a vector.

For example suppose we have decided to model successional change
among four patch types: open space, grassland, shrub, and forest. If we went
out and censused a set of 500 patches, we might have the following values:

s(t) = [250, 100, 80, 70] Expression 8.1

The expression in parentheses (t) tells us this is the stage vector at time ¢.
Thus, 250 patches are open space patches, 100 are grassland patches, 80 are
shrub patches, and 70 are forest patches. The entries in the patch vector must
be non-negative real numbers. Zeroes are possible and indicate that one of
the stages is not currently represented by any of the patches. Our model will
show us how these numbers change through time and predict the distribu-
tion of patch types at equilibrium.

CONSTRUCTING THE TRANSITION MATRIX

In Or('flt?!' to get there, we now introduce the centerpiece of this model: the
transition matrix. This matrix is equivalent to the Leslie matrix used to fore-
?east population growth in Chapter 3. However, there are some important dif-
rences in how we interpret the transitions, and in the i
s ossible val
can be entered in this matrix. P es that
.If there are 1 stages in our model, the transition matrix A will be square
wuh.n rows and # columns. The labels for the rows and columns of ihisl
matrix are just the patch names themselves. Each column of the matrix rep-
resents the patch state at the current time (), and each r ;

: OW represents
patch state at the next time step (¢ + 1). The entries in the rnatrixgre the trie-



MODEL PRESENTATION AND PREDICTIONS 185

sition iliti

(row).}zrvt;:a‘l),?ﬁtze: f101: ch&a‘nge from the'current state (column) to the next state

bt Ll oup ?m e interpretation of these transitions in detail in just

e 3 r our-stage example, we have a transition matrix with 4
, 4 columns, and 16 entries. Here is a typical matrix that we could have:

Stage at time t
Open Grassland Shrub Forest
Open 0.65 0.23 0.25 0.40
ftagf at time Grassland 0.15 0.70 0.25 0.10
fa ; §
Shrub 0.00 0.07 0.25 0.16
Forest 0.20 0.00 0.25 0.35
Expression 8.2

'I.'he entries in the matrix tell us the probability p;, of moving from stage j in
time step ¢ to stage i in time step t + 1. For example, the probability of moving
from grassland (column) to the open state (row) is 0.23, and the probability of
moving from forest to grassland is 0.10.

The stage transitions are not necessarily symmetric. For example, although
the probability of moving from grassland to the open state is 0.23, the proba-
bility of moving from the open state to grassland is 0.15. The diagonals of the
matrix indicate the probability that a patch remains in its current state, and
does not change to any of the other states during a single time step.

This example illustrates some general properties of transition matrices for
succession models. First, notice that all of the entries are positive numbers
that are between 0.0 and 1.0. That makes sense, because these matrix elements
represent probabilities of change, and probabilities cannot be larger than 1.0
or smaller than 0.0. Second, notice that all of the values in any column of the
matrix add up to exactly 1.0. Why should this be so? Earlier we said that the
stages in this model were mutually exclusive and all-encompassing. Because
these are the only possible states for a patch, the probabilities must sum to
1.0 for all of the events that can occur once a patchisina particular state.

LOOP DIAGRAMS

The transition matrix can be represented graphically as a loop diagram. To
construct a loop diagram, draw a circle to represent each stage in the model.
Use a one-headed arrow to connect two stages, and write the value of the
transition above the arrow. Do not draw an arrow for any transitions th.at
have a value of 0.0. The transition matrix in Expression 8.2 is diagrammed in

Figure 8.1.



0.70
0.65

0.15
Grassland

0.35

Figure 8.1 Loop diagram for the transition matrix in Expression 8.2.

PROJECTING COMMUNITY CHANGE

The transition matrix summarizes all of the information on how patches
change from one state to another. The matrix is a set of probabilistic “rules”
that determine the patterns of succession that will occur from any possible
starting point. The next step is to apply those rules to the stage vector s.
Specifically, if we have the vector s at time ¢, we can use the transition matrix
to determine the number of patches in each state at the next time step (t + 1).
In compact matrix notation, this amounts to multiplying the transition matrix
A by the stage vector s at time ¢ to produce the stage vector s at time £ + 1:

s(t+1) = As(t) Equation 8.1

In our example, we started with 100 patches in the grassland state at time .
How many patches will be grassland at time ¢ + 1? The answer comes from
multiplying each entry in the appropriate row of the matrix by the corre-
sponding number of patches in the stage vector. There are four ways that
grassland patches can appear at time ¢ + 1: There can be transitions from
patches that were previously in the open, shrub, or forest state, and there can

1l:_)le grassland patches that remain grassland patches. From our matrix, we
ave:

S

Grassland patches (t +1) = (%15)(250) + (0.70)(100) + (0.25)(80) + (0.10)(70)
=1345

Expression 8.3



;Itha:eﬁ{;i/teni?] in this multiplication says that, of the 250 patches in the open

cont-z,'ibut;:;s Ct:;:lli.;fgl;lrn to g;ﬁ;nnd Patches [(0.15)(250)]. We add to this the
om s| d patches [(0.25)(80)] and f

[(0.10)(70)]. Finally, we include the hes that remmais o

maly, 70% of grassland patches that remain a

grassland during this transition [(0.70)(100)]. Thus, we started with 100 gras:

:?lldl )patches at time ¢, and we end up with 1345 grassland patches at time

The other transitions are calculated as:

Disturbed patches (£ + 1) = (2%255)(250) +(0.23)(100) + (0.25)(80) + (0.40)(70)
Shrub patches (t+ 1) = gr;.(;oxzsm +(0.07)(100) + (0.25)(80) + (0.15)(70)

Forest patches (t+1) * = 81.20)(250) +(0.00)(100) + (0.25)(80) + (0.35)(70)
=945

Expression 8.4
Thus, we started with the vector:
s(0) = [250 100 80 70] Expression 8.5
and, after one time step, ended up with the vector:
s(1) = [134.5 233.5 37.594.5] Expression 8.6

Although the patch states have changed from one time step to the next, note
that the total number of patches (500) remains the same. Now that we have
the stage distribution in time ¢ + 1, we can use that as the model input to pro-
ject the stages in the next time step:

s(t+2)=As(t +1) Equation 8.2

At each step of the model, we multiply the transition matrix A by the current
stage vector to generate the next set of states. As we will see, although our
numbers change initially, they eventually stop changing.

DETERMINING THE EQUILIBRIUM

Even though the content of the stage vector keeps changing, remember that
the transition matrix A remains the same through this process, and is used to
multiply the stage vector at each step. If we continue to multiply the current
stage vector by the projection matrix, we find that the stage vector quickly
reaches the following equilibrium state:



s(t) = [223.03 164.70 31.52 80.75] Expression 8.7

d, there will be no further change in these
the matrix multiplication.
is reached from any ini-

Once this distribution is reache
numbers, no matter how many times we carry out
Even more interesting, this same equilibrium vector
tial patch distribution.

Fl:)r example, suppose the landscape has been clearcut, so that all the
patches are in the open state. Then the initial stage vector is:

s(0) =[500000] Expression 8.8

Figure 8.2 shows the trajectory for both initial vectors. You can see in Figure
8.2a that after approximately 5 time steps, the initial vector has settled into
the equilibrium state. If all the patches start in the open state (Figure 8.2b),
the same equilibrium is reached. Thus, the equilibrium does not depend on
the initial starting conditions.” Instead, it is determined entirely by the tran-
sition matrix A.

We've seen that the equilibrium vector does not depend on the initial
patch vector, but only on the transition matrix itself. Using the rules of matrix
algebra, we can solve for the equilibrium vector by calculating the right-hand
eigenvector of the transition matrix. Unfortunately, eigenvectors are difficult
to calculate by hand for all but the smallest matrices, and the calculation does
not provide much insight into the equilibrium numbers.

A much better approach is to program the multiplication directly. This is
fairly easy to do on a computer with spreadsheet software (see Donovan and
Welden 2001 for detailed instructions). Moreover, this “spreadsheet calcula-
tor” can be modified to include additional factors in the model that cannot
then be readily solved by calculating eigenvectors. We will use the multipli-
cation approach for all of the examples in this chapter.

STAGE VECTORS AND TRANSITION MATRICES: TWO INTERPRETATIONS

Let_us think carefully about how the stage vector and transition matrix are
defined-and interpreted. In the example we have been developing, the stage
vector represents the number of patches in a particular state across a land-

"Mathematicians call this Ppro| icil i

naticia perty of convergence ergodicity. A system is ergodic if its -
al beha‘.nor is géepgndent of its initial state (Caswell 2001). All of the sil:rq:»leg ma;'i.x :'noecr:lls“:f
succession exhibit this ergodic behavior. A closely related property is homogeneity. A trarisi-
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Figure 8.2 Successional trajectories for two initial patch vectors. (a) The initial vec-
tor is 8(0) = [250 100 80 70). (b) The initial vector is 8(0) = [500 0 0 0]. The transition
matrix A for both models is Expression 8.2. Regardless of the starting configuration,
all initial vectors converge to a common equilibrium with this transition matrix.
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scape. In this case, the elements of the transition matrix describe the fraction

of patches that change from one state to the next in each time step.

However, we can also interpret this model on the level of an .II.lleldual
patch. In this case, the transition matrix represents the probability that a
patch changes from one state to the next. But what does the stage vector rep-
resent? The starting vector would have a single 1 for the patch state that was
current; the rest of the vector would be filled with zeroes. At equilibrium,
the stage vector represents the fraction of time that a patch spends in each
of the different states. Thus, at equilibrium, 16% of the patches (80.75/500)
will be in the forest state, and any individual patch will be in the forest state
16% of the time.

Remember that the system is not static just because equilibrium is reached.
Individual patches are continuously turning over and changing state, but the
frequencies of occurrence of those states is constant. Finally, note that we
must assume that the patches are all similar to one another if we are to safely
extrapolate this model to a set of patches in a landscape.

Model Assumptions

The simple matrix model of succession—and its ergodic behavior—rests on
the following assumptions:

v Communities can be represented as discrete states. These states should
be meaningful classifications of communities into distinct types. The
states are mutually exclusive and all-encompassing so that, no matter
how the community changes, it can always be assigned to exactly one
of the states at any time. 4

v Time Ais measured in discrete, evenly spaced units. The model assumes
that time is measured on a discrete scale, and that the time step is rele-
vant and appropriate for the system being modeled.

v The transition matrix is homogenous. By this we mean that the matrix is
constant and does not change from one time step to the next. Although

the vector elements do change b: i iplicati
t r y the matrix multiplication, i-
tion matrix itself is invariant. F the fransi

v No spatial structure. Transition iliti
\ % probabilities do not depend on the spa-
tial arrangement of patches. In other words, the probsbility of charliJ ae
does not depend on the identity of neighboring patches. 3

~
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Vv No density dependence. Transition probabilities do not

change if a patch
type becomes very rare or very common.

v !_arge number of patches. The model carries over “fractional patches” in
its calculations, so it is not affected by “demographic stochasticity” of
small patch numbers. V

v No time lags. The changes in the vector are instantaneous and depend
only on the current patch state. The changes in the vector do not depend
on any previous states, nor do they depend on the path by which the
current state was reached.

Model Variations

Some authors have suggested that this list of assumptions is so unrealistic
and restrictive that matrix models of succession have not been very useful
(Facelli and Pickett 1990). As always, the solution is to carefully modify those
features of the model that are thought to be important and see how that addi-
tional complexity affects the interpretations and results. But first let us return
to the historical ideas on how succession occurs.

SUCCESSIONAL MODELS REVISITED

We have learned how to set up a matrix model to describe how a community
changes among a set of patches, and we have seen that a unique equilibrium
vector exists that is determined entirely by the transition matrix and not at
all by the initial distribution of patch states.

Now we can revisit the three verbal models of succession introduced ear-
lier in this chapter: facilitation, inhibition, and tolerance. What would the
transition matrix look like for each of the models? We will use the
open-—grassland-shrub—forest matrix to suggest appropriate coefficients that
describe each of these models.

FACILITATION MODEL N
For the facilitation model, we will suppose that the sequence of commur.uhes
is open — grassland — shrub — forest, with forest representing the chmzx
state. Also, recall the “rules” of the facilitation modellz.stages cannot be
“skipped,” and each stage must occur in sequence to‘facﬂltate t}'\e chgx?ge to
the next state. Our transition matrix for this model might look like this:



Stage at time t
Open Grassland | Shrub Forest

0.10 0.10 0.10 0.01
Stage at time Grassland 0.90 0.10 0.00 0.00
t+1 0.00 0.80 0.10 0.00

0.00 0.00 0.80 0.99

Expression 8.9

In this example, we have assumed that, for any patch, there is always a 10%
chance that a disturbance will re-set the system. However, the “climax” forest
community is disturbed relatively infrequently, and there is only a 1% chance
of moving from the forest to the open state in each time step. In the grassland
and shrub patches, we have assumed that there is only a 10% chance of
remaining in the same state, and an 80% chance of “graduating” to the next
stage in the facilitation sequence. The remaining 10% (100 — 80 - 10) repre-
sents the chance of a disturbance re-setting the system.

This facilitation model is defined by the unique arrangement of zeroes in
the matrix, which ensures that patches move through the sequence in order-
ly fashion. The corresponding loop diagram is shown in Figure 8.3a.

INHIBITION MODEL

For the inhibition model, we will assume that each of the three community
states (grassland, shrubland, forest) can be replaced by another community
state only through an intervening disturbance that frees up space. The tran-
sition matrix might look like this:

Stage at time t
Open | Grassland Shrub Forest

Open 0.10 0.10 0.10 0.10

Stage at time | Grassland E

; fgf 0.30 0.90 0.00 0.00
Shrub 0.30 0.00 0.90 0.00
Forest 0.30 0.00 0.00 0.90

Expression 8.10

Figure 8.3 Idealized loop diagrams for simple suc

model. (b) Inhibition model. (2) Tolerance modol. cession models. (a) Facilitation P
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In this matrix, there is a 10% chance of a disturbancc? in ea?h time'sttzz
regardless of the initial state. Once a community is es:btl:slb\:d,c : stt;zl:eui; et
it i i . Following a disturbance,
unless it is removed by a disturbance : "
equil chance (30%) of entering any of the coml:numty sta_tes, and oTr_mllqy aolr? e/-
chance of remaining in the open state for two time steps In a row. 1he ¢
sponding loop diagram is shown in Figure 8.3b.

TOLERANCE MODEL ' '
For the tolerance model, we will assume that all states—m(.:ludl.ng 'the open
state—are equally likely. This generates a transition matrix with identical
transition elements:

Stage at time t
Open Grassland Shrub Forest
Open 0.25 0.25 0.25 0.25
Stage at time | _ Grassland 0.25 0.25 0.25 0.25
b+ 1 Shrub 0.25 0.25 0.25 0.25
Forest 0.25 0.25 0.25 0.25
Expression 8.11

In this model, each community neither inhibits nor facilitates replacement by
other communities. Therefore, all the transitions are equally likely. The cor-
responding loop diagram is shown in Figure 8.3¢.

MODEL COMPARISONS

To compare the predictions of these different transition matrices, we began
with a system in which 1000 patches were initially in the open state. The tra-
jectories of the three systems are rather different. The inhibition and tolerance
matrices settle into their equilibria after a single time step, whereas the facilita-
tion matrix reaches equilibrium after approximately 20 time steps (Figure 8.4).

As we pointed out, these models are all ergodic, and quickly settle into
their characteristic equilibria. If we know the elerents of the transition
matrix, we can easily forecast that equilibrium. But the converse is not true. If
we know the equilibrium distribution, we cannot infer a unique transition
matrix, because there are many different matrices that can lead to the same
pattern. Moreover, if we were trying to construct the transition matrix using
only the distribution of patch states in nature, we would have to further
assume that the system had already reached its equilibrium state, - :

It seems that the best way to distinguish among the facilitation, inhibit.ion,
and tolerance models is by directly comparing the structure of the transition
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Figure 8.4 Patch trajectories for simple successional models. In each model the
initial vector is s(0) = [1000 0 0 0). (a) Facilitation model. (b) Inhibition model.

(c) Tolerance model.
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matrices themselves. In other words, the assumptions of the models are lper-
haps more distinct than the predictions (Connell et al. 1987). Ne\./ert.he e'ss,
constructing a transition matrix and using it to forecast t.he stage distribution
of a community does provide insight into how succ.essmnal change occurs,
as we will see in McAuliffe’s (1988) study of change in desert vegetation.

OTHER MODELS

Many interesting variations can be created from our basic matrix mc?del by
altering its assumptions and introducing more complexity. Here we will c?I\JY
sketch out the possibilities without elaborating the details. If the succession-
al process has a “memory,” the transitions may depend not only on the cur-
rent state, but also on the state of the community several time steps in the
past. As in population growth models with time lags (see Chapter 2), this
matrix model can exhibit complex transient dynamics, as we will see in the
study of coral reef dynamics by Tanner et al. (1996).

Another possibility is that the transition matrix itself is not constant, but
changes at each time step. For example, each matrix element might be sam-
pled from a distribution with a mean and variance, as in our stochastic mod-
els of exponential growth (see Chapter 1). In this case, there is no longer a
simple equilibrium state, although the assemblage will usually converge on a
sort of “average” or expected distribution with time (Caswell 2001).

Alternatively, the matrix elements may change through time in a system-
atic way, reflecting long-term environmental changes such as global warm-
ing or increasing nitrogen deposition. In these models, the assemblage may
never settle into a steady state, and the appearance of the landscape will
change substantially as different kinds of sequential matrices operate on the
stage vector (Doak and Morris 1999).

Making the successional model spatially explicit forces us to use a com-
pletely different kind of mathematics to describe community change. It is no
longer sufficient .to n.mltiply a transition matrix by a stage vector. Instead, we
rr};lst model the mf;hvidual patches themselves and keep track of their indi-
Z; ;i:.iiztht&tus ior(; .of model, the rules for state .transitions may depend
e probabi]jtyso faae ;J a:s .:iacer'\t tcells. For example, a simple r.ule might be that
ber of adjacent cells in tl: ? ntut1 O;llipal‘tlﬂﬂar o o proportional to the num-
the rea].is]tic scenario in :ﬁsl: ot . Bugh aclleoul i
from neadby s which most of the propagules that enter a patch come

Y sites. These so-called cellular automata models can generate ve
5omplelx dynamics,* resulting in local extinction, patchiness, and s; aﬁl;yl
waves” of pattern that pass through a landscape (Wolfram 1984’; Durfel:t and

:
*The dynamics may resemble those seen in the ancient

Player captures an opponent's pieces by sursaisaling tJapamzse board game “Go,” in which a

hem with his own.
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Levin 1994). Finally, computationally intensjve

track of the birth, individual-based models keep

growth, and death of individuals and may incorporate

Empirical Examples

MARKOVIAN DYNAMICS OF DESERT VEGETATION

If you ever “take that California trip” and drive across the Mojave Desert, you
will pass through thousands of hectares of open space dominated by creosote
(Larrea) and wormwood (Ambrosia). Although the desert landscape seems sta-
tic, it is actually a dynamic system that undergoes successional change, though
very slowly. McAuliffe (1988) developed a simple three-state Markov model to
describe transitions between Larrea, Ambrosia, and open space.

Because desert plants decay very slowly after they die, it is possible to esti-
mate mortality and patch transitions with careful field censuses, and to mea-
sure growth rings in the stems of the shrubs. McAuliffe (1988) combined these
data to construct the transition matrix for desert communities around San
Luis, Arizona (Yuma County) in the Mojave Desert. Figure 8.5 shows the tran-
sition matrix that he estimated for the San Luis site. The matrix describes a
vector with three states (open, Larrea, Ambrosia) and has a time step of 1 year.

As you can see, the matrix does not clearly resemble any of the idealized
matrices we proposed for the facilitation, tolerance, and inhibition models.
However, Larrea rarely colonizes open space, and seedlings of Larrea are
almost always found beneath the canopy of Ambrosia. This is a type of facili-

Stage at time t

‘J Open [ Ambrosia L. arrea |
’ Open | 099854 [ o003 00016 |
| Stageattime = brosia | 0.0013 09682 | 0
J Larrea | ooo0t6 | 0.00058 0.9984

Figure 8.5 Transition matrix for desert plant communities at San Luis site in the
Mojave desert. (Data from McAuliffe 1988.)
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tation, although it does not lead to orderly species replacement as.in t.hg clas-
sic facilitation model. Also, because of the slow rates of chang? }n ﬂ"lls sys-
tem, Larrea does not immediately replace Ambrosia, so that transition is set tlo
0.0 for the time step of one year in this model. The diagonal elemfants of this
matrix all have values very close to 1.0. As we will see, this will have an
important effect on the dynamics.

In addition to estimating the transition matrix, McAuliffe (1988) also mea-
sured the proportion of the landscape that was occupied by each of the three
states. Next, he used the transition matrix to forecast the equilibrium fre-
quencies of each state. Note that these are two distinct kinds of data: indirect
measurements of state changes and species persistence for constructing the
transition matrix, and direct measurements of patch occupancy for estimating
the stage vector.

How well does the observed stage vector match up with the equilibrium
stage vector that is predicted by the measured transition matrix? The observed
and expected frequencies match fairly well (Figure 8.6). However, the model
predicts that Larrea should occupy 9.9% of the patches, whereas only 2.8%
were observed. McAuliffe (1988) suggested that density-dependent mortality
might be important in reducing Larrea cover below the model predictions.

The forecasting model also provides some insight into how desert com-
munities can be expected to recover from human disturbances. In the desert,
small-scale human disturbances include the activities of cactus collectors and
ATV enthusiasts, whereas large-scale disturbances include the construction
of giant military bases and the relentless sprawl of new housing develop-
ments. We can use McAuliffe’s (1988) model to ask how long it will take for

1.00
|
0.80 | ‘ hi\
| | W Observed
[ i & Predicted
0.60 - |
1 \
040 - ‘ ‘
|
020 |
000 LLL .
00— ‘12114‘125\ i
Open Ambrosia Larrea T

Figure 8.6 Observed and ex ected f; i
et San L. (Data from McA s opgy P 2" desert plant com.
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Figure 8.7 Simulated increase in Larrez and Ambrosi iti
Figu 7 Si ase sia patches. The transition matrix
Is given in Figure 8.5. The initial stage vector consisted of 1000 open patches.

Larrea and Ambrosia cover to reach equilibrium after a 100% clearing. Figure
8.7 illustrates the trajectories for the two species, beginning with 1000 patch-
es that are in the open state.

The answer is that it takes an extremely long time—over 2000 years—for
this system to settle into its equilibrium. The approach to equilibrium is slow
because the diagonal values of the transition matrix are all very close to 1.0.
In other words, very few patches actually change states from one year to the
next. Consequently, recovery from disturbance (whether natural or human-
caused) is very slow.

MODELS OF CORAL REEF SUCCESSION

Ecologists need long-term data to estimate transition probabilities and con-
struct realistic models of succession. Since 1962, the ecologist Joseph Connell
and his colleagues have conducted regular censuses of coral communities
in a set of three permanent 1-m? quadrats at Heron Island in the Great
Barrier Reef of Australia. Each census consists of a photograph and mea-
surement of the transitions that occur beneath a 20 x 20 square grid super-
imposed on the photographs. Quadrats were censused approximately once
every 19 months, for a total of 19,200 transitions.

Tanner et al. (1996) used these data to develop realistic matrix succession
models. First, they grouped the 72 coral and 9 algal species into 6 categories
of hard corals, 1 category of soft coral, and 1 category of algae. They also
included the state of open space, for a total of 9 states in their matrix. Next,
they developed four different kinds of matrix models:
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Model 1: First-order Markov model.  This model is i.d_ent-ical to the basic.mo;izl
we developed in this chapter. A single 9 x 9 transition mf:trﬁ was est';ma e ,
from all of the data, and that transition matrix was applleq to the 9-g emen
stage vector each year. Because there is no ob.vious con'\pet'lhve dominant in
this community, the transition matrix contained relatively few zeroes (see
Problem 8.1) and is qualitatively similar to a tolerance model.

Model 2: Second-order Markov model. This model incorporates the idea that
transition probabilities might depend not only on the current_s'tate, but also
on the state one time step previous time. For example, the transition from alga
to free space might depend on whether the patch history was (alga, alga), or
(soft coral, alga). In other words, the probability depends not just on the cur-
rent state (alga), but also on the state in the previous time step (soft coral or
alga). Thus, the system has a “memory” of one time step, so that the transi-
tion probabilities are determined by the two-step sequence of occupancy.

Models 3, 4: Semi-Markov models. These are similar to the second-order
model. However, transition probabilities depend on the absolute amount of
time that a patch has been occupied. Each species has a characteristic “wait-
ing time,” and once that amount of time has passed, there is a transition to a
new state. In Model 3, a complete distribution of waiting times of between 1
and 11 steps was estimated from the data. In Model 4, only 2 time steps were
used to estimate waiting times. These models take into account both the dif-
ferent life histories of the component species and the fact that ephemeral
species will not hold patches beyond a certain point, regardless of the esti-
mated transition probabilities in the simple model.

How do the predictions of these models differ? For soft corals, the two semi-
Markov models predicted higher occupancy than the first- or second-order
Markov models. The more complex models exhibited a longer period of tran-
sient dynamics before settling into their equilibrium states. However, the
main result is that the overall predictions of the complex models were sur-
prisingly similar to the predictions of the simple first-order Markov model
(Figure 8.8). Tanner et al. (1996) suggested two reasons for the good match of
the simple and complex models. First, a rapid turnover of coral colonies and
al.gae means that only a small proportion of colonies survive long enough for
historical effects to be important. Second, these coral communities are dis-
turbed by tropical cyclones far more frequently than the estimated time to
equilibrium, ensuring that historical effects are minimal. B

Other long-term studies of this sort are needed, b t th
the basic Markov model might be a rsing tool, cyen g 0 at

. useful forecasting tool, even if it d
Incorporate subtleties such as historical effects and individual life histo?‘iissno‘
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Figure 8.8 Successional trajectories for coral reef communities in the
Rgef, Australia. See text for details of the four Markov models. (Adapted from

Tanner et al. 1996.)



Problems

8.1 Here is the transition matrix that Tanner et al. (1996)
simplest (first-order) Markov model:

measured for their

Stage at time t

o

2, o
§ o Fosr & 855 &

Stage Se e @ 3 .@5 & \""se 5§(\:

at time FEF & § FEEE 56 &858 &

t+1 g 8 ¥ & &7 9% RAx wav

Encrusting

acroporid

corall:;a 0.354 0046 0.032 0032 0.000 0.071 0.025 0.039 0.059

Tabular

Acropora 0021 0314 0.005 0.004 0.003 0.014 0.000 0.000 0014

Bushy

Acropora  0.066 0.030 0.478 0082 0016 009 0076 0.105 0.091

Staghorn

Acropora 0049 0016 0.038 0439 0.009 0.057 0.031 0.053 0.039
Soft corals  0.001 0.005 0.005 0.004 0835 0005 0011 0000 0014

Algae 0.009 0.036 0.007 0.004 0000 0033 0015 0.000 0.007
Massive

corals 0.015 0.003 0.013 0014 0006 0052 0.340 0.000 0.032
Pocilloporid

corals 0.002 0.005 0.001 0.001 0.000 0.000 0.000 0.224 0.004
Free space 0482 0544 0.421 0421 0.131 0678 0501 0.579 0.741

a. What is the probability of a transition from tabular Acropora to bushy
Acropora?

b. Which stage is most likely to be replaced by free space once it has
colonized?

c. Which transitions were never observed in this community?

*8.2 Suppose there are 900 patches, and the community begins with exactly

100 patches in each of the 9 states. How many patches will be in each
state at the next time step?

*Advanced problem .



Appendix

Although many ecology courses require calculus as a prerequisite, my expe-
rience h'as be.en that students have a hard time relating the material they
learned in their calculus class to ecological models of population growth. This

app.endix explains the process of building ecological models and how calcu-
lus is used to do this.

CONSTRUCTING A POPULATION MODEL

Eirst things first. What, exactly, are we trying to do when we build a popula-
tion model? Our goal is to write an equation, or function, that will tell us
what the population size N will be at some future time #:

N=f(t) Expression A.1

If we plug into this function f the elapsed time ¢, the function will predict the
population size N at time ¢. We will obviously need more information than
just ¢ in order to build this function. The size of the population will depend
on many things other than the amount of time that has elapsed. Much of the
text of this primer is devoted to elaborating the biological and physical details
of the model.

THE DERIVATIVE: THE VELOCITY OF A POPULATION

Although our goal is to produce a function like Expression A.1, this is not the
place we actually begin building a population model. The reason for this is
that it is difficult to directly model factors that cause populations to be large
or small. Instead, it is much easier to model factors that cause populations to
increase or decrease in size.

Thus, we make an important distinction between the size of a population
(N), and its current growth rate (dN/dt). The size of the population is the total
number of individuals, and it is measured in units of individuals. The growth
rate is the “velocity” of the population, that is, the change in population size
per unit time, and it is measured in units of individuals/ tim.e‘

How, exactly, do we measure the growth rate of a population? Suppose we
census a population of parrots and count 500 birds. We return to our popula-
tion one year later and count 600 birds. The population growth rate can be
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measured as the change in population size divided by the change in time:

600-500) . onA2
Population growth rate = (——(ITO-)— =100 birds/year Expression

This measurement is an average and is valid as ]ong as fhe population is
growing at a constant rate during the year. However, it 1s‘l.|.kely that the ra}:e
of population growth changes with time. In other words, if we measured the
population growth rate during the breeding season, we would measure a rate
much greater than 100 birds/year. And, if we measured population growth at
a time of the year when females were not giving birth, our measured rate of
population growth would be zero, or even negative if there had been losses
due to death or emigration.

In a similar way, if you took a car trip, you could calculate your average
velocity by dividing the distance travelled by the amount of time elapsed.
However, during the course of your journey, the speed of your car may have
been very different from this average as you drove through traffic or on open
stretches of highway.

Thus, velocity is best measured over a very short time interval. Suppose
we measure the population size at time ¢, and then again some short time
later at £ + x. Our equation for population growth rate becomes:

(Ntu_Nt)

lati =
Population growth rate t+xop)

Expression A.3
The derivative of any function is simply this velocity measured over an infi-
nitely small interval. In other words, x is very small, so small that it approach-
es zero. Writing this as a continuous differential equation, we have:

Population growth rate = dN / dt Expression A.4

Here, dN means the change in population size measured over a very short
interval dt. Graphically, dN/dt turns out to be the slope of our original func-
tion f{t). Thus, if we plot population size N, as a function of time ¢, the popu-
lation growth rate at any time ¢ is the line tangent to the function at that point
t (Figure A.1). Notice that the slope of this line may change depending on
v?rhere on the population graph we measure it. In other words, the popula-
honl'l growth rate is not a constant, but may change with time.
t is critical that you grasp the distinction between the populati

and the population growth rate (dN/d). Population sizpe ‘]:lilla :l(:/z‘as}fi:el;(eNz
non-negative numbe?r, but population growth rate could be positive, nega-
tive, or zero, depending on whether the population is increasing decr;asiﬁ
or unchanging, In fact, it is often the case that large populations M,Ii]l have log;

growth rates, and vice versa. Cha ter 2 devel i i
dependent population growth in deft)ai.l. €10ps this model of Aenstep



APPENDIX 205

| AN

t

Figure A.1 Population size (N) plotted as a functon of time (£). Atany value of ¢, the
gul P P s y
slope of the line that is tangent to the urve at that point i e population gro
1 N/ lin t B the ¢ t that t is th lati growth

MODELING POPULATION GROWTH

Having defined the population growth rate as the variable of interest, the
next step is to begin incorporating the details of population growth into the
model. As you look through this primer, you will see that the population
growth rate is defined as a series of terms, some of which are positive and
increase population growth, and some of which are negative and decrease
growth.

Each term in the model carries with it certain assumptions about how pop-
ulations are growing. The way to build new models is to relax or alter those
assumptions, and then modify the equation to reflect the new scenario. For
example, Equation 1.1 is the differential equation for exponential population
growth:

dN /dt=rN Equation 1.1

As explained in Chapter 1, one of the assumptions of Equation 1.1 is that th.ere
is no migration in or out of the population. We can now relax this assumption
and modify Equation 1.1 to incorporate migration. o
When we model population growth, we must be careful in deciding
whether the growth factors are behaving as constants, or as factors that are
proportional to population size. For example, suppose thata ccfnstant num-
ber of parrots emigrated from our population each year (¢). This rate ¢ does
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not change with time or population size. Its units are number of emi-

grants/year. ) |
Thus, our new model of population growth is:

dN /dt=rN-c Equation A.1

There are other ways we could describe the emigration process. For example,
suppose a certain fraction of the population departs as en‘ugr.arllts at a con-
stant rate. Let the constant g represent the per capita or per individual rate of
emigration. The units of g are individuals/individual ¢ time. '.I'herefore, tt.\e
emigration rate (emigrants/time) is gN. This model of population growth is:

dN /dt=rN-gN Equation A.2

As we will see, these two models make rather different predictions about
population growth.

SOLVING FOR THE EQUILIBRIUM

Now that we have our population growth equation defined, the next step is
to solve for the equilibrium. We are interested in determining when, if ever,
our model population stops growing. In other words, will the population
reach a size beyond which it neither increases nor decreases? Mathematically,
this equilibrium corresponds to the population size for which dN/dt = 0. Note
that there may be more than one equilibrium point, that is, more than one
population size that satisfies this condition. Returning to Equation A.1, we
can set it equal to zero and solve for equilibrium:

0=rN-c Expression A.5
c=rN Expression A.6
N=c/r Equation A.3

Equa.tion A.’a'. gives the equilibrium for Equation A.1, in which a population

gnat 1tsi gr&u;mg exponentially is also losing emigrants at a constant rate

quation A.3 says that our model population will st. ing i ;

lation size equals the ratio c/7. Pop Ry g
The equilibrium for Equation A.2 is rather diffe i

. i f A. rent. In this model, a pop-

ulation that is growing exponentially loses a constant proportion of indf:rig-
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uals as emigrants. Setting this equation equal to zero and solving gives us:

0=rN-¢gN Expression A.7
gN =N Expression A.8
g=r Equation A .4

Notic? that, in this solution, there is no unique value of N. In other words,
there is no particular population size for which growth will cease. I.nstead,
the condition for zero growth is that the rate of migration (g) is exactly bali
anced by the instantaneous rate of increase (r). No matter how large or how
small the population, growth will cease if these two constants equal each
other. Recalling that the instantaneous rate of increase (r) is the difference

]lietween the instantaneous birth (b) and death (d) rates (see Chapter 1), we
ave:

b=g+d Expression A.9

In other words, growth will cease if the birth rate equals the sum of the emi-
gration rate and the death rate. If b is greater than g + d, the population will
increase exponentiaily, and if b is less than g + d, the population will decrease
exponentially.

ANALYZING THE STABILITY OF THE EQUILIBRIUM

Although we have now defined the equilibrium solutions for our models,
there is one additional step that is important. We have to analyze their stabil-
ity. As described in the text, there are three sorts of stability that a point equi-
librium may acheive: stable, unstable, or neutrally stable.

To understand the idea of stability, imagine a population is at equilibrium,
so that the positive and negative forces affecting population growth are in
balance. Now we perturb our population by either adding or removing a few
individuals. What happens now that the population no longer is in equilibri-
um? If it returns to the original population size, the equilibrium point is sta-
ble. If the population continues to move away from its initial size, the equi-
librium point is unstable, Finally, if the population remains at rest at the new
population size, the equilibrium point is neutrally stable. B

Technically, this analysis is based on the idea of local §tab1hty, beca.use we
are only analyzing perturbations that take the population a short dllsmnce
away from the equilibrium point. If the population is Pe@rbed more violent-
ly, it won't necessarily return to a locally stable equilibrium. If the perturba-
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tion pushes the population close to a different equilibrium point, which is also
locally stable, the population may move towards that new equilibrium.

How can we test mathematically for the stability of the equilibrium? The
simplest approach is to first solve for the equilibrium point as we did above.
Next, we set the population size slightty above this equilibrium, and use this
value of N to solve for the growth equation. Is the population growth rate
positive when the population is slightly above equilibrium? If so, it will con-
tinue to move away from the equilibrium point, which is therefore unstable.
On the other hand, if the population growth rate is negative when the pop-
ulation is slightly above equilibrium, the equilibrium point is probably sta-
ble. Finally, if the population growth rate is also zero when the population is
displaced slightly above equilibrium, we have a neutral equilibrium. We
should also substitute a value for N that is slightly below the equilibrium
population size to make sure the behavior is consistent. In this case, the pop-
ulation should rise towards a stable equilibrium, continue to decrease away
frorr_xl .;n.unstable equilibrium, and remain in place (IN/dt = 0) for a neutral
equilibrium.

For simple growth equations, we can also analyze stability graphically. To
do thi.s, we take the positive and negative growth elements of the equation,
and divide them each by N, so they are expressed as per capita (per individ-
ual) rates. Next, we plot these two curves on a graph with population size
(N) on t:e x axis and t:e per capita growth elements on the y axis. If the two
curves do not cross, there is no equilibrium i i
S e e e e e
intersect in a portion of the graph where the population size is ; eater th. o
equal to zero, the intersection constitutes an equilibrium soluh'frr\ to th o
tion. The point on the x axis of the graph directly beneath the int elign et
resents the equilibrium population size. If there is more than it "y
F‘l:l\en ﬁthelrte is more than one equilibrium point. And, if theotrx(?ctflrrie:sh :::
Identical to one another, then all population sizes are ; uilibri i

You should confirm that the intersection of the poi s Ena.
librium by setting t . points represents an equi-
braically, lzlext, ” fex:ingi;‘;“t:: l:icrltt;la;f: ;g\:l:ll to zero and solvi:ng it alge-
ly displaced from the equilibrium. If the lilirtfclurv o fO.r populations slight-
curve, then the population will increase at that opu ll_es at?ove e o
curve lies below the death curve, the populati PO_PUIahon e bichy
these increases or decreases as horizontaf a o ccrease. We can draw

rrows on the graph with the origin
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trally stable. This will be the case when the birth and death curves are equal
to one another, because a slight movement to the left or right of the equilibri-
um will bring the population to another equilibrium.

An example of this analysis is shown in Figure 2.1, which illustrates the
per capita birth and death functions plotted against population size for the
logistic growth model. In the logistic model, the per capita birth rate decreas-
es and the per capita death rate increases as population size increases. These
two curves intersect at an equilibrium point.

As Chapter 2 explains, this equilibrium point corresponds to the carrying
capacity, K, of the environment. K is a stable equilibrium point. At popula-
tion sizes smaller than K, the per capita birth rate exceeds the per capita death
rate, so the population increases. Above K, the death rate exceeds the birth
rate, so the population declines towards K.

Now let us analyze Equation A.2, in which there is a constant per capita
rate of emigration out of the population (AN/dt = rN — gN). In this case, the
equilibrium solution is r = g (Equation A.4). To analyze the stability of the
equilibrium, we plot as a function of population size the per capita elements
of the equation that lead to population increases and decreases. The growth
term in this equation is 7N, but plotting it on a per capita basis gives N /N =
+. Similarly, the emigration term is plotted as g on a per capita basis. Ifrand g
do not equal each other, the plot is of two parallel lines that never cross
(Figure A.2). If r is greater than g, the population is increasing exponentially,

-

N

Figure A.2 The intrinsic rate of increase_(r) and the pxopc:;honmaéi;)vf ;n:g;:rhon
(g) plotted as a function of population size (N). Because these o
cross there is no population size for which these twod:o_rcoﬂﬁ are 3

hencé no equilibrium population size for which dN/dt =0.
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and if r is less than g, the population is decreasing exponentially. In both

ilibrium is never reached.

Cas:;;vavz:;lr‘,lif 7 equals g, the two lines are identical and represent :lﬂl.\leeu:':
equilibrium. In this case, any popﬂaﬁon size that is chosen w1}l mee e 1Cum

dition of 7 = g. If the population is dlsplaced' above or below its equil drth 4
the new population also corresponds to a point at which r equals 8, and ere
will be no further population growth. Thus, we have a neutral eql_n!lbntlum.

For a more complex example, we will now analyze the equ1]1br‘1um of
Equation A.1. In this model, there is exponential growth (rl\f) and em'lgra‘nts
are leaving the population at a constant rate c. The equilibrium solution is a
population size of N = ¢/r (Equation A.3).

To analyze the stability of this equilibrium, first plot the two comp_onents
of growth on a per capita basis as a function of N. As before, plotting the
growth term 7N on a per capita basis means plotting 7N/N = on the graph.

You might be tempted to plot the emigration rate c as a straight line as
well, but this would be incorrect. Remember that each term must be plotted
on a per capita, or per individual, basis. This means that you must plot c/N
as a function of N, which is the graph of a hyperbola.

There are two cases to consider. The first is when the instantaneous rate of
increase (7) is less than zero. In this case, the two curves do not intersect, and
there is no equilibrium.” This makes intuitive sense. If the population is
decreasing exponentially, the additional loss of emigrants at a constant rate
will not lead to an equilibrium, and the population will continue to decline
towards zero.

However, if the intrinsic rate of increase is positive, the straight line graph
of r lies above the x axis and intersects the hyperbolic curve of ¢/N at the
value c/r, which establishes the equilibrium (Figure A.3). Is this equilibrium
point stable? To the left of the intersection, the curve of ¢/N is above the r
l%rw, so the population will decrease. To the right of the intersection, the posi-
tions are reversed, so the population will increase. In other words, any move-
ment aw?y from'the equilibrium point takes the population even further
gotilnethe mtfrsgchon. Thus, the poPulatmn has an lfmtab!e. equilibrium point.

the popu ation declines, even slightly below this equilibrium,
will overpower growth, and the population will decline towards
population is displaced above its equilibrium, it will begin increa:

emigration
zero. If the
sing.

*Technically, there is an equilibrium point at N =

0, which is true f 2
models. The zero equilibrium point may be stab} € for most population growth

e or unstable, depending on whether a
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— L By /N

cfr

N

Figure A.3 The intrinsic rate of increase (r) and the constant rate of emigration (c)
plo!ted asa function of population size (N). Because the curves are plotted on a per
capita basis, thg emigration rate is plotted as c/N. The two curves intersect at the
egux].lbnu.m_pomt N =¢/r. Because the population growth rate is positive to the
_nght ct)f l';l;e intersection and negative to the left of the intersection, the equilibrium
is unstable.

Thus, introducing a constant rate of emigration from a population that is
increasing exponentially (positive r) results in an unstable equilibrium. This
unstable equilibrium represents a minimum viable population size, because if
the population dips below the equilibrium, it will continue decreasing
towards zero.

These analyses illustrate graphical and numerical methods that may be
used to solve for the equilibrium in simple models of population growth and
to analyze the stability of the equilibrium. These analyses also demonstrate
why it is important to state the conditions of the model carefully. Whether
we modeled emigration as a constant rate () or as a constant per capita rate
(g) had a big influence on the predictions of the model. For an example of a
population growth model that has more than one equilibrium point, one of
which is stable and one of which is unstable, see Problem 2.3.

For models that incorporate more than one interacting species (Chapters 5
and 6), the approaches used here will not work, because the equilibrium
population size for one species will depend on the population size of the
other species, and vice versa. In these cases, a state-space graph can often be
used to analyze equilibrium states. In a state-space graph, speFies’ isoclines
are plotted on a graph in which the abundances of the two species form the x
and y axes. The method is described in detail in Chapter 5. These graphical
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solutions are appropriate for simple models with lingar iSf)clines. Howe‘ve.r,
for non-linear models (e.g., some of the model variations in Chapter 6) it is
not always possible to infer the dynamics from the state-space graph. 'More
complex mathematical tools are needed, and Roughgarden (1998) pro'wdes a
good introduction to the methods. Also, some computer mathem.ahn:s pro-
grams, such as Mathematica and Matlab, will solve equations numerically and

analyze their stability.

THE INTEGRAL: PROJECTING POPULATION GROWTH

Let us review what we have done up to this point. First, we modeled popu-
lation growth by describing mathematically the components that determine
the population growth rate (dN/dt). Next, we set thjs growth equation equal
to zero and solved for the equilibrium point(s). Finally, we used simple
graphical and numerical analyses to determine whether the equilibrium was
unstable, stable, or neutral.

The chapters in the primer follow a similar strategy for the analysis of sev-
eral kinds of population models. Although the text presents differential equa-
tions for population growth and the algebrajc manipulations necessary to
solve these equations, no calculus is actually used!

So, is there a need for calculus at all in modeling population growth?
Recall our original goal stated at the start of this appendix: to derive a func-
tion that would allow us to predict population size at a given time t. What
we have done instead is to derive an equation that will give us the population
growth rate (IN/dt) at a given time or given population size.

Because integration is the inverse operation of differentiation, the integral
of a growth equation will forecast population size. Hence, the rules of inte-
gration can be applied to growth equations to convert them to a form that
can be used to predict or forecast population size. As an example, here are
the steps of integration for the exponential growth equation dN/dt = rN:

dN, /dt =rN, Equation 1.1
ANy =rN,dt Expression A.10
dN; /N, =rdt Expression A.11

Recall from your cal e
dnga), Thus:y ur calculus that the derivative din(x)/dx = 1/x, so that d¥ Jx=

dIn(N,) = rdt Expression A.12
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Integrating both sides gives:

InN; -InNg =rt—rt, Expression A.13

Rearranging the terms gives:

In(N; / Ng) =r(t ~t5) Expression A.14
N; /Ny =e'lt-10) Expression A.15
Nj = Nyl Expression A.16
Substituting ty = 0 gives:
N, = Nge* Equation 1.2

Mathematically, both equations say the same thing, but one is a function that
gives the population growth rate as its output (Equation 1.1), and the other is
a function that gives population size as its output (Equation 1.2).

Another place where the rules of calculus come in handy is in the conver-
sion from discrete to continuous equations. For example, Equation 1.5 gives
the relationship between 4, the finite rate of increase, and 7, the instantaneous
rate of increase:

el A Equation 1.5

This derivation is based on the fact that, as n approaches infinity:
n

x\x
(1 H ;) € Expression A.17

The base ¢ is a constant (¢ = 2.718) named in honor of the Swiss mathemati-
cian Leonhard Euler (1707-1783), who also gave ecology the Euler equaﬁqn
(Equation 3.13). As explained in Chapter 1, the d.iSCl'Et? growth.fa.cto'r riis
equivalent to the instantaneous rate of increase r if the time step is mf'lmtely
small. Also, remember that the finite rate of increase A =(1+rg). Letting r =
x/n, we have:

1
e=(1+1)" Expression A.18
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1
e=(1)" Expression A.19

Raising both sides to a power of r gives:

RE=A Equation 1.5

Thus, a thorough knowledge of calculus will make it easier to grasp models of
population growth, but it is not essential for understanding the operation of
the basic models described in this primer. As we try to make our ecological
models more realistic, it becomes very easy to write equations that are so
complex that they cannot be solved analytically and must be evaluated
numerically. Although the basic models may make unrealistic assumptions,
their predictions are simple and can be tested empirically. The equations ana-
lyzed in this primer are the foundation of modern population and community
ecology, and you should have a solid understanding of how they operate.



Solutions to Problems

CHAPTER 1

1.1.

1.2.

1.3.

Rearranging Equation 1.3:
r=In(2)/¢t=In(2)/50 years
=0.01386 individuals / (individual « year)
Np=>5.4billion and ¢ =7 years. From Equation 1.2 we have:
Ny =5.4 (001386)7))
=5.95 billion humans

Because there were 400 births, 150 deaths, and no migration, from
Expression 1.1:

Niy1 = 3000 + 400 — 150 = 3250
We can arrange Expression 1.15 to givé:
A=Nu1/N;
Thus, A = 3250/3000 = 1.0833
Using Equation 1.6 to convert A to 7 gives:
r = In(1.0833) = 0.0800 individuals/(individual « month)
From Equation 1.2, the population size after six months will be:
N = 3000(e0-0800)()) = 4848 beetles

First, take the natural logarithms (base e) of the five consecutive popu-
lation sizes, yielding: 4.605, 5.063, 5.753, 5.986, and 6.677. Next, plot these
values as a function of time:
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551

Logarithm of N

45F

4 1 1 1 L 1
0 1 2 3 4 5

Time (days)

Because resources aren’t limited, we can draw a straight line to fit all
five of the data points. Although the points don’t fall precisely on the
line, this line gives a good estimate of population growth:

() r

65

Logarithm of N
w
w
T

N O e
[ e T, 3

Time (days)

Finally, we measure the slope of this straight line i )
ly, we n to estimate 7. The sl
of a line is simply (Ay /Ax). Using the dashed lines to calculate the SI:::

we have (5.7 -5.2)/(3 - 2) = i i
bomari sl )/ ( ) = 0.5. So, our estimate of r for this flatworm



1.4. Because this is an annual species,

15.
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r=0.5 individuals/(individual « day)

we need to use the model of discrete
tep of one year. If the Population is
1+0.12) = 1.12. From Equation 1.5

7=In(A) = In(1.12) = 0.113 individuals / (individua] - year)

population growth with a time s
increasing by 12% each year, A = (

Finally, we use Equation 1.3 to calculate the approximate doubling time:

tdouble = In(2)/r = In(2) / 0.113
= 6.1 years

The answer is only approximate because Equation 1.3 is for a continu-
ously growing population.

For small populations growing with demographic stochasticity, the
probability of extinction can be calculated from Equation 1.15. In the
undisturbed state, the probability of extinction with a Population size of
50 plants is:

N, 50
dY°_(0.0020)" _
P(extinction) = (EJ = ( 0.0021 ) =0.087
If the shopping mall is built, we have:
N 30
4)7° _(0.0020\*" _
P(exh'.nction) = (3) = (0_0021) =0.231

So the proposed development threatens to increase the risk of extinction
from about 9% to 23%.

CHAPTER 2

21.

22.

To solve this problem, we first need to determine N, the population size.
From Figure 2.3a, we know that the maximum possible growth rate fora
population growing according to the logistic model occurs when' N=K/2,
so N = 250 butterflies. Plugging these values into Equation 2.1 gives:

dN _ f N )
a=m(1-§
=0.1(250)([1- (250 /500)]
=125 individuals / month

i i i isti tion, we know
ulation growing according to the logistic equation,
f}:’artmoglaxhnuf population growth rate occurs at K/2, so K must be
1000 fish in this case. If the population is stocked with an additional 600
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fish, the total size will be 1100. From Equation 2.1, the initial instanta-
neous growth rate will be:

AN _ (0.005)(1100)[1 - (1100/1000)]

=-0.55 fish/ day

The growth rate is negative because the additional stock pushes the pop-
ulation above its carrying capacity.

The equation for the death rate is linear; as in the simple logistic, the
greater the number of turtles in the population, the greater the death
rate. However, the equation for the birth rate is quadratic; it includes an
N2 term. This quadratic equation generates an Allee effect for reproduc-
tion: the birth rate first increases and then decreases with population
size. Substitute different values of N into the birth and death functions to
construct the graph shown on the next page.

Notice that the birth and death curves intersect in two different places.
These points represent two different equilibrium population densities.
One point of intersection is at a population size of approximately 34 tur-
tles. If we are to the right of this equilibrium, the death rate exceeds the
birth rate and the population declines, as shown by the arrow pointing to

07
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2.4.

the left. If the population is less than 34, the birth rate exceeds the death

rate and the population increases, as shown by the ri inti
: ; y the right-pointing arrow.
Thus, this larger equilibrium point is stable. spone

The smaller equilibrium occurs at a population size of approximately 6
turtles. If the population is greater than 6, the birth rate exceeds the death
rate, and the population will continue to increase until the equilibrium of
34 is reached. But if the population is less than 6, the death rate exceeds
the birth rate, and the population declines to zero. Thus, this second equi-
librium is unstable. By incorporating an Allee effect into the birth rate, we
generate a minimum population size (6) that is necessary for the popula-
tion to persist. This result is in contrast to the simple logistic model, in
which the population always increased as long as it was below carrying
capacity. See the Appendix for additional discussion of stable and unsta-
ble equilibrium points.

We wish to compare the growth rates of two populations, one of which
is x individuals above carrying capacity, and one of which is x individ-
uals below carrying capacity. For the first population, let N = K + x.
Substituting into Equation 2.1 gives:

dN _ _K+x
W_r(KHc)(l 4 )

For the population that is below carrying capacity, N = K - X, so its
growth is represented by:

%:r(K-x)(l— Ki")

In order to determine which growth rate is larger, we compare the size
of both equations by factoring out equivalent terms:

r(l(+x)(1— K;"}—?er(x—x)(l— Kix)

Dividing through by r and substituting K/K for 1 gives:
(K+x)[§-%)«—?—+(1<-x K_ Klz")

After subtracting and dividing through by K, this simplifies to:
(K +x)(~x) (K - x)(x)

Notice that the expression on the left is negative, because this is the

growth rate when the population is above K. Because we are mtgrested
in the magnitude of growth, we take the absolute value of both sides of

the inequality. Then, dividing through by x yields:
(K+x)>(K-x)
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25.

This result proves that the decline of a a population above.its carryi:ng
capacity is always faster than the increase f-rom below carrying capaaﬂt‘y‘;
For this reason, the average population siz.e will always be less than
average carrying capacity in a variable environment.
If the birth rate is density-dependent and the death rate is density-inde-
pendent then:

b’=b-aN

d'=d
Substituting these two terms back into Equation 2.1 gives:

AN _ (p-aN-d)N

N _((p-d)-aN]N
Treating (b — d) as 7, we have:
Because a and r are both constants, we can define K as 7/a, which again
leads to the logistic equation:

dN _ _N
W——rN(l I()

You can think of this as a special case of Expression 2.5, in which the
constant ¢ equals zero because the death rate is density-independent.

2.6. Because this is a slow-growing population with seasonal fluctuations in
carrying capacity, we can use Equation 2.7, with a mean carrying capac-
ity of 500 larvae, and an amplitude of 250 larvae. With these values, the
average population size is predicted to be:

|/(500)* —(250) = 433 larvae
Because the population growth rate is slow, we expect this population
to respond sluggishly to the seasonal changes in carrying capacity and
not show much variation in population size.

CHAPTER 3

3.1

Here are the /(x) schedules from Table 3.5, with the

axi
base 10 logarithmic scale: y o pIOttedgl;l :
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® Post-reduction
OPre-reduction

0.01
0 2 3 4 5 6 7
3.2a. Life-table data are calculated as follows:
1) = 800 = Initial Corrected
X | 50| b(x) 10b(x) | I0)b(x)x | estimate i
S /S| I 1 estimate
/5 | 1ocs /109 e™10b(x) | e ™I(x)b(x)
01500 0.0 1.00 0.8 0.00 0.00 0.000 0.000
1 [400] 25 0.80 0.1 2.00 2.00 0.965 0.946
2| 40| 3.0 0.08 0.0 024 048 0.056 0.054
3 000 0.00 0.00 0.00 0.000 0.000
Ry= =224 et e ‘
SI(x)b(x) offspring I=248| £=1.021 X =1.000

G= Zl(x)b(x)x

" Tlx)b(x) = 1.107 years
r (estimated) = In(R,)/G Fﬁ&??dlﬁ:;‘:lgg)s/
Correction added to W
estimated r
o e

3.2b. Stable age and reproductive value distributions are calculated as fol-
lows, using r = 0.749:

Stable age Reproductive value distribution
distribution
x | Ix) | b | Ix)e™™ c(x) e™i(x) | e™l(y)b(y) |ee™(yb(y) |v(x)
0 | 1.00 | 0.0 1.000 0.716 1.000 0.000 1.000 1.000
1 18080+ 2.5 0.378 0.271 2.644 0.946 1.000 0.143
2 | 0.08| 3.0 0.018 0.013 | 55.909 0.054 0.054 0.000
e =1.39
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3.3 Age-specific survival probabilities and fertilities are calculated as

follows:
P il b ae
B ol 10)/1G-1)  b)P;
0 1.00 0.0
1 1 0.80 25 0.80 2.00
2 2 0.08 3.0 0.10 0.30
3 3 0.00 0.0 0.00 0.00
The resulting Leslie matrix is:
20 03 0 50
A=08 0 0fand theinitial population vectoris: n(0)=|100
0 01 0 20

Using Equations 3.8 and 3.10, we have:

m(1) = (2)(50) + (0.30)(100) + (0)(20) = 130 130
ny(1) = (0.8)(50) = 40 n(l)=| 40
m3(1) = (0.1)(100) = 10 10

Repeating the calculation using this new vector gives:

m(2) = (2)(130) + (0.30)(40) + (0)(10) = 272 279

ny2) = (0.8)(130) = 104 n(2)=|104

13(2) = (0.1)(40) = 4 4
CHAPTER 4

Fo_ P __02
f Pi+p, 02+04 033 >

Approxirnate]y one island in th %
Population. o e (a0%%

) will support an ant lion



4.1b. Without the mainland population,

4.2,

4.3.

SOLUTIONS 223

colonization s strictly internal. In this
ribed by Equation 4.5 (internal colo-
), and the equilibrium solution is from

case, the metapopulation is desc
nization, independent extinctions
Equation 4.6:

f=(1—pTe)=(l—g%)=—l

Because the equilibrium is less than zero, the island populations will all

8o extinct. Their persistence depends on the presence of the mainland
population.

For the single pond, the probability of persistence is (1 - 0.1) = 0.9. For
three ponds, we use Equation 4.2, with a new p, of 0.50. In this case, the

probability that a frog population will persist in at least one of the three
ponds is:

P, =1-(p,)* =1-(050)> =0.875

So, in the short run, the probability of persistence is slightly higher for
the population in a single pond (0.9) than for the subdivided popula-
tions in three ponds (0.875). In the long run, the best strategy will
depend on the dynamics of the frog populations. If the subdivided pop-
ulations quickly increase in size to 100 or more individuals, it might be
worth the short-term risk to cultivate three viable populations rather
than just one.

Because the metapopulation has a propagule rain and a rescue effect, its
dynamics are described by Equation 4.7:

& - paa-p-ea-1)

=(0.3)(1 - 0.4) — (0.5)(0.4)(1 - 0.4)

=0.18-0.12

=0.06 proportion of patches/time
Because the “growth rate” is greater than zero, the metapopulatfion is
increasing. Also, we could have solved for the equilibrium fraction of
sites occupied with Equation 4.8:

FoPi_03
f=%=05
= 0.6 proportion of patches

Because 40% of the population sites are occupied, f = 0.4. This is b.elO\‘N
the equilibrium value, also demonstrating that the metapopulation is

expanding.
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CHAPTER 5

5.1.

5.2,

Here is the plot of the state space, with the initial population sizes indi-
cated by the star:

K,
\
\
‘\
\ dN,/dt =0
Z v
\
§ %
3 \
2 \
3 \
2 A
K|/

dNy/dt =0

K,/ Ky
Red scorpion (Ny)

These isoclines define an unstable equilibrium. From the initial densities,
the black scorpions will increase and the red scorpions will decrease in
the short run. Eventually, the red scorpions will be driven to extinction,
and the black scorpions will persist at their carrying capacity (K») of 150.

To answer this question, we use the inequalities in Table 5.1. Coexistence
requires that:

1. K
F> >0
B K,
1K
05”100 " 13
K -
2> 100> 15
A lmmmum carrying capacity of 151 individuals for species 1 is neces-
sary to satisfy this inequality and ensure coexistence.
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If species 1 is 80ing to win in competition, then:
1_K;
F<L>
[ SRl

Ky
2<W>1.5

For this to happen, the carr

ying capacity of species 1 must be greater
than 200 individuals.

5.3. The following diagram illustrates the two isoclines for the initial stable
equilibrium. The arrow indicates the shift in the “prey” isocline that
allows the “predator” to win in competition:

Ky /a

ANy /dt =0

N,

Kyl

CHAPTER 6 N i
6.1. From Equation 6.3, the solution for the victim isocl.me is0.1/ 9.0016-4190
B spiders, and the solution for the predator isoclme'(ljlclluatlon E ?13
0];1)") /0 061 = 500 flies. Plotting the isoclines and the initial population

sizes gives:
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6.2.

A

Number of spiders

100

500
Number of flies

Because we are above the victim isocline, there are too many predators,
so the fly population will decline. However, we are to the right of the
predator isocline, so there are enough victims to allow the spider popu-
lation to increase. Both populations will undergo smooth cycles.

From Equation 6.5, we first can solve for the missing value of g:

10=—2%
4/0.59
4r?
100= 77
0.59
50 = 4r°

Thus, g = 0.7896. If q is doubled in size and r is 0.5, the period of the
cycle becomes:

iod = 2n 6.283
eriod = =1L00
P &‘(0.5) 2)(078%) 0.880 = 7-07 years

So, the period of the cycle decreases to approximately 7 years.
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6.3. The state-space drawing is as follows:

] L. ]

Number of victims (V)

Number of predators (P)

From this drawing, it is easy to see that the equilibrium on the right is
stable, and predator and prey will coexist. However, the equilibrium on
the left is unstable, and if the victim population falls below a critical
minimum, the predators will drive it to extinction. Note the similarity
between this analysis and that of the Allee effect in the single-species
logistic model (see Problem 2.3). However, do not confuse the state-
space graphs with the single-species graphs of density-dependent birth
and death rates!

6.4a. Because k = 1/h, we have:

- L

D=2
=1
aD= 7
oD =k
o=k =100 _ 50]victims/(vietim + hour « predator)]
6.4b. From Equation 6.8:

n__kv
t D+V

- 100(75) _ %:93.8 prey/hour

CHAPTER 7 . "
7.1a. Plugging into Equation 7.1 gives 5= (8:759)(120) U3 = 15.04, which is
close to the observed richness of 17 species.
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b. With only half of the available area, the pr.edicted species richngfse:hls
S = (8.759)(60)*113 = 13.9. So, roughly 14 species should be presen:; i thie
equation is completely accurate. Can you list several reasons why this
forecast might be seriously incorrect?
7.2. The equilibrium depends on both the immigra.tion and .the extinctiqn
curves. Therefore, if the large island (4) is very isolated, it may contain
fewer species than the small island (Ay):

A E E,

Rate

Il
1
I 1
t 1

S S P
Number of species on island (S)

7.3. First, we need to use Equation 7.4 to solve for L Equation 7.4 is written in
terms of S, but we can rearrange it to give a solution for J:

s__IP

I+E
SU+E)=1p
SE=1p-13

[=SE_

pP-S

Plugging into this last €xpression yields [ = (75)(10) /(100 - 75) = 30
species immigrations per year. If the immigration rate is doubled, I = 60.
From Equation 7.4, the new species equilibrium ig (100)(60) /(60 + 10) =
85.7 species. From Equation 7.5, the new turmnover rate ig (60)(10) /(60 +
10) = 8.57 species per year.
74. The calculation from Equation 7.6 is tedious,

detail only for Island 1. First, we must calcula
Island 1. From Expression 7.9:

so we will illustrate it in
te x1, the relative ateq of

X1

L 110
A T TI0+100+T0+5 = 0489



Now we can use Ex;
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pression 7.13 to find the probability of occurrence

for each of the si i in thi
@ SiX species. Remember that 7; in this expression is the

total abundance of each species, which we obtain by summing the rows
,
g

1-(1-0.489)3 =0.867
1-(1-0.489)' =0.489
1-(1-0.489)1% =0.999
1-(1-0.489)° =0.982
1-(1-0.489)% =0.739
1-(1-0.489)* = 0932

Species A
Species B
Species C
Species D
Species E
Species F

From Equation 7.6, the expected species richness on Island 1 is:

E(S;)=0.867 +0.489 +0.999 +0.982 + 0.739 + 0.932 = 5.008

If we continue these calculations for all four islands, we obtain:

Observed S Expected S
Island 1 6 5.008
Island 2 1 4.835
Island 3 8 1.020
Island 4 3 0.540

The expected species richness does not match the observed very well.
For example, the second largest island had only a single species on it,
whereas the passive sampling model predicted almost 5 species. The
two smallest islands each supported 3 species, but the passive sampling
model predicted 1 or zero species. These data suggest that a random
placement of individuals cannot account for the observed species rich-

ness data.

CHAPTER 8
8.1a.0.030

8.1b. Algae (it has the highest transition to free space: pjj = 0.678)
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8.1¢. Soft corals — Encrusting acroporid corals
Soft corals — Algae
Soft corals — Pocilloporid corals
Algae — Pocilloporid corals
Massive corals — Tabular Acropora
Massive corals — Pocilloporid corals
Pocilloporid corals — Tabular Acropora
Pocilloporid corals — Soft corals
Pocilloporid corals — Algae
Pocilloporid corals — Massive corals

8.2. You can answer this question by using the matrix multiplication proce-
dure described in this chapter. However, if you think about this particu-
lar set of numbers, you will see that you can be lazy. Just add up the
transition elements for each row of the matrix, multiply by the total by
100, and you will have the number of patches for each stage.

Number of

Stage patches at t = 1
Encrusting

acroporid coral 65.8
Tabular Acropora 37.5
Bushy Acropora 103.4
Staghorn Acropora 73.1
Soft corals 88.0
Algae 11.1
Massive corals 47.5
Pocilloporid corals 23.7
Free space 449 8

Why does thi i is tri
" un):bers 7s s calculation work? Can you use this trick for other patch
If you were observant, you noticed that your patch numbers now sum to

899.90, rather than to 900.00, as they should. The discrepancy arises

because the columns of the published matrix do not sum exactly to 1.00,

probably because of rounding errors.
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Bracketed numbers refer to chapters.

a See competition coefficient. [5] See capture effici
aV See functional response. [6] it
See competition coefficient. [5] See conversion efficiency. [6]

BV See numerical response. [6]
A See finite rate of increase. [1]
As See immigration rate. [4]
Hs See extinction rate. [4]
o3 _?, See variance. [1]
2 <
oN See variance in population size. [1]
03 See variance in 7. [1]

1-N/K See unused portion of the carrying capacity. [2]

A See transition matrix. [3, 8]

age class Individuals within a certain age interval are classified into a single age
class. Individuals of age class i include those individuals between the ages of
i-1and i. Thus, individuals in the first age class include newborns through indi-
viduals about to celebrate their first birthday. Age classes are counted beginning
with 1, whereas ages are counted starting at 0. The age class of an individual is
represented by a subscripted variable. Thus, fs represents individuals in the sixth
age class. [3]

age The age of an individual is the amount of time that has passed since its birth.
Thus, newborns are classified as age 0, not age 1. The age of an individual is rep-
resented by a variable in parentheses. Thus, f(6) refers to individuals of age 6. [3]

Allee effect An increase in the instantaneous birth rate (b) or a decrease in the instan-
taneous death rate (d) as population size increases. In most populations, birth rates
decrease and death rates increase as the population grows. These negative effects
of crowding are the typical way that density dependence expresses itself in popula-
tion growth. In some cases, however, population growth is actually enhanced by
increasing population size. Increased population growth can occur if individuals in
groups are able to hunt more efficiently, find mates, or defend themselves more
effectively against predators, parasites, or diseases. All of these activities would
cause the rate of population growth to increase as the size of the population
increased. Eventually, however, we expect negative effects of crowding to emerge
s0 that population growth rates turn downward as abundance increases further.
Allee effects can cause simple models to exhibit more complex dynamics, such as a
minimum sustainable population size (see Problem 2.3). The Allee effect is named
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after the ecologist Warder C. Allee (1885-1955), who popularized the idea in an

incil i t al. 1949). [2]
i al textbook, Principles of Animal I:Jc.alogy (Allee e
all;‘f:mr;alcizmical interfeprence competition ahmong p[-éa]nts effected through the
lease of toxic, often aromatic, chemlcal_s in the soil. [ 3
an\l:l:t::e In a population cycle, the amplitude is t!\e d:fferer'u:e betwee'r: th? ::x]lj y
mum population size and the population size at its midpoint. The units of amp.
tude are numbers of individuals. [2]
annual A plant that lives for only one season. [3]
area effect Species number increases with island area. [7]

B See birth rate. [1]
b See instantaneous birth ratf. ][1]
ecundity schedule. [3

:,a(':lfihsreaetef (B) Th?elchange in the number of births in a population measured over a
short time interval. Its units are births/time. [1] ]

birth-flow model An age-structured model in which births occur continuously dur-
ing the interval of a particular age class, in contrast to a birth-pulse model. [3]

birth-pulse model An age-structured model in which births are pulsed or concen-
trated, so that individuals give birth to all of their offspring on the day they enter
anew age class. [3]

clx) See stable age distribution. [3]
capture efficiency (@) The effect of a predator on the per capita growth rate of the

prey Populaﬁon:

The units of & are victims/(victim » time ¢ predator). [6]

carrying capacity (K) The maximum number of individuals that can be supported
in a population that is growing according to the logistic growth equation. This
limit reflects the availability of space, food, and other resources in the environ-
ment. The units of carrying capacity are numbers of individuals. [2]

cellular automata A mathematical model in which patches are placed in a spatial
grid, and the transition rules for a patch depend on the state of the surrounding
patches. [8]

chaos A special pattern of apparently unpredictable fluctuations in population size
that is generated by a model that is entirely deterministic. Chaotic fluctuations
arise in discrete models of population growth that have strong density depen-
dence and large intrinsic rates of increase. Chaotic dynamics are not caused by
random variation in the environment, although chaotic populations are very sen-
sitive to initial conditions. [2]

climax community The endpoint of the classic facilitation model, the climax come
munity is diverse, self-replacing, and relatively stable. Disturbances can remove
the climax community and re-start the successional sequence. [8]

closetl_ polziulat_lro;\ Af closed population is one in which there is no immigration or
emigration. Therefore, the i
Bore e b i A <[)lr;1y forces that can change the size of a closed popula-
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¢°l‘l?)\‘V: e: ioh‘ﬁl 2: ad;‘v:g:als ina population, all born at the same time, that are fol-
t s ort analysis allows us to directly measure the mortality

rates of different ages and to construct the I(x) schedule for the population. [3]

cohort life table See horizontal life table. [3]

cohort survival (S(x)) The number of individuals of a cohort that have survived to
age x. By definition, $(0) is the number of individuals in the original cohort. [3]

competition coefficient (@) In the Lotka-Volterra competition model, a is the per
capita effect of species 2 on the population growth rate of species 1, measured rel-
ative to the effect of species 1. Since it is a scalar constant, a is a dimensionless
number without units. [5]

competition coefficient (§) In the Lotka—Volterra competition model, § is the per
capita effect of species 1 on the population growth rate of species 2, measured rel-
ative to the effect of species 2. Since it is a scalar constant, § is a dimensionless
number without units. [5]

competitive interactions Species negatively affect each other’s population growth
rate and depress each other’s population size. [5]

constraints Constraints are physiological, mechanical, or evolutionary limitations
that prevent the evolution of certain life history traits. These constraints may rep-
resent adaptations that evolved for other reasons, but limit certain kinds of life
history evolution. [3]

continuous differential equation An idealized equation for the population growth
rate in which the time steps between consecutive measurements of the popula-
tion are infinitely small. Representing population growth as a continuous differ-
ential equation allows us to use the rules of calculus and integration to solve the
equation. [1]

continuous population growth A population that is growing continuously has
births and deaths occuring steadily, so that the trajectory of population size
resembles a perfectly smooth curve. [1]

conversion efficiency (§) The ability of predators to convert each prey item captured
into additional per capita growth rate:

0
P dt \V
The units of 3 are predators/ (predator ¢ time o victim). [6]

D See death rate. [1] See half-saturation constant. [e]

d See instantaneous death rate. [1]

dN/dt See population growth rate. [1] ] ]

damped oscillations Oscillations in which the period of the fluctuations becomes
smaller with time. Damped oscillations convergeon a stable e.qul.lxbnu.m polm.t. [2]

Darlington’s rule Named after the biogeographer Philip J. parlmgton, the nl.l : is
that, on oceanic islands, a tenfold increase in island area is needed for each dou-
bling of species number. [7] )

death rgahe (I-'I;), (g) In the exponential growth model, the dea&l\-ln::eﬁlljn is 1:1; rf,h:lnlgé

; ; e _

i mber of deaths in a population measured over a sho

:“mt'}t‘:;‘el de:t.rh(s)/ time. [1] In the Lotka—Volterra predation model, the death rate g
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is the instantaneous death rate for the prgdator population in the efbs;nce of ;nh:n_
victim population. 4 is identical to d, the instantaneous .death ;ate in the exp
tial growth model. Its units are predators'/ (predator ¢ hn'}e)‘ [6] P
delay differential equation A continuous differential equahorn r.ha‘t includes a ne
lag, so that current population growth depends on population size at some poin
i ast. [2] y
de:otghrzghic s[tt}chasﬁcity Uncertainty due to variaﬁ'on in the sequence f’f b.lrths
and deaths in a population. Even in a constant environment (no variation in ),
discrete births and deaths can cause population numbers to vary unpredictably.
Demographic stochasticity is analagous to genetic drift, in wlud‘l alleh.e frequen-
cies in a population vary by chance. Demographic stochasticity is not important
in large populations because this source of random variation tends to average
itself out over the long run. But in small populations, demographic stochasticity
can generate a substantial risk of extinction, even in an exponential growth
model where birth rates exceed death rates. In contrast, small populations are
never at risk of extinction in a deterministic model of exponential growth, as long
as r is greater than zero. [1]
density-dependent model A model in which the instantaneous birth and death
rates (b and d) are influenced by the density (or size) of the population. These
models typically incorporate the idea that crowding leads to a reduction in births
and an increase in deaths, providing an effective brake on population growth. [1]
density-independent Population processes that are not affected by the current
density (or size) of the population. If instantaneous birth and death rates (b and
d) are density-independent, a population will grow exponentially because these
rates will not change no matter how large the population is. [2]
deterministic model A model in which the Parameters are constant and do not
vary unpredictably with time. In a deterministic model, there is no element of
chance or uncertainty in the calculation. If the starting conditions are not altered,
a deterministic model will always produce the same result. [1}
dimensionless number A constant that represents
Because the units of the two quantities are identi
has no units associated with it. Examples includ
whi'ch is a ratio of consecutive population sizes in an exponentially growing pop-
ulation, 'and the repr'oducti.ve value (v(x)), which is the ratio of expected future
E;giu[:;l]on of offspring of individuals of age x to the number of individuals of

the ratio of two quantities.
ical, they cancel, so that the ratio
e the finite rate of increase @),

del in which time is measured in

discrete steps, rather than continuously. In population ecology, discrete difference

uation i i i i
oy = q T s equivalent to a continuous dif-
discrete growth factor (r4) The constant

es each time step in a discrete mode| of ex| i i

ach tir inad ; Ponential population growth. The i
are I.I'IdJVIdUBIS/ (m§hvldual ¢ time). If the time step is i.l'\ﬁnjtelygsTmall th, y “Illts
equivalent to , the Instantaneous ra i i odelof
exponential population growth. ry
increase. [1]
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distance effect Species number decreases with di i i
istan la
ponl ot olotia, [ ce or isolation from a source
doubling time The amount of time it takes for a population to double in size. Ifa
population is growing exponentially, it will double in size after a constant
amount of time, no matter how large it has become. The doubling time is In(2)/7,
where In is the natural logarithm, and 7 is the instantaneous rate of increase. [1]

E See extinction rate. [4] See maximum extinction rate. [7]

emigration Individuals leaving a population and traveling to another location.

Emigration and death are the two ways that populations can decrease in size. [1]

tal stochasticity Uncertainty due to variation in environmental condi-
tions. The environment can be modeled as a series of unpredictably good and
bad years for population growth. In an exponential growth model, this uncer-
tainty is expressed in the mean and variance in 7, the instantaneous rate of
increase. In an exponential growth model with environmental stochasticity, a
population is at risk of extinction if the variation in 7 is too large relative to the
mean of . In contrast, a population is never at risk of extinction in the determin-
istic model of exponential growth as long as 7 is greater than zero. [1]

equilibrium model of island biogeography Developed by Robert H. MacArthur
(1930-1972) and Edward O. Wilson (b. 1929), the model describes island species
richness as an equilibrium between ongoing colonization of new species and
extinction of resident island species. [7]

ergodicity A mathematical property of some ecological models. A system is ergodic
if its eventual behavior is independent of its initial state. [8]

Euler equation First derived by the Swiss mathematician Leonhard Euler
(1707-1783), the Euler equation gives an exact solution for the instantaneous rate
of increase (1) in terms of the fecundity (b(x)) and survivorship (I(x)) schedules
for the population. The Euler equation is:

env

1= e I(xu(x)

The evolutionary biologist Ronald A. Fisher (1890 -1962) used the Eul.er equation
to derive an expression for the reproductive value of individuals of different
ages. [3] .

exploitation competition Competition that occurs because species use a shared
resource that is in limited supply. [5] ) ) b

exponential population growth Asimple model of population growth in whxch e
population growth rate (dN/ad#) is the product of the current.pc.)pulahr.)n size (N)
and the instantaneous rate of increase (). A population that is increasing expo-
nentially has constant per capita birth (b) and death (d) rates an.d behaves -hke ;
savings account that grows with compound interest. Exponenf‘lal gmw: implies
no limit to population size and an accelerating rate of pc?pulahort\hg:‘gw 5 on
Although no population in nature ever shows exponenihal growth for \:}e‘riymﬁv;gé -
all populations have the potential to increase exponentially because ea

ing i ion. The model of expo-
e than one offspring in the next generation Y I
il populatio o, most of our modeling efforts in

nential population growth is the foundation for
population and community ecology. [1]
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models, the extinction rate E is the pro-
that go extinct per unit time. In the equi-
is the number of resi-

extinction rate (E), (1) In metapopulatlion
portion of sites occupied by populations 50 )
librium model of island biogeography, the eth\ct'lon rate g
dent species on the island going extinct per unit time. [fll

F; See fertility. [3] ted. [4]
fraction of sites occupied. .

);aiieleltation model A modsl of succession in which each group of species thﬂ‘ enters
a patch alters the environment in a way that facilitates the entry of successive sets
of species. The endpoint of the classic facilitation model is a self-replacing climax
community. [8]

fecundity schedule (b(x)) The fecundity schedule gives the average pumber of off-
spring born per unit time to individual females of age x. Fecundities are always
represented by non-negative real numbers. Fecundities of some ages may be zero
if females of those ages are either pre- or post-reproductive. [3]

feeding rate (n/t) The rate at which individual predators capture prey. Its units are
victims/ (tirhe * predator). (6]

fertility (F;) The number of female offspring produced by females of age class i.
Fertility coefficients are represented as entries in the first row of the Leslie matrix.
Fertility can be calculated as F; = b(i)P;. Thus, the fecundity for females of age i is
discounted by P;, the survival of individuals through age class i. This discounting
is necessary because females must survive through the age class in order to
reproduce and have their offspring counted. This formula applies only to birth-
pulse populations with a post-breeding census. [3]

finite rate of increase (1) A ratio measuring the proportional change in population
size from one time step to the next in a discrete model of exponential population
growth. Ina population that is increasing exponentially, A = N, /N,, the ratio of
population sizes in two consecutive time steps. Because it is a ratio, A is a dimen-
sionless number without units. A is always a number greater than 0 because it is a
ratio of two population sizes, which are positive numbers. 1 is equal t0 1.0 + 7,
the discrete gj:owth factor. If the time step is infinitely small, then A is also equal
to e’ , where ¢ is a constant, the base of the natural logarithm (e = 2.718), and r is
the instantaneous rate of increase. [1]

first-order Markov model A Markov model in which transition elements depend
only on the current state of the assemblage. See also homogeneity. [8]

ﬁactio_n of sil.es occupied (f,) The fraction of sites occupied is the proportion of
a\{an}able sites that contain populations. It is a number that varies between a
m:]m of 0.0 (regional extinction) and a maximum of 1.0 (landscape satura-

functional response (V) The rate of victim capture by a pre .
victim abundance. Its units are victims /( ngawr .yﬁml’e).?:]tor as a function of

G See generation time. 3]

8() See survival probability. [3]

generation time (G) The generation time is an es
one cohort to grow up and replace another.
parents of all the offspring produced by asi
the survivorship and fecundity schedules as:

timate of the amount of time it takes
One measure is the average age of the
gle cohort. It can be calculated from
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G = ZUx)b(x)x/ Ti(x)b(x)

It is measured in units of time, 3]

h See handling time. [6]

halftsa.tuntion constant (D) In a Type I and Type Il functional response, D is the
victim abundance at which the predator feeding rate is half the maximum (k). Its
units are numbers of victims, (6]

handling time (k) The amount of time
and eat a victim. (6]

homogeneity A mathematical property of some Markov models. A transition
matrix is homogenous if its elements do not change through time. [8]

horizontal life table A life table for which the survivorship schedule (I(x)) is calcu-
lated by directly following a cohort of individuals from birth to death. [3]

per prey item a predator requires to capture

I See immigration rate. [4] See maximum immigration rate. [7)

IGP See intraguild predation. 5]

immigration Individuals entering a population from another location. Immigration
and birth are the two ways that populations can increase in size. [1]

immigration rate (), (,) In metapopulation models, the immigration rate I is the
proportion of sites successfully colonized per unit time. In the equilibrium model
of island biogeography, the immigration rate A is the number of new species
arriving on an island per unit time. “New” species are those that occur in the
source pool but do not presently occur on the island. [4]

individual-based model An ecological model in which a computer is used to simu-
late the birth, growth, dispersal, and death of individuals in a population. Such
models are realistic but computationally intensive. (8]

inhibition model A model of succession in which each community or species that
holds space inhibits other species from entering the assemblage. Succession
occurs only when a disturbance removes the resident species, allowing new
species to enter the community. {8]

instantaneous birth rate (b) The per capita birth rate of the population, which is the
number of births per individual measured over a short time interval. 1t can be
calculated by dividing the birth rate (B) by the current population size (N). Its
units are births/(individual ® time). (1] o

instantaneous death rate (d) The per capita death rate of the population, which is
the number of deaths per individual measured over a short time in'terva'l. It can
be calculated by dividing the death rate (D) by the current population size (N).
Its units are deaths/(individual ® time). [1] ) )

instantaneous rate of increase () The instantaneous rate of increase is b~ d, the dif-
ference between the instantaneous birth rate (b) and the instantaneous death rate
(d). In a simple model of exponential population gmwth., th_e instantaneous rate
of increase is also equal to the per capita rate of population increase:

L)
N dt

The units of r are individuals/(individual ® time). [1]
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L G xe s ’ that
i iti tition in which individuals behave in a way th
e s U f a competitor. Examples include territorial-

reduces the exploitation efficiency o les e
ity, behavioralri)nterference among animals, and allelopathic interactions among

. [5 .

intsxl-::fs ctEl(]mization A metapopulation model in which‘p rop.agules ox'ﬂy ?ngmate
from occupied sites. Thus, colonization ceases if there is regional extinction
because there is no external source of propagules. (4] ) )

interspecific competition Competition among individuals of different species for
limiting resources. (5} . o

intraguild predation (IGP) Competitors that exploit common, ymmng resources
but also interact with one another as predator and prey. IGP is common in
nature, and it can either reverse or reinforce the outcome of competitive interac-
tions between species. [5} )

intraspecific competition Competition among individuals of the same species for
limiting resources. The logistic growth model (Equation 2.1) incorporates the
idea of intraspecific competition. [5]

intrinsic rate of increase See instantaneous rate of increase. [1]

island-mainland model A metapopulation model in which local extinctions are
independent of one another and colonization occurs via a propagule rain. At the
community level, this model is equivalent to the equilibrium model of island bio-
geography. [4]

iteroparous Iteroparous organisms are those that reproduce at more than one age in
their life history. The fecundity schedule for an iteroparous organism would con-
tain two or more non-zero entries for the reproductive ages. [3]

K See carrying capacity. (2]
k See maximum feeding rate. [6]

Leslie matrix A matrix representation of the birth and death Parameters in an age-
structured population growth model. The entries in the first row of the matrix
represent the fertilities of each age class, and the subdiagonals represent the sur-
vival probabilities from one age class to the next. The Leslie matrix was devel-
oped by the population ecologist Patrick H. Leslie.

Ix) See survivorship schedule. [3]

local extinction The disappearance of a single population within a meta i

logistic growth model A model of population growth that i.ncorporatgs0 tl;\‘.:il;?\:.eg]
of resource limitation and density dependence in the instantaneous birth rate
and/or the instantaneous death rate. The logistic growth model was introduced
to ecol_ogy b_y Pierre F. Verhulst (1804-1849). It generates a characteristic S-shaped
curvein whl_ch the rate of population growth first accelerates, then decelerates
The population will achieve a constant carrying capacity K, which reflects the )
fﬁources_available in the environment. If the PoPulation begins above jts ¢
Ing capacity, it will decrease in size until K is achieved, The exponential ﬂ-
;\so:iailtcan be cﬁ:itwl/‘e;;s ; special case of the logistic growth model in wghli‘zh the

aneous eath rates are b ity-i
for logistic population growth is dN /dt =0’f-Nh(‘ile_n;;t/yK)m?2elpmdmt. The formula

Malthusian parameter See instantane, ,

Reverend Thomas R. Malthus (1766-1834). Malthus’ famous



GLOSSARY 239

Principle of Population” i implicati ;
st gsowm forhum::s . ([i';%) discussed the implications of exponential popula-

Ma:il:i(:;‘r'\:\‘:l:i:( ;: ::auix model of succession or population growth in which a tran-

qunhany multiplied by a vector to produce change in the

st.ages of a population or community. [3, 8]

maximum extinction rate (E) The maximum rate at which resident species on an
island go exti'nct This maximum is reached when all of the source pool species
occur on the island (S = P). [7]

maximum fe?ding rate (k) In a Type Il and Type Il functional response, the maxi-
mum feeding rate k is the asymptotic per capita feeding rate of predators. Its
units are victims / (time e predator). [6]

maximum immigration rate () The maximum rate at which new species arrive on
an island. This maximum occurs when the island has no resident species. [7]

mean (¥) The arithmetic mean is the average, or central tendency, of a distribution
or series of numbers. It is calculated as ¥ x/n, where n is the sample size. In other
words, the values are added up and then divided by the number of observations
in the sample. The mean is the most natural measure of central tendency, but it is
by no means the only one. Other measures include the median (the midpoint in
the series of ranked observations) and the mode (the most common value in the
sample). Other means, such as the geometric and harmonic means, can also be
calculated. Both of these measures are useful in certain ecological analyses
because they reflect the multiplicative nature of population growth. [1]

mean population size (N) The central tendency for population size. In a stochastic
growth model, the mean population size would be the average N generated by
many runs of the model. [1]

mean r (7) The average instantaneous rate of increase. This average reflects the cen-
tral tendency of the per capita growth rate in a variable environment. In models
of environmental stochasticity, the mean r is used to predict the mean and vari-
ance in population size. [1]

metapopulation A group of several local populations that are linked by immigration
and emigration. The movement of individuals between populations affects local
dynamics, so that the growth and persistence of the individual patches in the meta-
population is different from the growth and persistence of an isolated population. [4]

monocarpic A plant that reproduces at only one age. See semelparous. [3]

N See size of the population. 1]

N See mean population size. [1]

nlt See feeding rate. [6]

net reproductigve rate (Rg) The mean number of femnale offspring produced by a
female over her lifetime. The net reproductive rate is the gross number Pffsprmg
produced, discounted by the chances of female survivorship through dlffere:nt
ages. Its units are numbers of offspring, and it is calculated from the fecundity
and survivorship schedules as Ro =tEl(x)b(x): [3]_ sce il the system i pex

ilibrium An equilibrium that remains in place -

ne‘:rab}:dcfl;;:ib: comes to ?est at a new equilibrium. The simple Lotkaf\./ol.tena pre-
dation model (Equations 6.1 and 6.2) isan examplg of a neutral ethbn;ﬂa’:l;:

predator and victim populations undergo population cycles whose ampb1ed dets

determined by the initial population sizes. If the populations are pertur
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these cycles, they will begin cycling with a new amplitude that l'sh' :e‘termi‘:‘jn?;_
the new starting conditions. A physical analogy ofa ne.utra.l equil nu.mt 2
ble resting on a flat surface. If the marble iz dlslplac;d, |at i\:\n.l[ldrt]:ome to rest in
i i it is displace: 2
i lolcalu?n ol ﬂ];repz:l:lsasﬁl;rl\s in V\?l"\ich p:rints die before their .Oﬁ-
spring are born. A population with non-overlapping_ generali.ons usually w111 not1
have any age structure and can be modeled with a discrete difference equa tion. [1j
numerical response (8V) The per capita growth rate of the predator population as a
function of victim abundance. Its units are (1/P)(dP/dt). [6]

optimal yield The harvesting level for a renewable resource that will sustain ﬂTe
resource and generate the maximum long-term yield. UMOMter, the optimal
yield for long-term harvesting is usually less than the optimal yield for short-
term profits. As a consequence, most fisheries stocks and other renewable
resources are chronically over-harvested. [2]

Pe See probability of local extinction. [4]

pi See probability of local colonization. [4]

P See source pool. [7]

P; See survival probability. (3]

Py, See probability of persistence. [4]

P, See probability of regional persistence. [4]

paradox of enrichment A predator prey model that predicts that increasing the car-
Tying capacity of the victim population destabilizes co-existence with the preda-
tor. The paradox of enrichment requires a hump-shaped victim isocline and a
vertical predator isocline to generate the destabilization with increasing victim
carrying capacity. [6]

Passive sampling model A statistical model for the species-area relationship that
does not invoke habitat diversity or extinction on small jslands, The model treats

logical forces. 7]

pex;;apita Per individual. Per capita rates can be found by dividing the quantity by
e number of individuals in the population , OF, equival, iplyi
e pop (N), or, equival ently, multiplying by
perennial A plant that lives for two or more seasons. [3]
period The period of a population cycle is the amount of time it takes for th
¢ e popu-
lation to go through one complete cycle and return to its current popu]atiorl:: siPz‘;
. The period of a cycle is measured in units of time. [2] '

Often these species have a number of r-selected life histo i
to tole.rate the harsh physical conditions that are present :y&:-a;tzjt:tzi:lalﬁ:; t;;!?‘
polycarl.nc A plant that reproduces at more than one age. See iteroparous. (3] .
poyut;hon A population is a group of individuals, all of the same species. that live
;10 ‘::l same place. Altho!.lgh it is sometimes difficult o define the physi;al
undaries of a population, the individuals within a Population have the poten-

tial to reproduce with one another during the course of their lifetimes, [1]



GLOSSARY 2@1

after all individuals have bred. [3]

pre-emptive competition Comp
Tesource. Pre-emptive comp:
invertebrates, and algae. [5]

priu.lary succession Succession that proceeds on new substrate that has never pre-
viously been co.lonj.zed by living organisms. Such Succession may be slow
because of the time required to build up a soil profile or nutrient levels necessary
to sustain an entire community. [8]

principle of competitive exclusion The principle of competitive exclusion states
th.at “complete competitors cannot coexist.” In other words, there must be some
difference between species in their resource utilization, which would be
expressed in the competition coefficients & and B, for coexistence to occur, Note
that the principle implies that resources are limiting. If resources are not limiting,
because of predators or chronic disturbances that reduce the abundance of the
competitors, two species can happily coexist using identical resources. [5]

probability of local colonization (p;) The chance that an unoccupied site in a
metapopulation is colonized during a given time period. [4]

probability of local extinction (p,) The chance thata single local population will go
extinct during a given time period. This probability will depend on the popula-
tion size and population growth rate, as well as attributes of the site, such as its
area and the resources it contains. [4]

probability of persistence (P,) The chance that a single patch persists for n time
periods, where the probability of extinction is p, during each time period. The
probability of persistence is Py = (1 - p,)", where (1 - p,) is the probability that
extinction does not occur. [4]

probability of regional persistence (P;) The chance that, out of a set of x patches, at
least one of them will persist to the end of a given time period. If the patches are
all identical, and they each have the same probability of local extinction p,, the
probability of regional persistence is Py = 1~ (p,)*. .

propagule rain A metapopulation model in which the probability of co!omzahon
does not depend on the fraction of sites occupied in the metapopu.l?.non. A
propagule rain can result if there is a large, external source of colonists, or per-
haps a long-lived seed bank that acts as a constant source of new propagules. [4]

proportional area (x;) The relative area of an island, calculated b.y dividing the
island’s area by the summed area of all the islands in the arch.lpeleg'o. In the pas-
sive sampling model, the proportional area represents the probability that a ran-
domly distributed propagule will land on a particular island. [7]

_e!iﬁon for attachment or rooting space as a limiting
etition is common among plants, sessile marine

q See death rate. [6]

Ry See net reproductive rate. [3]

r See instantaneous rate of increase. [1]
r4 See discrete growth factor. [1]

7 See meanr. [1]
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K selection A once-popular theory, r-K selection asgum?d that pc.qulahon dens-lty
was the major selective force that determined the life history traits of an orgar; ,
ism. Populations that were permanently maintained at low density (presumably
because of external forces of mortality or disturbance) were labelgd r-selected,
and evolution was thought to favor early, semelparouﬂeprod'ucﬂon, large 7,
many offspring with poor survivorship, a Type III S\:eri.Vul.‘Shlp curve, and small
adult body size. Populations that experienced chronic high densities were .labeled
K-selected, and evolution was thought to favor late, iteroparous reproduction,
small r, few offspring with good survivorship, a Type I survivorship curve, and
large adult body size. {3]

recursion equation A discrete growth equation in which the “output” from one
time step (N1,1) forms the input for the next time step (Ny). Recursion equations
can always be solved iteratively, by plugging in numbers consecutively until the
desired time step is reached. For some recursion equations, there may be a math-
ematical solution that will produce N from a single calculation. [1]

regional extinction The disappearance of all local populations of a metapopula-
tion. (4]

reproductive value (v(x)) Reproductive value is the expected number of offspring
that remain to be bom to individuals of age x, relative to the number of individu-
als of age x. By definition, the reproductive value of newborns (2(0)) is 1.0.
Reproductive value for individuals of age x can be calculated as:

o X
o) =y e Hl)

y=x+1

Note that the counting subscript in the summation sign has been increased by 1.
This change is necessary for using the formula with real (discrete) data. [3]

rescue effect In metapopulation models, the rescue effect is the reduction in the
probability of local extinction with an increase in the fraction of sites occupied.
When more sites are occupied, there are more migrants entering a local popula-
tion, and the boost in population size reduces the probability of local extinction.
In the equilibrium model of island biogeography, the rescue effect is the reduc-

bho:: uA1 the ;plecief;xﬁncﬁon rate on near versus far islands. [4]

robust Amodel is robust if we can violate some of its assumptions and fi i
predictions still hold up. Whether they are stated explicitl; or not, a]lﬁ;\l:dt:l:t "
even verbal ones, imply a list of underlying assumptions. In some cases, the ’re—
dictions of the model are very sensitive to these assumptions. For examl;le tI}:e
exponential growth model depends critically on the assumption of constant
capita birth and death rates. Other assumptions, such as the absence of migr‘a):i;n

or time lags, are less critical to the prediction of ex; i

. ponential population i

New ecologl_cal models can often be built by systematically \E;o}l)aﬁn (21\' larl‘fre "y
the assumptions of an existing model. [1] & o

s See stage vector. [8]
S(x) See cohort survival. 3]
secondary succession Succession that

ot S g g proceeds after an established community has

sturbance. Some elements of the community
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may re-establish themselves from within 7 .
from adjacent patches that were not distultm.a[tsc]h - while other elements colonize

Secg::;;d;;r;;k&\; rcnodel tA:[arkfov model in which transition elements
ous time step. These rl:\r;flre‘lssi.n;o ;}_\aetzssemblage and on the.Stat‘? in the previ-
of community development. [8] 1y some aspects of the historical sequence

seed bank An accumulation in the soil of Jong-lived seeds, which potentially can
Sprout many years after they were sown. A seed bank can complicate population
dynamics by introducing a time lag into population growth. [1]

semelPamus Semelparous or “big bang” reproduction is a life history strategy in
which all reproduction is concentrated in a single age. The fecundity schedule for
a segelparous organism would have zeroes for all ages except the single repro-
ductive age. [3]

semi-Markov model A Markov model in which transition probabilities depend on
the absolute amount of time that a patch is in a particular state. These models
describe species with different life histories and persistence times. 8]

senescence Aging and physiological deterioration of individuals in post-reproduc-
tive ages. [3]

sink populations Populations for which the local birth rate is less than the local
death rate and the immigration rate is greater than zero. Sink populations cannot
persist in isolation because the birth rate does not exceed the death rate. Sink
populations are net “importers” of individuals, and they depend on external
immigration for their persistence. [4]

size of the population (N) The number of individuals in a population. [1]

source pool (P) The number of species in a mainland or source area that can poten-
tially colonize an island. [7]

source populations Populations for which the local birth rate exceeds the local
death rate, and the emigration rate is greater than zero. Source populations are
net “exporters” of individuals. [4]

species-area relationship The non-linear increase in species richness as island area
is increased. The relationship holds for most groups of species on many different
kinds of “islands.” [7]

species—area slope (z) On a log(species) versus log(area) plot, z is the slope of the
fitted line. z is also the exponent in the power function S = cA?, where S is the
number of species, A is the area of the island, and z and c are fitted constants. [7]

stable age distribution (c(x)) The relative proportion of individuals represented in each
age of an exponentially increasing (or decreasing) population. The formula for the
stable age distribution is:
e—’ X ’( I)

c(x)=—
¥ e™(x)
x=0

Once a population reaches a stable age distrlbutio.n, these pmporti9ns remain con-
stant through time. A stable age distribution implies that a population is growing
with fixed survivorship (/(x)) and fecundity (b(x)) schedt}les. [3] '
stable equilibrium An equilibrium is stable if a population always returns to g'b .
after a smal) perturbation. If individuals are added to the population at equilibri-
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i ill decline until it returns to the equilibrium poin‘t"l-f {ﬂdk
u‘I::lIV thl.: fr:Pr:{:\t(;‘\’r:;v flrlcln':\ the population, it will increase until the equlhbn}lm
V:Jirl::is reached. A physical analogy of a stable equilibrium is a marble resting on
lrf'he bottom of a smooth bowl. If the marble is displaced, it will always come to
t at the bottom of the bowl. [2] . .
stalgelse limit cycle A population cycle that is stable. In ot.h.er words, if the p]:.)pl.‘;lahon
size is perturbed, it will return to a pattern of cyclleg !N‘lth the same amp tu er:h
and period. A stable limit cycle is not a single equl.hbr?um pf)mt, but it neverthe-
less represents a stable equilibrium because a population will always return to it
after a small perturbation. [2]
stage vector A vector of length n whose elements are the nfquber of Eatches that
exist in a particular state in a succession model. At equilibrium, this stage. vector
represents either the relative number of patches in each stage, or the relative
amount of time that a single patch spends in each stage. [8]
state-space graph A state-space graph is one in which the abundances of two inter-
acting species are plotted on the x and y axes. Thus, each point in the state-space
graph represents a combination of abundances, and points along the axes repre-
sent combinations in which one of the species is missing. The state-space graph is
used to plot species’ isoclines in predation and competition models to illustrate
the equilibrium points and trajectories of each species. [5]
static life table See vertical life table. [3]
stationary age distribution A stationary age distribution is one in which both the
absolute and relative numbers of individuals represented in each age remain con-
stant. A stationary age distribution is a special case of the stable age distribution
in which 7, the instantaneous rate of increase, equals 0.0. [3]
stochastic model A model in which some of the parameters vary unpredictably
with time. Stochastic models reflect random or chance events in nature, or com-
plex, changing phenomena that are too complicated to model directly. In a sto-
chastic model, the population track will reflect an element of chance or uncertain-
ty.. Consequently, if the model is run twice with the same starting conditions, it
will generate somewhat different answers each time. Although each run of a sto-
chastic model is unique, if the model is run many times, there is usually an
expe.cted mean and variance for the predicted population size. [1]
succession Change in community structure through time. [8]
survival probability ©()), P; The survival probability g(x) for individuals of age x
is deﬁne.d as the probability that an individua] alive at age x will be alive at age
Sl iy o e el - s T
i uals in age i i i
that an individual that i alve in age class il sarupye oo PO DI

s i will survive to age class 1+ 1. Iti -
culated from the survivorship schedule as Pi=1(i)/1(i -1). Ttg\is formula is a:pflil-

able only to birth-pulse populations with a i i

ble : post-breeding census. S -

bilities appear as subdiagonal elements in the Leslie mat%ix. [3] el ok

rvivorship schedule gives the probability that

| x. By definition, th iv

g]fa x;;ew;vslzuocy(l;nls3 1;1,00%,;0 K0) always equals 1.0, and the survival of the fa:tu:;;val
-U. Between these endpoints, i i

with each copmreen . Clas[; o survivorship decreases (or stays the same)
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T See turnover rate, 71

target effect The effect of island area on the immigrati i
jete o gration rate. In the original equi-
tlr::.:n 'mtc;del, 1tsland area affects only the extinction rate. However, igfllnm-g:qlu
> ands Intercept more propagules, they will have both low: extincti
. higher immigration rates than small islands. [7] « cronates and
time lag A delay in the response of a population

1s, say, 5 years, population growth will depend not on the current si
ulation, but on th.e size of the population 5 years ago. Time lags can generate
g“l‘gsle[’;i’op"lah‘m dynamics, including damped oscillations and stable limit
cles.

tolerance mc.)del A succession model in which species neither facilitate nor inhibit
la.ter species from entering the community. The tolerance model can serve as a
kind of null hypothesis for testing the inhibition and facilitation succession
models. [8]

tradeoffs In life history theory, tradeoffs occur when large values for one trait lead
to small values for another. For example, individuals that invest heavily in early
reproduction may have poor survivorship in later life. Tradeoffs arise, in part,
because organisms have a limited amount of energy that must be apportioned
between functions that promote growth, survivorship, and reproduction. [3]

transition matrix A square n x n matrix whose elements pyj give the probability of a
transition from state j to state i in a single time step. In successional models, these
probabilities describe changes between community states, whereas in age-struc-
tured demographic models, these probabilities describe changes between differ-
ent ages or life history stages. In demographic models, the elements of the transi-
tion matrix may be larger than 1.0 if they represent reproductive transitions.
Otherwise, the elements of the matrix are bounded by 0.0 and 1.0. [3, 8]

turnover rate (T) The number of species arriving or disappearing per unit time for
an island community in equilibrium. [7)

Type I functional response A linear increase in the number of prey consumed per
predator per unit time as victim abundance increases. The slope of the line is a,
the capture efficiency. A Type 1 functional response is built into the simple
Lotka-Volterra predator-prey equations and tends to stabilize predator-prey
dynamics. 1t is unrealistic because it assumes that predators can always increase
their feeding rates. [6] N

Type I survivorship curve A survivorship curve in which survival prf)b_abﬂmes are
relatively high for young individuals and relatively low for old i.ndmduals. A
Type I survivorship curve characterizes many mammals (including humans) that
invest heavily in parental care of offspring. [3] »

Type Il functional response An asymptotic curve describing 'the number of prey
consumed per predator per unit time as victim abundance increases. The sha;?e of
the curve is determined by the maximum feeding rate (k) and the half-saturation
constant (D). A Type II functional response can arise because of predat?r saha.hon
and constraints on handling time. It is generally destabilizing because it requires
more predators to control the victim population as victim abundance increases. [6]



TWRE GLOSSARY

Type II survivorship curve A survivorship curve i.n.which surviV§l probabilities
are relatively constant across different ages. Relatively few species show true
Type I survivorship curves. See Problem 3.1 for an exa.rr'lple. [3]

Type III functional response An asymptotic curve descﬂbmg. the number of prey
consumed per predator per unit time as victim abundance increases. The curve is
S-shaped, so the feeding rate accelerates at low victim abundances, but then
decelerates and approaches an asymptote at high victim abundances. A_Typ_e I
functional response can arise because of search images and predator sw1.t§h{I\g
behavior. It is generally stabilizing at low victim abundances, but destabilizing at
high victim abundances. [6]

Type Il survivorship curve A survivorship curve in which survival probabilities
are relatively low for young individuals and relatively high for old individuals. A
Type Il survivorship curve characterizes many plants and invertebrates that pro-
duce large numbers of offspring, few of which survive. [3]

unstable equilibrium An equilibrium that is not returned to if the populations are
perturbed. In an unstable equilibrium, the populations will not return to their
equilibrium values if they are perturbed. Instead, they will travel towards a dif-
ferent, more stable, equilibrium. A physical analogy of an unstable equilibrium
is a marble resting on the top of a smooth, inverted bowl. If the marble is
bumped slightly in any direction, it will roll off its peak and come to rest some-
where else. [5]

unused portion of the carrying capacity (1 - N/K) In the logistic growth model, this
term represents the portion of the carrying capacity that has not already been
used up by the population at its current size (N). This term causes population
§r0wth to be fastest when the population is close to zero, slowest when it is close
0 carrying capacity, and negative when the po i i
capagymmﬂ pacity, B population has exceeded carrying

o(x) See reproductive value. [3]

. S . .
variance (o‘ x) The variance is a measure of the spread or uncertainty about the
mean. lt is calculated as:

Y (-2 /(n-1)
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variance in population size (c%,) The variability or uncertainty in mean population
size. In a stochastic growth model, the variance in N would reflect the variability
in population size generated by many runs of the model. In many stochastic mod-
els, the variance in N increases as the length of the time series is extended. If the
variance in N is too great, populations may be at risk of extinction. [1]

variance in r(o’z,.) The variance in the instantaneous rate of increase. This variance
measures the variability of r, reflecting good and bad times for population
growth. In models of environmental stochasticity, a population is at risk of
extinction if the variance in 7 is too large compared to the mean r. [1]

vertical life table A life table for which the survival probabilities (g(x)) are estimated
indirectly by comparing the relative sizes of consecutive age classes. This analysis
assumes that the population has achieved a stationary age distribution. 3]

X See mean. [1]
x; See proportional area. [7]

z See species—area slope. [7]
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Activity density, gerbil competition study
(illus.), 120-123

Age, 231
notation for, 50~51

Age class, 59,231
fertility and, 60-62
notation for, 50-51
survival probability and, 60, 62

Age distribution (illus.), 63-65

Age structure (n), 59-60

Age-structured growth model
assumptions underlying, 66
exponential growth with age structure, 50
fecundity schedule, 52-53, 66
fertility, 59, 60-61
generation time, 57
in ground squirrels (illus.), 74-76
horizontal vs. vertical, 66
intrinsic rate of increase, 58-59
Leslie matrix (illus.), 61-62
net reproductive rate, 56-57
stable and stafionary age distributions

(illus.), 6365

survival probabilities, 54-55, 60
survivorship, 53-56, 66
table of standard calculations, 52
in teasel (illus.), 76-79

Age-structured growth model variations
Euler equation derivation, 66-67
life history strategies, 69-71
reproductive value, 67-69
stage- and size-structured growth models,

71-73

AIDS virus, 152

Allee, Warder C., 232

Allee effect, 27, 231-232
in ascidian population (illus.), 4445

victim population size and, 140
Allelopathy, 100, 232
Ambrosia, in desert c 197-199

Amplitude, of population cycle, 33, 232
Anchovy population, optimal yields (illus.),
4647
Annual plants, 53,232
Area (A), number of species and, 156-158
Area effect, 158, 232
equilibrium model and (illus.), 167-168

Ascidia mentula, population fluctuations
(illus.), 4345
Ascidians, 82
lpapu.laticm fluctuations (illus.), 4345
Avicennia marina, doubling time, &

Bacteria, doubling time, 8
Bay checkerspot butterfly, metapopulation
study (illus.), 93-94
Bears, population fluctuations, 7, 20-22
gii&xe;les, metapopulation study (illus.), 94-96
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immigration/extinction study (illus.),
173175

population fluctuations (illus.), 41-43
species richness study (illus.), 175-176
species-area relationship (illus.), 156-158

Birth curve, 208

Birth rate (b), 2, 4, 207, 232
in demographic stochastic model, 19
density dependence and, 26-27 (illus.) 29
in exponential growth model, 5-6, 10
fecundity schedule [b(x)], 52-53, 56, 62
life history strategies and, 69-71
population density and, 26-27
stable equilibrium and, 29

Birth-flow model, 60, 232

Birth-pulse model, 60, 232

Births, number of (B), 24
in Euler equation, 66-67

Bismarck Archipelago, species area relation-
ships (illus.), 158-159

Black-throated blue warblers, density depen-
dence in, 82

Body size
intrinsic rate of increase and, 8
predation and, 115

Bos taurus, 8

Butterfly, metapopulation study (illus.), 93-94

Calathus melanocephalus, metapopulation
study (illus.), 95-96

Canada lynx, population cycles (illus.),
147-148

Capture efficiency, 127, 232

Carabid beetles, metapopulation study
(illus.), 94-96
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ing capacity (K), 26-31, 209, 232
canliltrl‘g-vgter:}a, competition model and,
102, 106-107, 114
optimal yield and, 4547
of predator population (illus.), 143-147
time lags and, 34-35
variation in (illus.), 38-40
of victim population (illus.), 134-135
Cellular automata, 196, 232
Chaos, population fluctuation, 35-37, 232
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Checkerspot butterfly, metapopulation study
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Cohort life table, 66
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Colonization, 172-173. See also Immigration;
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equilibrium model and, 166
island-mainland model and (illus.), 88-89
rescue effect and, 90-91
Commercial fisheries, 4547
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of coral reefs (illus.), 199~201
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succession in, 180-201
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Volterra competition model
inter- vs. intraspecific, 101, 102
state-space graphs (illus.), 104-111
types of, 100101
Competition coefficients (a, B) (illus.)
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Competitive coexistence (illus.), 110-111,
113-114
Competitive exclusion, 112~114, 241
case 1 (illus.), 107-108
case 2 (iHus.), 108-110
case 4 (illus.), 111-112
intraguild predation and, 118
Competitive interactions, 100-101, 233
Constraints, 233
on life history strategies, 69-71
CDl;ﬁnz;lauus differential equation (dN/at),
Continuous growth model, 11-14
Continuous population growth, 11, 233
Conversion efficiency (B), 233
Population cycles and, 133
of predator population, 128
Coral, size-structured model, 71 (illus.) 73

Coral reefs, community succession (illus.),
199-201 )
Cows, population doubling time, 8-9
Curves )
immigration and extinction (illus.),
160-161,-163, 164165, 167
survivorship (illus.), 55-56
Cycles
in carrying capacity (illus.), 3840
in hare-lynx population (illus.), 147-148
in logistic growth model (illus.), 29-30,
36-37
in Lotka-Volterra predation model (illus.),
132-133
in population size (illus.), 33-35
in red grouse population (illus.), 148-152
stability of, 145-146

Damped oscillations (illus.) 33-35, 233
Darlington’s rule, 156, 233
Darwin, Charles, 11
Death curve, 208
Death rate (D), 2, 4, 207, 233-234
age structure and, 50
in demographic stochastic model, 19
density dependence and, 26-27 (illus.) 29
in exponential growth model, 5-6, 10
predator population equilibrium and,
127-129
stable equilibrium and (illus.), 29
Deaths, number of (D, g), 2-4
Delay differential equation, 33, 234
Demographic stochasticity (illus.) 16-20, 234
equilibrium model and, 163
Dendroica caerulescens, density dependence
in, 82
Density, equilibrium model and, 166
Density dependence. See also Population
density
in ascidian population (illus.), 4445
in black-throated blue warblers, 82
in ground squirrels, 74-76
linear, 31, 32
in Lotka-Volterra competition model, 115
migration and, 82
population growth and, 26-27
In song sparrows (illus.), 42-43
Denslty-c.lependent birth and death rates,
lugmﬂc growth model (illus.), 29
gemgg—:epencdlem model, 5,234
ensity-dependent i ~
dnd. 32 P response, time lags -~
Density-independent
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Dipsacus sylvestris, population fluctuations
(illus.), 76-79
Disc equation, 137
D@sclete difference equation, 11, 234
D§cMe growth factor (ry), 11,213, 234
Discrete growth model (illus.) 11~14, 20
(illus.) 35-37
Distance effect, 158, 235
equilibrium model (illus.), 164~165,
167-168
Doubling time, 69, 235

Eastern Wood, immigration/extinction study
(illus.), 173-175

Elton, Charles, 147

Emigrants, number of (E), 2-3

Emigration, 2, 205-206, 209, 235

Encounter rate (o)
functional response and, 145-147
population cycles and, 133
in predator-prey population model, 127
random, 133

Endangered populations
grizzly bears, 7, 20-22
modeling, 22

Engraulis ringens, optimal yields (illus.),
4647

Environmental stochasticity (illus.) 235
in grizzly bear population, 21-22
population growth and, 14-16
Equilibrium
analyzing stability of (illus.), 207-212
carrying capacity and, 29
effects of rotating predator and victim
isoclines on (illus.), 146
Lotka-Volterra competition model,
103-104, 108-110
in Markov models (illus.), 187-190
solving for, 206-207
species, 159, 161-163
stable and unstable (illus.), 110-112
Equilibrium model of island biogeography
(illus.) 159-165, 235
area and distance effects (illus.), 167-168
assumptions underlying, 165-166
in birds (illus.), 173-175
insects of mangrove islands and (illus.),
171-173 .
nonlinear immigration and extinction
curves (illus.), 166-167
passive sampling model, 170-171
rescue effect (iltus.), 168-169
target effect (iljus.), 169
Equilibrium solutions, 103-104
Lotka-Voterra predation model and,
128-129
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Ergodicity, 188, 235

Escherichia coli, doubling time, 8

Euler, Leonhard, 58, 213,235

Euler equation, 58-59, 235
to calculate reproductive value, 67-69
derivation of, 66-67

Euphydryas editha bayensis, metapopulation
study (illus.), 93-94

Exploitation competition, 100, 235

Exponential growth model, 2-6, 235
age structure and, 50, 6365
assumptions underlying, 9-11
continuous vs. discrete growth, 11-14
demographic stochasticity, 16-20
environmental stochasticity, 14-16
examples of, 20-22
vs. logistic growth model, 26
metapopulation model and, 85
population growth rate as function of

population size in (illus.), 31

theory of natural selection and, 11
trajectories (illus.), 7

External colonization, 88, 90

Extinction
Allee effect and, 27
demographic stochasticity and, 19
density dependence and, 43
environmental stochasticity and, 16
equilibrium model and, 159-166
in grizzly bears, 22
internal colonization and, 90
intraguild predation and, 116
local vs. regional, 83 (iltus.) 85
metapopulations and risk of, 83-84, 87
rescue effect and, 92

Extinction curve (illus.), 166-167

Extinction probability. See Probability

Extinction rate (E, pg) (illus.) 159-165, 236
area effect and, 161
in birds of Eastern Wood (illus.), 174
equilibrium model and, 163, 165
metapopulation model and, 83-84, 85
nonlinear (illus.), 166-167
rescue effect and, 168

Facilitation model, 181-182, 191-193,
195-196, 236
Fecundity coefficient (F;), 51
Fecundity schedule [b(x)], 52-53, 236
Leslie matrix and, 61-62
life history strategies and, 69
life-table calculations, 56
Feeding rate, 136-137, 236
Ferminia cervaerai, 159
Fertility (F), 59, 236
of age classes i (F;), 60-62
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Finite rate of increase (A), 11-14, 213, 236
compared to net reproductive rate, 57
Leslie matrix and, 62, 73
transition matrix and, 73

First-order Markov model, 200-201, 236

Fisher, Ronald A., 235

Fishing industry, optimal yield and (illus.),
45-47

Florida Keys, island colonization experi-
ments, 171-173
Flour beetles. See Tribolium
Fraction of occupied sites (f), 84, 86, 236
Functional response (@ V), 127, 236
Lotka-Volterra predation model and
(illus.), 135-140

Generation time (G), 57, 236-237

Genetic drift, 17

Gerbils (Gerbillus allenbyi, G. pyramidumy),
competition study (illus.), 120-123

Great Barrier Reef, coral reef communities,
199-201

Grizzly bears, population fluctuations (illus.),

7,20-22
Ground squirrels, life-table analysis (illus.),
74-76
Grouse, population cycles (illus.), 148-152
Growth rate (dN/df)
exponential model, 5-6, 29, 31 (illus.) 32
isocline (illus.), 106
logistic model, 26-32
per capita [(1/N) (dN/dh)], 31 (illus.) 32
Gunnerside (England), grouse population
cycles (illus.), 148-152
Guppies, life histories, 71

Habitat availability, competition studies,
122-123

Habitat diversity hypothesis, 158-159

Half-saturation constant (D), 137, 237

Handling time (h), 136, 237

Hare, population cycles (illus.), 147-148

HIV, 152

Hobsonia florida, compehtion study (illus.),
116-120

Homogeneity, in matrix models, 188, 237

Horizontal life table, 66, 237

Hutchinson, G. Evelyn, 120

Hydra, doubling time, 8

IGP. See Intraguild predation
igrants, number of (1), 2-3
Immigration, 2, 237
equilibrium model and, 159-165
in exponential growth model, 5-6
nonlinear (illus.), 166~167

Immigration rate (I; Ay) (illus.) 199-165, 237
i.ngbixds of Eastern Wood (illus.), 174
distance effects and, 165
equilibrium model and, 164-165
metapopulation model and, 84-85
nonlinear, 166-167
rescue effect and, 168
target effect and, 169

Individual-based models, 197,237

Inhibition model, 182, 192-196, 237

Insects
colonization experiments (illus.), 171-173
stage-structured population growth, 71

(illus.) 73

Instantaneous birth rate (b), 4, 237

Instantaneous death rate (d), 4, 237

Instantaneous rate of increase (r), 207, 209,
213,237
age structure and, 50, 52, 58-60
body size and, 8
discrete generations and, 11-14
exponential growth model and, 5-9
Leslie matrix and, 6465, 73
logistic model and, 35-37
Lotka-Volterra competition model and,

101-102
in prey populations, 126
time lags and (r1), 32-35
transition matrix and, 73

Integral, 212-214

Interaction coefficient, 116

Interference competition, 100, 238

Internal colonization, 88-90, 91, 238

Interspecific competition, 101, 238. See also
Competitive exclusion
graphical analogy (illus.), 103

Intertidal worms, competition studies (illus.),
116-120

Intraguild predation, 115-120, 238

Intraspecific competition, 101, 238

Intrinsic rate of increase. See Instantaneous
rate of increase

Island biogeography
equilibrium model (illus.), 159-165
habitat diversity hypothesis, 158-159
species-area relationship and (illus.),

156-158

Island-mainland model (illus.) 88-89, 93, 238
vs. equilibrium model, 162

Isocline (illus.), 106. See also Sta
Pf gerbils (illus.), 120-123
Intraguild predation and (illus.), 117-119
Lotka-Volterra competition mode] and’

(illus.), 107-112

of predator populations (il
eyilad (illus.), 129-130,

te-space graph
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Iteroparous reproduction, 53, 238

K selection, 70-71

Lagopus lagopus scoticus, ulation cycles
(illus.), 148-152 pop %
Larrea, in desert communities, 197-199
Larvae, population cycles, 149-152
Lepus americanus, population cycles (illus.),
147-148
Leslie, Patrick H., 61, 238
Leslie matrix, 61, 238
calculating r from, 6365
describing age distribution, 62
reproductive value and, 65, 68-69
stage-structured growth and, 71
Life history strategies, 69~71
loop diagrams (illus.), 72-73, 77
Life tables, 50, 52. See also Age-structured
growth model
Linear density dependence, 31
Local colonization, metapopulation model
and, 87. See also Colonization
Local extinction, 83, 238. See also Extinction
Logarithm (base 10), 21. See also Natural loga-
el
species-area relationship and, 156-157
Logistic growth curve (illus.), 30
Logistic growth equation, 28
Logistic growth model, 209, 238
ascidians and (illus.), 4345
assumptions underlying, 30-32
carrying capacity and, 26-30
density dependence and, 26-27
density-dependent birth and death rates
(illus.), 29
vs. exponential growth model, 26
r-K selection and, 70
song sparrows and (illus.), 4143
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Lotka-Volterra competition model, 101, 233
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equilibrium solutions, 103-104
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Two-point limit cycle, 35-37

Two-species competition. See Lotka-Volterra
competition model

Type 1 functional response, 136 (illus.)
138-139, 245

Type I survivorship curve (illus.) 55-56, 245

Type I functional response, 136 (illus.)
138-139, 245

Type I survivorship curve (illus.) 55-56, 246

Typagl functional response (illus.) 137-139,

Type Il survivorship curve (illus.) 55-56, 246

Uinta ground squirrel, life-table analysis
(illus.), 74-76

Unstable equilibrium, 207, 211, 246
competitive exclusion in (illus.), 111-112

Unused portion of the carrying capaci -

U N/K), 246 ek

rsus arctos horribilis, population fl i

(illus.), 7, 20-22 i m uctuations

Var?ame (0), 246 N
in cartying capacity (illus.), 3840



ini rate of i 247
in population size, 15, 247
stochasticity and, 14-16, 18

Vector of abundances, 59

Verhulst, Pierre ., 28, 238

Vertical life table, 66, 247

Victim isocline (illus.) 130 (illus.)139, 140-143,
146

Victim population
carrying capacity (illus.), 134-135
cycles of (illus.), 132-133
equilibrium, 128-129
growth, 126-128, 133
refuge effect, 142-143

Virus, doubling time, 8

Volterra, Vito, 101, 126

INDEX 265

Warblers, density dependence in, 82
West Indies, species-area relationship of
birds in (illus.), 156-158
White-winged crossbill, 159
Wilson, Edward O., 159, 171-173, 235
Worms
competition studies (illus.), 116-120
nematode, 148-152

Yellowstone National Park, grizzly bear pop-
ulation, 7, 20-22

Zapata wren, 159
Zero equilibrium point, 210



ABOUTTHE AUTHOR

Nicholas J. Gotelli is Professor in the Depart-
ment of Biology at the University of Vermont.
He graduated with a B.A. from the Univer-
sity of California, Berkeley, and earned his
Ph.D. at Florida State University. Dr. Gotelli
currently serves on the Board of Editors of
Ecology. His research interests include inver-
tebrate community ecology, biogeography,
island biology, plant demography, and the
ecology of invasive species.

ABOUT THE BOOK

Editor: Andrew D. Sinauer

Project Editor: Carol J. Wigg

Production Manager: Christopher Small
Book and Cover Design: Jefferson Johnson
Book Production: Michele Ruschhaupt

Copy Editor: Roberta Lewis

Artwork: Precision Graphics

Book Manufacture: Courier Companies, Inc.



