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1  | INTRODUC TION

The objectives of field ecology are often to gain insights into the im-
portant ecological and environmental drivers of the study system. In 
many complex ecological systems, there is considerable uncertainty 

in what variables are most important to include as possible predic-
tors, and ecologists often end up collecting a broad range of en-
vironmental (e.g., temperature, light) and ecological (e.g., habitat 
variables, competitors, predators) candidates. Even where there is 
clear knowledge that a given environmental variable is important, 
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Abstract
Full- subsets information theoretic approaches are becoming an increasingly popular 
tool for exploring predictive power and variable importance where a wide range of 
candidate predictors are being considered. Here, we describe a simple function in the 
statistical programming language R that can be used to construct, fit, and compare a 
complete model set of possible ecological or environmental predictors, given a re-
sponse variable of interest and a starting generalized additive (mixed) model fit. Main 
advantages include not requiring a complete model to be fit as the starting point for 
candidate model set construction (meaning that a greater number of predictors can 
potentially be explored than might be available through functions such as dredge); 
model sets that include interactions between factors and continuous nonlinear pre-
dictors; and automatic removal of models with correlated predictors (based on a user 
defined criterion for exclusion). The function takes continuous predictors, which are 
fitted using smoothers via either gam, gamm (mgcv) or gamm4, as well as factor vari-
ables which are included on their own or as two- level interaction terms within the 
gam smooth (via use of the “by” argument), or with themselves. The function allows 
any model to be constructed and used as a null model, and takes a range of arguments 
that allow control over the model set being constructed, including specifying cyclic 
and linear continuous predictors, specification of the smoothing algorithm used, and 
the maximum complexity allowed for smooth terms. The use of the function is dem-
onstrated via case studies that highlight how appropriate model sets can be easily 
constructed and the broader utility of the approach for exploratory ecology.
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such as temperature, light, and aragonite saturation in the case of 
corals (Kleypas, McManus, & Menez, 1999), there may still be un-
certainty in how the variables should be summarized for use in 
ecological models. For example, is it the maximum temperatures, 
skewness, or even their kurtosis that is important (Ateweberhan & 
McClanahan, 2010; McClanahan, Ateweberhan, Muhando, Maina, & 
Mohammed, 2007)? Indeed, considerable insight into the processes 
involved in driving ecological patterns may be gleaned by consider-
ing the predictive power of different summary metrics (Steel et al., 
2012).

Inevitably, collinearity among explanatory variables occurs, 
causing problems with their concurrent use in statistical models 
(Graham, 2003; Whittingham, Stephens, Bradbury, & Freckleton, 
2006). Strategies for dealing with correlated predictor variables in-
clude data reduction techniques (such as PCA) to create a reduced 
set of orthogonal variables or using variance inflation metrics to se-
lect a subset of noncollinear variables to include. While data reduc-
tion techniques definitively remove collinearity, it is often difficult to 
disentangle the independent effects and predictive strength of the 
correlated input variables, potentially confounding interpretation 
(Freckleton, 2011; Graham, 2003), and/or masking possible cause–
effect relationships with the individual input variables. Furthermore, 
when a PCA axis is found to be an important ecological driver, fu-
ture studies wishing to measure this must collect a large range of 
variables, many of which may be functionally irrelevant. Likewise, 
the often arbitrary choice of which correlated variables are the most 
“important” and retained means that potentially interesting relation-
ships may be overlooked.

Full- subsets information theoretic approaches (Burnham & 
Anderson, 2002) provide a useful alternative to stepwise regres-
sion (Mundry & Nunn, 2009) that can alleviate some of the issues 
with multicollinearity. The general idea of information theoretic ap-
proaches is to construct a complete model set and compare all the 
models in this set using model selection criterion such as Akaike in-
formation criterion (AIC), AIC corrected for small sample sizes (AICc, 
Hurvich & Tsai, 1989), or Bayesian information criterion (Wit, van 
Heuvel, & Romeijn, 2012). While information theoretic approaches 
can be used to establish a “best” or most “parsimonious” model (if 
one exists) using model weights, they are more transparent than 
traditional backwards selection approaches, allowing all good candi-
date models to be identified and compared. Where several candidate 
models have substantial weight, information theoretic approaches 
allow model averaging and multimodel inference, such that predic-
tions properly account for model uncertainty. By considering all vari-
ables in all possible (sensible) combinations, the relative importance 
of different variables can be properly explored (by summing model 
weights for each variable, see Burnham & Anderson, 2002) without 
the risk of inadvertent exclusion of important variables, as can hap-
pen with backwise selection.

Several R (R Core Team 2017) packages have been available 
for some time, such as regsubsets from package leaps (Lumley & 
Miller, 2009) which fits a complete set of linear models, along with 
MuMIn (Barton, 2014) and AICcmodavg (Mazerolle, 2016), which 

have made multimodel inference and model averaging approaches 
highly accessible to practicing ecologists. The function dredge in 
the package MuMIn constructs a complete model set based on a 
fit of the most “complex” model (similar to regsubsets), allows ran-
dom effects to be included via a mixed modeling framework (lme, 
lmer, Bates, Mächler, Bolker, & Walker, 2015; Bates, Maechler, 
Bolker, & Walker, 2015; Pinheiro, Bates, DebRoy, & Sarkar, 2013), 
and nonlinear relationships through the use of generalized addi-
tive models (fit via packages mgcv and gamm4, Wood & Scheipl, 
2016; Wood, 2017). Here, we expand the toolkit available to ecol-
ogists for fitting full- subsets multiple regression approaches by 
providing a simple function in R (https://github.com/beckyfisher/
FSSgam) that can be used to construct, fit, and compare a can-
didate model set based on a range of ecological or environmen-
tal predictors. The main advantages of this function over existing 
packages are as follows: (1) It does not require a complete model 
to be fit as the starting point for candidate model set construc-
tion, meaning that a greater number of predictors can potentially 
be explored than might be available through functions such as 
dredge; (2) the function properly handles interactions between 
factor predictors and continuous “smoothed” predictors through 
the use of “by” arguments in the call to “s” in gam(m) as well as 
smooth- smooth interactions via the use of bivariate calls to “te”; 
and (3) the function automatically removes models containing cor-
related predictors from the candidate model set, based on a user- 
defined criterion for exclusion. As many ecological processes are 
inherently nonlinear, our function is based on generalized addi-
tive (mixed) models via the mgcv (Wood 2006) and gamm4 (Wood 
& Scheipl, 2016) packages in R, providing a convenient means of 
exploring complete model sets for a range of continuous, poten-
tially nonlinear, predictors without the need to define the exact 
functional form of the relationships between the predictors and 
the response. The function takes continuous predictors, which are 
fitted using smoothers via either gam, gamm (mgcv), or gamm4, as 
well as factor variables which are included on their own or as two- 
level interaction terms within the gam smooth (via use of the “by” 
argument), or with themselves.

2  | FULL- SUBSETS FUNC TION

2.1 | Function inputs

The function has three arguments that must be provided, including a 
data.frame (use.dat, Appendix S1) containing all variables to include 
in the analysis; an updatable fitted “test” model fit (test.fit, Appendix 
S1) generated by a call to gam, gamm (mgcv), or uGamm (MuMIn) 
using the response variable to be analyzed, specifying any relevant 
random effects and the family; and a character vector specifying 
which continuous predictor variables from use.dat to include in the 
model set (pred.vars.cont, Appendix S1). There are 15 other argu-
ments that control various aspects of the model set constructed and 
final output, and these are described in detail in Appendix S1, along 
with their default values.

https://github.com/beckyfisher/FSSgam
https://github.com/beckyfisher/FSSgam
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2.2 | Model set construction

The function generates a complete model set, based on the pred.
vars.cont character vector and/or a second vector specifying 
those that should be included as factors if required (pred.vars.
fact, Appendix S1). Three further arguments control the complex-
ity of the candidate model set constructed, including: whether the 
model set should include interactions between factor predictors 
or only their main effects (factor.factor.interactions); whether 
the model set should include interactions between smooths and 
factor variables (including factor interactions) as “by” arguments 
(factor.smooth.interactions); whether the model set should in-
clude interactions between smooths and other smooths (smooth.
smooth.interactions); and the maximum number of predictors to 
include in a single model (max.predictors, Appendix S1). Including 
factor–factor and factor–smooth interactions can dramatically in-
crease the number of models in the candidate set and is not rec-
ommended when there are factors with many levels. The function 
allows control over which factor variables should be included as 
interactions with each other and with smoothed continuous pre-
dictors, as well as which smoothed continuous predictors should 
be included as interactions with each other (see Appendix S1 for 
details).

Once all the full- subsets model elements are defined a complete 
model set is generated from this combined vector using a repeated 
call to the R function combn, with the argument m (number of el-
ements to choose) set as 1 (only single variable models) through 
to the defined maximum number of predictors (max.predictors, 
Appendix S1). This complete model set is then reduced based on a 
series of checks that remove models where (1) the total number of 
included predictors is larger than the user- specified maximum num-
ber of predictors (this can occur when factor interactions are in-
cluded); (2) factor variables included as “by” arguments in smooths 
do not also include the factor as a main effect; (3) continuous pre-
dictors occur as smooths containing a “by” argument as well as a 
single predictor; (4) continuous predictors occurring as smooths in 
a bivariate “te” call as well as a single predictor; and (5) estimated 
pairwise correlations between any two predictors are too high (cor.
cutoff, Appendix S1, defaulting to >0.28 in line with recommenda-
tions of Graham 2003).

2.3 | Model fitting

Once the final model set is constructed, it is converted into a list of 
model formulae, with all continuous predictors specified as smooth 
terms via s (with or without a “by” argument, depending on the 
specific model in the set), with k and “bs=“ defaulting to 5 and “cr,” 
respectively (k and bs.arg, Appendix S1), with the exception of any 
that are specified as cyclic (cyclic.vars, Appendix S1), for which bs is 
set to “cc,” or linear (linear.vars, Appendix S1), which are included as 
parametric linear predictors. Any terms specified as being part of 
the null model (null.terms, Appendix S1) are also added during model 
formula construction.

The foreach function from the package doParallel is used to fit 
each model in the formula list via a call to update, using the test.fit 
model supplied by the user, allowing parallel processing if specified 
(parallel, Appendix S1). Use of update means that all details regard-
ing the choice of gamm (mgcv) or gamm4, family, random structures, 
and correlation structures can be controlled by the user through the 
test.fit call and are not modified by the full subsets function.

2.4 | Function outputs

The full.subsets.gam function returns a named list with six elements, 
including a data.frame (mod.data.out, Appendix S2) that contains the 
statistics associated with each model fit; the final used data.frame 
(used.data, Appendix S2), the matrix of estimated predictor correla-
tions (predictor.correlations, Appendix S2), a list containing the try- 
error catch associated with models that failed to fit (failed.models, 
Appendix S2), a complete list of all successfully fitted models (suc-
cess.models, Appendix S2), and a list containing variable importance 
scores for each included predictor (variable.importance, Appendix 
S2). The mod.data.out table includes AICc and BIC, delta values 
(e.g., AICc- min(AICc)), corresponding weight (ωi) values (Burnham & 
Anderson, 2002), an estimate of the model R2, and a column indi-
cating the presence of each included predictor variable. Calculating 
R2 values is nontrivial for mixed models (Nakagawa & Schielzeth, 
2013), and especially for non- Gaussian cases and the function al-
lows a range of methods for estimating R2 to be specified (r2.type, 
Appendix S1).

Ideally, the list of failed models should be empty, but when this 
is not the case interrogating failed.models can be useful for trouble-
shooting, allowing users to examine which models are not fitting and 
explore the underlying cause by fitting failed models outside the full.
subsets.gam call. When a large number of models fail to fit properly 
it usually indicates poor specification of the initial test.fit or other 
arguments in the call to full.subsets.gam, such as the inclusion of fac-
tor interactions when there are few data within each factor or that 
inappropriate variables are being included in the model set. The list 
of successfully fitted models can be used for multimodel inference 
and generating model averaged predictions.

3  | APPLYING THE FULL- SUBSETS 
APPROACH

3.1 | Case study 1: The relative influence of habitat 
and management on reef fishes

Coral reef fish are highly diverse assemblages that provide impor-
tant ecosystem services for millions of people (Pratchett, Hoey, & 
Wilson, 2014). These services are, however, threatened by overfish-
ing (MacNeil et al., 2015; Newton, Côté, Pilling, Jennings, & Dulvy, 
2007) and a loss of habitat, in particular corals (Wilson, Graham, & 
Pratchett, 2006) and the structure they provide (Rogers, Blanchard, 
& Mumby, 2014). No- take reserves (NTR) promote higher abundance 
and biomass of fish (McClanahan, Graham, Wilson, Letourneur, & 
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Fisher, 2009; Russ, 2002) and conserve ecosystem function (Graham 
et al., 2011). It is clear that NTR cannot prevent large- scale distur-
bances, such as heat stress that causes extensive coral loss and de-
cline in fish (Graham et al., 2008; Jones, McCormick, Srinivasan, & 
Eagle, 2004); however, a reduction in local pressures in NTR may 
facilitate greater resilience of coral reefs (Hughes, Graham, Jackson, 
Mumby, & Steneck, 2010). By examining patch reefs of differing 
habitat quality inside and outside of NTR within the Ningaloo ma-
rine park, Wilson et al. (2012) explored how habitat degradation and 
fishing influenced the abundance and biomass of fish from different 
functional groups.

Explanatory variables in the original analyses of Wilson et al.,  
(2012) were summarized using the scores from the two axes of a 
principal components analysis (PCA), making it impossible to tease 
apart the relative importance of variables that were correlated along 
the axis. We re- analyzed their original data using a full- subsets mul-
tiple regression approach (see details of methods in Appendix S3, 
along with links to the R code used). The re- analysis shows clearly 
that seascape measures of patch reef complexity were generally 
the best predictor of both fish abundance and biomass (Figure 1, 
Table A3.1 in Appendix S3). Fish abundance and biomass were low 
on reefs with no relief and were higher on structurally complex reefs 
(Figure A3.2 in Appendix S3), a finding consistent with other studies 
showing that measures of seascape complexity are positively cor-
related with fish abundance, often outperforming other measures 
of complexity (Collins et al., 2016; Wilson et al., 2007). The results 
support the original finding of strong relationships with habitat and 
only weak evidence for an effect of zoning status on fish abundance 
and biomass. However, the new analysis teases apart the relative 
influence of correlated habitat variables, showing that herbivore 
abundance is strongly influenced by habitat complexity rather than 
macroalgae. This finding is consistent with other recent studies at 
Ningaloo that also found abundance of herbivorous fishes is closely 
related to reef structure rather than macroalgae (Downie, Babcock, 
Thomson, & Vanderklift, 2013; Wilson et al., 2014). Interestingly, 
the abundance of planktivores was still strongly related to PCA 
scores (Figure 1; Figure A3.2 in Appendix S3), suggesting aggregate 

metrics of habitat may be relevant to some components of the fish 
assemblage.

3.2 | Case study 2: The role of reef- associated 
predators in structuring adjacent soft- sediment fauna

Marine no- take reserves (NTRs) can provide a large- scale experi-
mental framework for exploring the role of large reef- associated 
predators in structuring adjacent soft- sediment communities 
(Babcock, Kelly, Shears, Walker, & Willis, 1999; Shears & Babcock, 
2002). However, a problem with studies of established NTRs is that 
evidence based on a negative relationship between predator and 
prey densities (Hurlbert, 1984; Underwood, Chapman, & Connell, 
2000) may be confounded by other covariates also influencing the 
structure of the soft- sediment community (e.g., wave action, sedi-
ment grain- size distributions, organic matter, infaunal interactions). 
Using a dataset collected in northeastern New Zealand, Langlois, 
Anderson, and Babcock (2005) explored the hypotheses that (1) pre-
dation by large reef- associated predators (sparid fish Pagrus auratus 
and the rock lobster Jasus edwardsii) would result in lower densities 
of large (>4 mm) soft- sediment macrofauna inside reserves com-
pared to outside reserves (predator model) and (2) predation would 
decrease with increasing distances from the reef (distance model).

In the original study of Langlois et al. (2005), the influence of 
environmental variables on the assemblage inside and outside 
the NTR was investigated using multivariate multiple regression, 
which found no evidence they were confounding the comparison. 
Effects on individual taxa were therefore subsequently examined 
independently using a mixed- model permutational ANOVA. We re-
vised this original analysis using the full- subsets multiple regression 
approach so that the relative importance of NTR status (predator 
model), distance from the reef edge (distance model), and a range 
of environmental covariates could be simultaneously evaluated (see 
details of methods in Appendix S4, along with links to the R code 
used). We found that the importance of distance from reef and 
NTR status matched the results of the original study for the bivalve 
Dosinia subrosea. Subsequent manipulative studies have found that 

F IGURE  1 Variable importance scores 
from a full- subsets analyses exploring 
the influence of habitat variables and 
management zoning on the abundance 
and biomass of four functional fish 
feeding guilds (see Appendix S3). Habitat 
variables included a visual assessment 
of complexity (complexity); the square 
root of rugosity (sqrt.rug), cover of low 
complexity (sqrtLC), and high complexity 
(sqrtHC) corals and macroalgae cover 
(sqrtMacro); the first and second axis 
scores from a principle components 
analysis (SCORE1 and SCORE2); and 
management zone (ZONE) co
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D. subrosea are readily preyed upon by the large- bodied rock lobster 
in the field (Langlois, Anderson, Babcock, & Kato, 2006) and labo-
ratory (Langlois, Anderson, Brock, & Murman, 2006), supporting 
the results of this analysis. For Myadora striata NTR status, distance 
and organic content were found to be important across all possible 
models, but a simple model of decreasing abundance of M. striata 
with increasing density of legal- sized rock lobster was the most 
parsimonious (Figure 2), corroborating the observation that greater 
than legal- size rock lobster can readily prey upon bivalves (Langlois, 
Anderson, Brock et al., 2006).

There was a high level of model uncertainty in our full- subsets 
analysis of the ubiquitous hermit crab Pagurus novizelandiae, with 
very low model weights (maximum weight 0.05, Appendix S4: Table 
A4.2) and low, relatively evenly distributed variable importance 
scores (Figure 2). This is consistent with the original study that found 
no effect of NTR status on the abundance of the ubiquitous hermit 
crab Pagurus novizelandiae. The best model includes the 4- mm sed-
iment grain- size fraction and the density of legal- sized rock lobster 
(Figure 2). The direct relationship between the density of legal- sized 
rock lobster and the hermit crab P. novizelandiae supports studies 
indicating rock lobster can exhibit a strong preference for decapod 
prey (Dumas, Langlois, Clarke, & Waddington, 2013).

3.3 | Case study 3: Reproductive cycles of broadcast 
spawning gastropods over multiple temporal scales

Studies of reproductive biology are fundamental to understanding 
resource allocation, larval recruitment, and population dynamics 
(Underwood & Keough, 2001), providing valuable insights into life 
history strategies, uncovering important interactions with environ-
mental conditions and habitats, and supporting the development of 
appropriate measures for conservation and management. In addi-
tion, an understanding of reproductive cycles and patterns is critical 
for population modeling and prediction, underpinning efforts to en-
sure sustainable fishing of commercial species. Reproductive cycles 
can occur at a number of scales, ranging (in decreasing frequency) 

from circadian, half- lunar, and lunar to seasonal. Lunar and semilu-
nar cycles are obvious cues for reproduction, particularly for the 
broadcast spawners prevalent in marine systems for which synchro-
nicity is critical for fertilization success (Babcock, Mundy, Keesing, 
& Oliver, 1992). Few studies have concurrently examined effects of 
annual and lunar patterns on the spawning of marine invertebrates 
in the tropics in a manner that elucidates relative reproductive out-
put at both temporal scales, with most studies focusing on the an-
nual spawning period. Failure to explicitly model within seasonal 
patterns can confound data related to reproductive biorhythmicity, 
as sampling timing often becomes a confounding factor. Part of the 
issue may relate to the fact that both lunar and seasonal patterns 
are cyclical in nature, representing a challenge in conventional/tra-
ditional analyses.

Here, we take advantage of cyclic general additive models 
(GAMs) and full- subsets modeling methods to elucidate reproduc-
tive patterns (as indicated by gonadosomatic index, GSI) at multiple 
temporal scales: (1) among years, (2) among months (i.e., yearly pat-
tern), and (3) within month (i.e., lunar and semilunar cycle) in two 
species of broadcast spawning gastropods (Patelloida saccharina and 
Monodonta labio). The full- subsets gam function allows other factors 
(e.g., sex and species) to be examined as both interactions (e.g., a 
different relationship with lunar day within each level), and as main 
effects (i.e., a shift in the overall relationship up or down within each 
level [see details of methods in Appendix S5, along with links to the 
R code used]). In addition, interactions among continuous smooths 
can also be explored. Our full- subsets analysis found that a model 
with lunar date and month as interactions with species, along with 
an intercept effect of sex, showed the highest ranking according to 
both AICc and BIC, explaining 28% of the variance in GSI for these 
species (see Table A5.1 in Appendix S5).

Strong interactions between species and both lunar day and 
month were due to markedly different trends in GSI for each of 
these predictors across the two species. A strong semilunar pattern 
was evident for P. saccharina, with fairly equal peaks in GSI occurring 
around lunar days 7 and 23 and minima occurring around days 0 and 
15 (Figure 3). Lunar patterns were generally weak for M. labio and 
also reversed to P. saccharina, with peaks centered on lunar days 0 
and 15, and minima occurring around days 5 and 23 (Figure 3). Both 
P. saccharina and M. labio are continuous breeders, with GSI values 
remaining above five throughout the year (a phenomenon previously 
reported in trochids and acmaeids, see Hickman, 1992 for review) 
(Catalan & Yamamoto, 1993; Creese, 1980). However, there were 
differences in the timing of peak reproduction between the two spe-
cies throughout the year, with M. labio showing the highest output 
during February and March, and P. sacharina showing peak output 
in July (Figure 3). February/March denotes the end of the northeast 
monsoon, with increasing seawater temperatures over the follow-
ing months, reaching annual peaks around August (Sin et al., 2016). 
Values of GSI were higher in males compared to females for both 
species, regardless of lunar day, or time of year (Figure 3), which 
is a common phenomenon in intertidal gastropods (Creese, 1980; 
Creese & Ballantine, 1983; Liu, 1994).

F IGURE  2 Variable importance scores from full- subsets 
analyses of the abundance of Dosinia subrosea, Myadora striata, and 
Pagurus novizelandiae, with variables within the most parsimonious 
model for each taxon indicated (X, see Table A4.2 in Appendix S4)
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4  | DISCUSSION

The case studies presented clearly demonstrate the value of the 
full- subsets information theoretic approach. Our function allows ex-
ploration of a wide range of (even correlated) predictors that can elu-
cidate important underlying functional relationships. This is a clear 
alternative to restrictive and oftentimes flawed null- hypothesis test-
ing approaches, even in the case of relatively small sets of candidate 
predictors. Overall, the results of the revised analysis of the relative 
importance of habitat and management on fish abundance and bio-
mass were generally similar to those from the original study based 
on PCA. However, by including the underlying habitat information, 
the new analysis provides a clearer picture of which elements of 
the benthic assemblage are most important to fish. This additional 
information is useful for building scientific hypotheses and para-
metric models for how such fishes may be influenced by changes 
in habitat (such as is expected due to ocean warming and climate 
change, Pratchett, Wilson, & Munday, 2015), as well as informing 
which elements of the habitat should be a focus for management 
targets. In the benthic infauna case study, the full- subsets approach 
allowed alternative hypotheses regarding predator influence and en-
vironmental factors to be explicitly disentangled, instead of relying 
on a simple comparison of NTR status. The flexibility provided by 

the full- subsets function is evident from the case study exploring 
reproduction in broadcast spawning gastropods, showing how com-
plex interactions between factors (species, sex) and multiple tempo-
ral scales of periodicity can be thoroughly explored. Although the 
model set for the gastropod reproduction case study was relatively 
small (only 52 models in the final set), manually coding all 52 models 
would be tedious and the inclusion of only a few additional environ-
mental covariates (such as temperature) would render manual for-
mulation of the model set intractable.

The full- subsets function was developed primarily with the 
aim of fitting appropriate model sets using generalized additive 
mixed (GAM) modeling methods with “by” arguments supplied in 
the smooth call. We focus on the use of GAM here because many 
ecological processes are inherently nonlinear. While parametric 
relationships have advantages over GAM approaches as they pro-
vide parameterization of the functional relationships between 
the predictors and the response, defining the exact functional 
form of these relationships can be quite tedious, particularly in a 
full- subsets multiple regression framework. Smoothing methods, 
such as those implemented via gam, gamm (mgcv) and gamm4, 
provide a convenient means of exploring the relative predictive 
power and importance of a range of continuous predictors, given 
an optimal smoothed relationship. In our GAM fits, we restrict the 

F IGURE  3 Gonadosomatic index (GSI) as a function of lunar date (left- hand plots) and month of the year (right- hand plots) for Monodonta 
labio (upper) and Patelloida saccharina (lower), with colors indicating sex (male and female). Fitted gam curves (solid lines) and 95% confidence 
bands (dashed lines) are also shown
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“k” parameter (the dimension of the basis used to represent the 
smooth term) to reduce overfitting and to ensure largely mono-
tonic relationships. Highly complex functional relationships re-
quiring high k values are probably not well suited to full- subsets 
multiple regression approach, as partial relationships for models 
containing multiple continuous predictors can become difficult to 
interpret.

While functionally similar to dredge, the approach of building 
the model set from the “bottom up” along with automatic removal 
of models containing correlated predictors provides subtle yet im-
portant differences in the types of model sets that can be easily 
constructed. Furthermore, our function overcomes issues asso-
ciated with inclusion of factor variable interactions as “by” argu-
ments in GAM(M) which introduces complexities that are not well 
handled by dredge. By “hard coding” factor interactions, they can 
be included as interactions with continuous predictors. It is this 
functionality that allowed the analysis of the reproductive cycles 
of broadcast spawning gastropods, which involved interactions be-
tween sex, species, and the cyclic smooths, an analysis that would 
not have been possible using dredge. While we have not been able 
to provide a relevant case study here, our full- subsets function may 
also prove useful in the case of exploring the importance of lagged 
predictors (Fulton et al., 2014). Lagged variables could all be passed 
to the function for model construction, with automatic removal of 
models including more than one, as they would almost certainly be 
highly correlated.

The function allows exploration of a wide range of potentially 
correlated predictors simultaneously (models containing correlated 
predictors are removed from the candidate set, but all variables are 
still included in the model set for evaluation). This can be useful in 
situations where there is considerable uncertainty regarding which 
of several correlated variables might be the best predictors and is 
particularly relevant where the main aim of a study is exploration. 
However, inclusion of sets of highly correlated variables can weaken 
interpretation of results, as this can split the “importance” scores 
across a range of metrics representing a single ecosystem driver. 
While it may be possible to sum importance scores across the in-
cluded metrics to derive an overall importance score for the ecosys-
tem driver of interest, it is better to avoid including variables that 
effectively measure the same underlying functional process. While 
included predictor variables can be correlated with one another 
using our full- subsets approach (as models containing correlated 
predictors are automatically removed from the model set), it is up to 
the ecologist to ensure only variables that have a sensible reason for 
being considered in the model set are included. Note also that while 
we have used simple bivariate correlations to identify possible col-
linearities, which is appropriate given the relatively low complexity 
models we recommend here (default number of maximum included 
predictors = 3). If many predictors are to be included within individ-
ual models in the candidate set, more complex collinearities may 
exist. If this is the case, we recommend the user make use of a range 
of more complex diagnostic tools for evaluating collinearity (Dorman 
et al. 2012) that are readily implementable via existing R packages 

(e.g., Hendrikx 2012) to construct their own bivariate inclusion ma-
trix to be passed to the function (see Appendix S1, cor.matrix).

As with any statistical methodology that becomes widely used 
in ecology, there is considerable scope for misuse of information 
theoretical approaches, with the most pertinent issues covered 
by Anderson and Burnham (2002). A concern of computer algo-
rithm approaches for building model sets for comparison within 
the information theoretic framework is that it leads to analyses 
based on poor science questions and too many models, without 
careful consideration of the science issues being captured. This is 
a valid criticism, and it is certainly true that the full- subsets func-
tion presented here can be easily misused in this way. Our initial 
motivation for the development of an automated approach for 
the construction of model sets stemmed from the fact that manu-
ally building complete models sets can be both tedious and prone 
to error (often potentially valid candidate models are missed). The 
full- subsets function described here provides a balance between 
tedious manual coding of all candidate models and convenient 
automation of the most likely useful candidate model set. We 
provide considerable flexibility in our function aimed at ensur-
ing only scientifically sensible, and valid models are included in 
the final set, including (1) the capacity to remove models con-
taining correlated predictors, which often yield spurious results 
and are scientifically indefensible; (2) restriction of the maximum 
number of included predictors to ensure that included models 
remain ecologically interpretable; (3) limitation of k in GAM mod-
els, such that models with overly complex relationships between 
predictor and response variables are not considered; (4) the ca-
pacity to include “null” terms in all models, where there are clear 
known relationships that must be included for valid inference; 
and (5) the ability to restrict factor and smooth interactions to 
only those that are sensible and scientifically relevant. In addi-
tion to these features, we highly recommend that careful con-
sideration be given to the included predictors, both continuous 
and categorical. These should be restricted to those that have a 
reasonable scientific basis for being of relevance to the response. 
In addition, the fitted model set should be screened carefully to 
ensure that all are sensible and that potentially important models 
have not been excluded. Users must also be mindful that a full- 
subsets approach is not always the best solution to analyzing a 
large range of predictors. There are clearly times where data re-
duction techniques (such as PCA) are useful, such as when there 
is no theoretical reason to understand how (or expect) a single 
predictor to be an important driver. Another criticism is that full- 
subsets approaches applied to observational datasets can only 
highlight where there are strong and weak relationships and do 
not imply causality. While the methods are useful where the aim 
is primarily exploring and elucidating important relationships that 
can help build hypotheses and theoretical models, experimental 
studies are generally required to properly establish cause and ef-
fect pathways.

Finally, we encourage users of our function to fully embrace the 
value of information theoretic approaches, rather than using these 



     |  6111FISHER Et al.

simply as an alternative model selection tool aimed at yielding a most 
“parsimonious” or “best” model. There is inherent value in the abil-
ity to explore the relative importance of predictors, as we have fo-
cused on in our case studies. The function outputs summed Akaike 
weights as a metric of variable importance, a widely used measure 
in ecology (Grueber, Nakagawa, Laws, & Jamieson, 2011), but which 
has come under recent criticism (Galipaud, Gillingham, David, & 
Dechaume- Moncharmont, 2014; Galipaud, Gillingham, & Dechaume- 
Moncharmont, 2017; but see Giam and Olden 2016). A range of other 
metrics may also be considered for assigning variable importance, 
such as model averaged standardized parameter estimates (Galipaud 
et al., 2017) or methods focused on assessing dispersion importance 
(Grömping, 2006); however, these are not currently available for 
GAM model fits and cannot therefore be easily implemented here. In 
the meantime, we urge caution in the interpretation of summed AIC 
weights and encourage readers to be aware of common misconcep-
tions regarding their use in ecology (Galipaud et al., 2014). Importantly, 
aside from outputting variable importance scores, our function also 
returns a complete set of fitted models that can be further utilized by 
the user. For example, information theoretic approaches can yield sets 
of competing models with relatively similar support. In such cases, 
this model uncertainty can be properly captured using multimodel 
inference approaches (Burnham and Anderson 2002), yielding more 
robust prediction outcomes than single model inference. In addition, 
the fitted model set can be interrogated and/or incorporated into a 
number of additional procedures, such as using training and testing 
subsets to assess model predictive performance.
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