Nesta prática vamos quantificar o padrão espacial usando métodos multiescala. Com uma única medida podemos avaliar como o padrão espacial varia com a escala. Ao invés de trabalhar com amostras da população de interesse iremos descrever o padrão espacial para o conjunto total de pontos em uma população. Neste caso, temos um censo da população numa área delimitada e iremos ver o que acontece com as medidas de agregação desde a escala de indivíduos vizinhos até a parcela toda.
Para a prática vamos utilizar um programinha chamado Programita, feito pelo Thorsten Wiegand para quantificar o padrões espaciais usando medidas multiescala baseadas em distância entre pontos. Para baixar o manual do Programita clique aqui.
No Programita existem várias medidas que podem ser usadas para calcular agregação, vamos usar duas delas: o O-ring e o L de Ripley.
Ambas são abordagens baseadas em pontos, que utilizam o cálculo de distâncias ponto a ponto dentro de uma área delimitada. Essas medidas podem ser usadas para análises univariadas, ou seja, identificando o padrão para uma única classe de pontos, ou para análises bivariadas, que identifica o padrão entre dois tipos de pontos. As análises bivariadas podem ser usadas no contexto de populações para verificar se indivíduos de um dado estágio estão espacialmente associados a outro, ou no contexto de estruturação de comunidades para analisar a agregação de uma espécie ao redor de outra.
O L de Ripley é uma medida da densidade média ao redor de cada ponto. Para cada ponto na área de estudo é calculada a densidade no interior de um círculo de raio r centrado no ponto (área cinza da figura). Em seguida, calcula-se uma média desses valores obtidos para todos os pontos.
A operação é repetida para diferentes valores de r. O L(r) é uma medida derivada dessa densidade média ao redor dos pontos em função do raio de influência (r), que permite avaliar de maneira contínua a agregação dos indivíduos.
Figura: Implementação da estatística L de Ripley: contagem do número de pontos distantes de i no interior do círculo de raio r. Extraído de Wiegand & Moloney (2004).
O L(r) é baseado na função K de Ripley, que é a densidade média de pontos a uma dada distância r de cada ponto, dividida pela intensidade (λ) dos pontos na área de estudo1):
K(r)=∑ii≠jI(dij<r)n1λ
Onde:
A interpretação visual do K(r) não é muito intuitiva. Por isso foi criado o L de Ripley, L(r), que é a transformação:
L(r)=(√K(r)π−r)
que tem uma interpretação mais simples: L(r)>0 indica agregação, enquanto L(r)<0 indica padrão homogêneo.
A estatística O-ring é similar ao L de Ripley, mas baseada em um anel, ao invés de um círculo. É medida pela contagem do número de pontos em um anel de raio r e largura fixa. Da mesma forma que o L-Ripley também são calculadas as intensidades para diferentes tamanhos de anel, mantendo a largura fixa.
Figura: Implementação da estatística O-ring: contagem do número de pontos distantes de i ao longo do raio r. Extraído de Wiegand & Moloney (2004).
Logo, definimos O(r) como: O(r)=L(r)−L(r−l)
Onde:
Na completa aleatoriedade espacial O(r)=λ (intensidade do padrão), quando o padrão é agregado O(r)>λ e quando é homogêneo O(r)<λ
Dados para Análise Espacial
Bem vindo(a) ao Programita! Agora vamos abrir os dados que iremos trabalhar.
O Programita aceita arquivos de texto das extensões .dat e .asc. São arquivos em formato de texto, separados por tabulação (ou espaço). Os arquivo de dados possui a seguinte estrutura:
A primeira linha contém informações gerais sobre o arquivo de dados:
A partir da segunda linha, estão os dados dos pontos que serão analisados:
No caso de dados univariados, a terceira coluna será sempre 1 e a quarta coluna sempre 0. Para dados bivariados as terceira e quarta colunas terão valores de 0 e 1 de acordo com o padrão do ponto.
Dependendo da configuração do seu navegador o arquivo salvo pode aparecer com uma extensão diferente (p.ex. “.bin”). Nesse caso é preciso mudar a extensão do arquivo para “.dat”.
A saída visual do programa é um mapa onde os indivíduos aparecem em pontos vermelhos, seguindo as coordenadas do arquivo de dados. O gráfico no canto superior direito corresponde ao valor do L-Ripley para diferentes raios. Nessa saída gráfica é possível analisar como o padrão espacial varia de acordo com a escala.
Porém, isso não é suficiente para afirmamos em que escalas a população é agregada. Para isso precisamos comparar o resultado observado com o padrão que seria gerado pela distribuição dos pontos completamente aleatório. Esse modelo nulo é chamado de completa aleatoriedade espacial. Para gerar esse modelo por simulação é necessário recolocar o mesmo número de pontos de forma aleatória na mesma área. Se fizermos isso, muitas e muitas vezes, é possível gerar um envelope de confiança (similar ao intervalo de confiança) no qual o padrão de distribuição aleatória é encontrado. Se os valores observados estão contidos dentro do envelope podemos concluir que nosso padrão não é diferente do aleatório.
Para fazer isso você deve:
Caso a simulação esteja demorando muito
Descreva o padrão observado
O Programita permite acompanhar graficamente a simulação ao longo do tempo . É possível observar que a cada simulação é gerada uma distribuição aleatória dos indivíduos e recalculado os valores de L-Ripley. Ao final é gerado o gráfico com os valores observados a partir do arquivo de dados, acompanhado do envelope de confiança gerado a partir da simulação de completa aleatoriedade espacial. Valores fora do intervalo de confiança indicam a existência de um padrão espacial diferente do aleatório.
Dica: Faça um Print Screen dos seus resultados para salvar o gráfico de cada análise que fizer ao longo da prática.
Atividade
O Programita permite a análise de padrão de pontos de uma classe em relação a outra. Para isso é necessário diferenciar os pontos no arquivo de dados, utilizando 0 ou 1 nas colunas 3 e 4, como mostra a figura abaixo, em um arquivo que distinguia indivíduos adultos de juvenis:
Vamos agora analisar o padrão dos pontos associados (PROLE) em relação aos parentais (PAR), seguindo o mesmo procedimento anterior.
Descubra o algoritmo
Algoritmo é uma sequência de passos para executar uma tarefa. Os pontos dos arquivos de dados foram gerados por um algoritmo muito simples em duas fases: primeiro foram gerados os pontos parentais e em seguida os pontos associados (prole). Descreva uma sequencia de tarefas 6) que seria capaz de gerar a distribuição de pontos (incluindo ambas classes de pontos) que você observou a partir do seu arquivo de dados.
O Palmiteiro (Euterpe edulis Mart.) é uma espécie muito característica das florestas atlânticas e costuma ocorrer com densidades altas em áreas mais preservadas. Vamos agora analisar os dados referentes a uma população de palmitos que ocorre em uma parcela de floresta de Restinga na Ilha do Cardoso, Cananéia -SP. Os dados foram coletados nos anos de 2009/2010 em uma área de 10,24ha (320m x 320m).
Preparamos três arquivos no formato lido pelo Programita:
Utilizando as ferramentas disponíveis no Programita para descrever os padrões espaciais:
Investigue se a distribuição dos juvenis está associada a dos adultos.
Padrões & Processos Junte-se em um grupo de 2 a 4 alunos e discuta quais possíveis processos poderiam gerar os padrões descritos.