Ferramentas do usuário

Ferramentas do site


cursos:planeco:roteiro:09-lm02

Modelos Lineares Múltiplos I

datamodel.jpg

Uma extensão do modelo linear simples 1) são os modelos lineares com mais de uma preditora, aqui definido como modelos múltiplos. Quando temos mais de uma preditora o modelo aumenta em complexidade com mais parâmetros para estimar. Além disso, a estrutura mais complexa do modelo gera desafios para a interpretação e dificulta a avaliação da adequação do modelo aos dados. Uma primeira complexidade está relacionada a como simplificar a estrutura do modelo com a finalidade de facilitar a interpretação e melhorar a estimação dos parâmetros. A tomada de decisão sobre quais variáveis devemos reter em nosso modelo e quais podem ser retiradas, por não terem efeito na variável resposta, pode ser feita utilizando diferentes critérios e técnicas. A seguir apresentamos uma das técnicas utilizadas para essa tomada de decisão e que iremos utilizar ao longo desse curso. Outros critérios ou técnicas podem ser utilizadas com vantagens ou desvantagens em relação ao que utilizaremos. Não é objetivo desse curso se debruçar sobre essas diferentes técnicas.

Duas preditoras categóricas

O primeiro exemplo que iremos trabalhar é baseado nos dados utilizados para exemplificar o teste de Anova. Vamos criar um experimento plausível a partir dele.

Simulando um experimento plausível

Vimos que existe um efeito do tipo de solo na produção de um cultivar. Uma expectativa plausível é que a adição de adubo também tenha efeito na produtividade. Ou seja, os tipos de solo tem produtividade diferente, assim como o adubo aumenta a produtividade.

Nos dados originais do exercício de ANOVA a produtividade média nos solos foi de:

  • arenoso: 9.9
  • argiloso: 11.5
  • humico: 14.3

Vamos, a partir dessa informação, criar um experimento onde, além da diferença do solo, metade dos cultivos foram tratados com adubo orgânico.

  • 1. Abra o arquivo cropMulti em uma planilha eletrônica:

cropMult01.jpg

  • 2. Preencha a coluna efeitoAdubo com o valor de 1.2 para todas as parcelas adubadas 2) e 0 para aquelas que não foram 3).
  • 3. Preencha a célula E2 da coluna desvios normal com a fórmula = INV.NORM.N(ALEATÓRIO(); 0 ; 1.5)4).
  • 4. Some os valores em uma mesma linha

Ao final sua planilha deve estar preenchida como a que segue, apenas com os valores da coluna resíduo diferentes:

adubo02.png

Procedimentos

  • 1. Salve a planilha e abra os dados no Rcmdr.
  • 2. Produza um modelo chamado mlSolo_Adubo da seguinte forma:

prodCampo ~ solo + adubo

  • 3. Avalie o modelo pelo seu sumário e pela tabela de Anova

Modelos Plausíves

O nosso modelo tem duas preditoras e pode ser simplificado. Nesse caso, como temos poucas possibilidades de comparação, podemos comparar os modelos plausíveis, desde que sejam aninhados. O que produzimos acima tem o efeito de solo e de adubo, podemos pensar em mais algumas possibilidades de modelo:

  • mlSolo só com o efeito do solo:

prodCampo ~ solo

  • mlAdubo só com efeito do adubo:

prodCampo ~ adubo

  • mlNull sem efeito de solo ou adubo:

prodCampo ~ 1

O valor 1 na última formula indica que o modelo não tem nenhuma variável preditora 5)

Interação entre preditoras

Nos modelos acima, desconsideramos um elemento importante que emerge quanto temos mais de uma preditora, a possibilidade de uma variável preditora interferir no efeito de outra, efeito esse chamado de interação. A interação é um elemento muito importante quando temos mais de uma preditora, pois desconsiderá-la pode limitar o entendimento dos processos envolvidos. Um exemplo cotidiano da interação é visto no uso de medicamentos e o alerta da bula sobre interação medicamentosa ou efeitos colaterais para pessoas portadoras de doenças crônicas. Dizemos que um medicamento tem interação com outra substância quando o seu efeito é modificado pela presença de outra substância, como por exemplo a ingestão de álcool junto com muitos medicamentos. Nos modelos a interação tem uma interpretação similar, a resposta pelo efeito de uma variável preditora se altera com a presença de outra preditora. Muitas vezes a interação pode ser o efeito de interesse do estudo, como na pergunta: O efeito de solo na produtividade agrícola depende da quantidade de adubo orgânico adicionado?. Ou em outras palavras: O efeito da adubação orgânica depende do tipo de solo?. Note que nestas perguntas o foco não é se há ou não efeito do adubo ou solo, mas se a presença de uma variável afeta o efeito de outra.

  • No conjunto de modelos acima, não incluímos o termo da interação. Produza o modelo abaixo incluindo o termo da interação e avalie esse modelo e seus coeficientes.

prodCampo ~ solo + adubo + solo:adubo

Não é esperado encontrar interação entre as preditoras nos dados simulados da maneira como fizemos, ele pode emergir por acaso, apenas porque temos uma variável aleatória 6). Da maneira como simulamos os dados temos duas preditoras que tem efeitos aditivos onde não há interação. Uma outra forma de dizer isso é que o efeito do adubo não interfere no efeito do solo, ou que esses efeitos são independentes. A interpretação biológica nesse caso também pode ser feita independentemente.

Simulando dados com interação

Seguindo a mesma abordagem anterior, vamos produzir dados simulando a interação entre as variáveis solo e adubo. Para isso precisamos produzir dados em que o efeito do adubo depende do tipo de solo.

  1. Abra o arquivo cropMulti em uma planilha eletrônica:

  1. Preencha a coluna efeitoAdubo com os valores:
    • 2.7 para arenoso com adubo igual a sim
    • 0.7 para argiloso com adubo igual a sim
    • 0.2 para humico com adubo igual a sim
  2. O campos da coluna efeitoAdubo onde adubo é igual a não devem ser preenchidos com 0
  3. Preencha a célula E2 da coluna desvios normal com a fórmula = INV.NORM.N(ALEATÓRIO(); 0 ; 1.5)7), as atuais utilizam a mesma que o excel.
  4. Some na coluna prodCampo os valores prodSolo + efeitoAdubo + desviosNormal

Ao final sua planilha deve estar preenchida como a que segue, apenas com os valores da coluna resíduo diferentes:

cropMult02.jpg

Procedimentos

  1. Salve a planilha com um nome diferente para não sobrescrever a planilha de dados usada anteriormente e importe os dados para o Rcmdr. Atenção nomeio os dados na aba de importação com um nome diferente dos dados importados anteriormente, em alguns casos o Rcmdr não importa se a planilha e os dados importados tiverem o mesmo nome de uma importação anterior
  2. Produza o modelo cheio mlSolo_AduboAll com a seguinte formula:
    • prodCampo ~ solo + adubo + solo:adubo
    • interprete o resumo, comparando com o resumo do modelo similar proveniente da planilha de dados anterior

Simplificando Modelos

Durante o curso usaremos o procedimento de simplificar o modelo a partir do modelo cheio. O procedimento consiste em comparar modelos aninhados8), dois a dois, retendo o que está mais acoplado aos dados. Para comparar os modelos utilizaremos o procedimento da partição da variância baseado na tabela de anova. Quando os modelo comparados são diferentes retemos o mais complexo, pois explica mais variação dos dados 9). Por outro lado, quando os modelos não são diferentes no seu poder explicativo, retemos o modelo mais simples, apoiados no princípio da parcimônia. Para tomar a decisão se os modelos são iguais ou diferentes utilizamos a estatística F da tabela de anova.

Princípio da parcimônia (Navalha de Occam)

  • número de parâmetros menor possível
  • linear é melhor que não-linear
  • reter menos pressupostos
  • simplificar ao mínimo adequado
  • explicações mais simples são preferíveis

Método do modelo cheio ao mínimo adequado

  1. ajuste o modelo máximo (cheio)
  2. simplifique o modelo:
    • inspecione os coeficientes (summary)
    • remova termos não significativos 10)
  3. ordem de remoção de termos:
    • interações não significativas (primeiro as de maior ordem)
    • termos quadráticos ou não lineares
    • variáveis explicativas não significativas
  4. caso faça sentido, agrupe níveis de fatores sem diferença
  5. verifique se a ordem de remoção não interfere na seleção do modelo
    • retorne ao modelo cheio
    • retire as variáveis que não foram retidas no outro procedimento em outra ordem
    • confirme que o modelo mínimo adequado é o mesmo
  6. Faça o diagnóstico do modelo mínimo adequado
  7. Interprete o modelo selecionado

Tomada de decisão

A diferença não é significativa:

  • retenha o modelo mais simples
  • continue simplificando

A difereça é significativa:

  • retenha o modelo complexo
  • este é o modelo MINÍMO ADEQUADO

Interpretando Variáveis Indicadoras (Dummy)

As variáveis indicadoras devem ser interpretadas com cuidado. No exemplo do modelo cheio acima 11), o modelo pode ser descrito da seguinte forma:

$$ y_{tr} = \alpha + \beta_1 * arg + \beta_2 * hum + \beta_3 * adubo + \beta_4 * arg * adubo + \beta_5 * hum * adubo $$

As variáveis arg, hum e adubo são dummy ou indicadoras, representadas por 1 quando presente e 0 quando ausentes. $\alpha, \beta_i$ representam as estimativas do modelo e estão relacionados, nesse caso, ao efeito de cada tratamento.

Para calcular o valor predito para o tratamento no solo arenoso com adubo, temos:

$$ y_{arenAdubo} = \alpha + \beta_3 * adubo $$

Isso em decorrência do tratamento arenoso sem adubo estar representado pelo intercepto ($\alpha$) do modelo.

Para o tratamento de solo argiloso com adubo o predito é:

$$ y_{argAdubo} = \alpha + \beta_1 * arg + \beta_3 * adubo + \beta_4 * arg * adubo $$

E assim por diante, usando as variáveis indicadoras e os coeficientes estimados para o cálculo do predito pelo modelo.

Procedimento

  1. Faça a seleção do modelo mínimo adequado para o conjunto de dados da última planilha, partindo do modelo com a interação, simplificando até o modelo mínimo adequado. Utilize o procedimentos de comparação de modelo pela partição de variância;
  2. Avalie o modelo selecionado pelo sumário e pela tabela de Anova. Reconheça os valores utilizados para gerar os dados a partir das estimativas do modelo.
  3. Preencha a aba cropIntera da planilha lmCrop2pred com os resultados do modelo selecionado
  4. Na planilha onde os dados foram gerados, calcule, a partir dos coeficientes estimados, os valores preditos pelo modelo para cada uma das observações, coloque esses valores em uma coluna nomeada de predito. Veja como calcular os valores preditos no quadro interpretando_variáveis_indicadoras_(dummy)
  5. Calcule os resíduos do modelo 12) em uma coluna denominada residuos
  6. Eleve o valor dos resíduos ao quadrado em uma coluna denominada resQuad. A soma destes valores representa a variabilidade não explicada pelo modelo
  7. Calcule a média da variável resposta e calcule a diferença deste valor para todas as observações e eleve ao quadrado e armazene em uma coluna desvQuadTotal, a soma destes valores representa a variabilidade total dos dados
  8. Calcule o R² do modelo, baseado no resQuad e no desvQuadTotal 13)

O que preciso entregar

  • 1. As estimativas dos modelos devem ter sido incluídas nas planilhas quando foram solicitados ao longo do roteiro
  • 2. Preencha as perguntas do quadro abaixo ou pelo link do formulário

1)
modelo linear com apenas uma preditora
2)
coluna adubo igual a sim
3)
coluna adubo igual a não
4)
Essa expressão retorna valores associados a uma distribuição normal com média 0 e desvio padrão 1.5. Para libreoffice use = NORM.INV(RAND(), 0, 1.5)
5)
o valor 1 indica que a resposta é predita apenas pela sua própria média
6)
se o termo da interação foi significativo, confira os cálculos e mantenha o resultado como está, esse resultado emerge com baixa frequência
7)
Essa expressão retorna valores associados a uma distribuição normal com média 0 e desvio padrão 1.5. Para versões antigas do libreoffice a função pode ser = NORM.INV(RAND(), 0, 1.5)
8)
o modelo mais simples está contido no mais complexo
9)
Este é um atributo associado aos modelos aninhados: aquele que tem mais variáveis ou parâmetros só pode explicar mais ou a mesma quantidade de variação do mais simples, já que todos os parâmetros do modelo mais simples estão contidos no mais complexo
10)
um de cada vez
11)
aquele que inclui a interação entre solo e adubo
12)
diferença entre observado e o predito pelo modelo
13)
O R² é a razão entre (desQuadTotal - resQuad) sobre a desvQuadTotal. Ou seja, quanto da variação dos dados é explicada pelo modelo em relação ao total de variação dos dados
cursos/planeco/roteiro/09-lm02.txt · Última modificação: 2021/04/14 15:54 por adalardo